
WHAT IS A QUANTUM FIELD THEORY?

Quantum field theory (QFT) is one of the great achievements of physics, of
profound interest to mathematicians. Most pedagogical texts on QFT are geared
toward budding professional physicists, however, whereas mathematical accounts
are abstract and difficult to relate to the physics. This book bridges the gap. While
the treatment is rigorous whenever possible, the accent is not on formality but on
explaining what the physicists do and why, using precise mathematical language.
In particular, it covers in detail the mysterious procedure of renormalization.
Written for readers with a mathematical background but no previous knowledge
of physics and largely self-contained, it presents both basic physical ideas from
special relativity and quantum mechanics and advanced mathematical concepts in
complete detail. It will be of interest to mathematicians wanting to learn about QFT
and, with nearly 300 exercises, also to physics students seeking greater rigor than
they typically find in their courses.
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“This book accomplishes the impossible task: It explains to a mathematician, in a language
that a mathematician can understand, what is meant by a quantum field theory from a physi-
cist’s point of view. The author is completely and brutally honest in his goal to truly explain
the physics rather than filtering out only the mathematics, but is at the same time as math-
ematically lucid as one can be with this topic. It is a great book by a great mathematician.”

- Sourav Chatterjee, Stanford University

“Talagrand has done an admirable job of making the difficult subject of quantum field
theory as concrete and understandable as possible. The book progresses slowly and carefully
but still covers an enormous amount of material, culminating in a detailed treatment of
renormalization. Although no one can make the subject truly easy, Talagrand has made every
effort to assist the reader on a rewarding journey though the world of quantum fields.”

- Brian Hall, University of Notre Dame

“A presentation of the fundamental ideas of quantum field theory in a manner that is
both accessible and mathematically accurate seems like an impossible dream. Well, not
anymore! This book goes from basic notions to advanced topics with patience and care. It
is an absolute delight to anyone looking for a friendly introduction to the beauty of QFT
and its mysteries.”

- Shahar Mendelson, Australian National University

“I have been motivated to try and learn about quantum field theories for some time but
struggled to find a presentation in a language that I as a mathematician could understand.
This book was perfect for me: I was able to make progress without any initial preparation
and felt very comfortable and reassured by the style of exposition.”

- Ellen Powell, Durham University

“In addition to its success as a physical theory, quantum field theory has been a continuous
source of inspiration for mathematics. However, mathematicians trying to understand quan-
tum field theory must contend with the fact that some of the most important computations in
the theory have no rigorous justification. This has been a considerable obstacle to communi-
cation between mathematicians and physicists. It is why, despite many fruitful interactions,
only very few people would claim to be well versed in both disciplines at the highest level.

There have been many attempts to bridge this gap, each emphasizing different aspects of
quantum field theory. Treatments aimed at a mathematical audience often deploy sophisti-
cated mathematics. Michel Talagrand takes a decidedly elementary approach to answering
the question in the title of his book, assuming little more than basic analysis. In addition
to learning what quantum field theory is, the reader will encounter in this book beautiful
mathematics that is hard to find anywhere else in such clear pedagogical form, notably the
discussion of representations of the Poincaré group and the BPHZ Theorem. The book is
especially timely given the recent resurgence of ideas from quantum field theory in proba-
bility and partial differential equations. It is sure to remain a reference for many decades.”

- Philippe Sosoe, Cornell University
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If all mathematics were to disappear, physics would be set back exactly one week.
Richard Feynman

Physics should be made as simple as possible, but not simpler.
Albert Einstein

The career of a young theoretical physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction.

Sydney Coleman
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Introduction

As a teenager in the sixties reading scientific magazines, countless articles alerted me to
“the infinities plaguing the theory of Quantum Mechanics”. Reaching 60 after a busy math-
ematician’s life, I decided that it was now or never for me to really understand the subject.1

The project started for my own enjoyment, before turning into the hardest of my scientific
life. I faced many difficulties, the most important being the lack of a suitable introductory
text. These notes try to mend that issue.

I knew no physics to speak of, but it was not particularly difficult to get a basic grasp of
topics such as Classical Mechanics, Electromagnetism, Special and even General Relativity.
They are friendly for mathematicians as they can be made rigorous to our liking.

Quantum Mechanics was a different challenge. Quite naturally, I looked first for books
written by mathematicians for mathematicians. By a stroke of bad luck, the first book I tried
was to me a shining example of everything one should not do when writing a book. Being
a mathematician does not mean that I absolutely need to hear about “a one-dimensional
central extension of V by a Lie algebra 2-cocycle” just to learn the Heisenberg commutation
relations. Moreover, while there is no question that mastery of some high level form of
Classical Mechanics will help reaching a deeper understanding of Quantum Mechanics,
Poisson Manifolds and Symplectic Geometry are not absolute prerequisites to get started.
Other books written by mathematicians are less misguided, but seem to cover mostly topics
which barely overlap those in physicists’ textbooks with similar titles. To top it all, I was
buried by the worst advice I ever received, to learn the topic from Dirac’s book itself! The
well-known obstacle of the difference of language and culture between mathematics and
physics is all too real. To a mathematician’s eye, some physics textbooks are chock-full
of somewhat imprecise statements made about rather ill-defined quantities. It is not rare
that these statements are simply untrue if taken at face value. Moreover arguments full of
implicit assumptions are presented in the most authoritative manner. Looking at elementary
textbooks can be an even harder challenge. These often use simple-minded approaches

1 Of course, the realization that I could no longer do research at the level that I wanted to played a major part in
this decision.

1



2 Introduction

which need not be fully correct, or try to help the reader with analogies which might be
superficial and misleading.2

Luckily, in 2012 I ran into the preliminary version of Brian Hall’s Quantum Theory for
Mathematicians [40], which made me feel proud again for mathematicians. I learnt from
this book many times faster than from any other place. The “magic recipe” for this was so
obvious that it sounds trivial when you spell it out: explain the theory in complete detail,
starting from the very basics, and in a language the reader can understand. Simple enough,
but very difficult to put into practice, as it requires a lot of humility from the author, and
humility is not the most common quality among mathematicians. I don’t pretend to be able
to emulate Brian’s style, but I really tried and his book has had a considerable influence
on mine.

After getting some (still very limited) understanding of Quantum Mechanics came the
real challenge: Quantum Field Theory. I first looked at books written by mathematicians
for mathematicians. These were obviously not designed as first texts or for ease of reading.
Moreover, they focus on building rigorous theories. As of today these attempts seem to be
of modest interest for most physicists.3 More promising seemed studying Gerald Folland’s
heroic attempt [31] to make Quantum Field Theory accessible. His invaluable contribution
is to explain what the physicists do rather than limiting the topic to the (rather small)
mathematically sound part of the theory. His book is packed with an unbelievable amount
of information, and, if you are stuck with minimum luggage on a desert island, this is a
fantastic value. Unfortunately, as a consequence of its neutron-star density, I found it also
much harder to read than I would have liked, even in sections dealing with well-established
or, worse, elementary mathematics. Sadly, this book has no real competitors and cannot
be dispensed with, except by readers able to understand physics textbooks.4 No doubt my
difficulties are due to my own shortcomings, but still, it was while reading Weinberg’s
treatise [87] that I finally understood what induced representations are, and this is not the
way it should have been. So, as the days laboring through Folland’s book turned into weeks,
into many months, I felt the need to explain his material to myself, and to write the text from
which I would have liked to learn the first steps in this area.

In the rest of the introduction I describe what I attempt to do and why. I try to provide
an easily accessible introduction to some ideas of Quantum Field Theory for a reader well
versed in undergraduate mathematics, but not necessarily knowing any physics beyond the
high-school level or any graduate mathematics.

I must be clear about a fundamental point. A striking feature of Quantum Field theory is
that it is not mathematically complete. This is what makes it so challenging for mathemati-
cians. Numerous bright people have tried for a long time to make this topic rigorous and
have yet to fully succeed. I have nothing new to offer in this direction. This book contains

2 I am certainly not the first mathematician to be appalled by the way physics students get treated, but it seems
futile to discuss this matter further.

3 This being said, the multiple author treatise [9] is a magnificent piece of work. It is overwhelming at first, but
most rewarding once you get into it.

4 See our Reading Suggestions for physics textbooks on page 732.
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statements that nobody knows how to mathematically prove. Still, I try to explain some
basic facts using mathematical language. I acknowledge right away that familiarity with
this language and the suffering I underwent to understand the present material are my only
credentials for this task.

My main concern has been to spare the reader some of the difficulties from which I have
very much suffered reading others’ books (while of course I fear introducing new ones),
and I will comment on some of these.

First, there is no doubt that the search for generality and for the “proper setting” of a
theory is a source of immense progress in mathematics, but it may become a kind of disease
among professional mathematicians.5 They delight in the “second cohomology group of
the Lie algebra” but do not explain why the important theorem holds when the Lie group
is R. I feel that in an introductory work generality should be indulged in only when it is
useful beyond doubt. As a specific example, I see no need to mention cotangent bundles
to explain basic mechanics in Euclidean space, but the use of tensor products does clarify
Fock spaces. Rather than pursuing generality, I find more instructive to explain in complete
detail simple facts and situations, especially when they are not immediately found in the
literature.6 I strive not to refer the reader to extensive specialized works, which may have
different notation, and may not have been written to be easily accessible. Of course, other
very different approaches are also possible [62].

Second, as an extremely ignorant person, I have suffered from the fact that many text-
books assume much known by the reader, such as “standard graduate courses in mathe-
matics”. For mathematics (except on very few occasions), I have assumed nothing that I
did not learn in my first three years of university in Lyon, 1969–1972: almost all the more
advanced mathematics I need are built from the ground up. For physics, I have tried to
assume basically nothing known beyond high-school level.

Third, it was hard at first to recognize that different authors are treating in fact the same
material, but each in his own way. I have tried different ways to explain the material which
confused me the most.

Fourth, when doing physics, and taking steps of dubious mathematical value (which is
often required to proceed) I have tried to be very candid about it and to explain clearly what
the problems are.7

Fifth, and most importantly, I believe that brevity is not such a desirable goal that it should
be reached at the reader’s expense. The goal of a textbook is to communicate ideas, not to
encrypt them in the shortest possible way (however beautifully this is done). Reading an
introductory textbook such as this one should simply not be a research project. This book
is long because:

5 I personally found that the only rather accessible article of the volume [18] is due to Edward Witten! But of
course this volume is not designed as an introductory course.

6 This attitude is motivated by the fact that whatever small successes I had in my own mathematical research
were always based on a thorough understanding of very simple structures.

7 I do not believe that authoritative statements, use of implicit assumptions, or contrived arguments as to which
obvious problems are not real help the readers.
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• It starts with basic material.
• The proofs are very detailed.8

As G. Folland appropriately points out [31], readers of notes such as these are likely
to be “tourists”: they do not look to acquire professional expertise in the topic. He and I
disagree in that I don’t think most tourists enjoy extreme sports. My overwhelming concern
has been to make the book easy to read, by providing everywhere as high a level of detail as I
could manage, and by avoiding anything really complicated until the last chapters. Tourists
may not enjoy extreme sports, but they might enjoy leisurely sight-seeing. A number of
appendices strive to provide an accessible introduction to a number of rewarding topics
which complement the main story.9

It seemed most useful not to duplicate what is done everywhere else. First, I acknowledge
the fundamental importance of historical perspective in understanding a topic, but I make
no attempt whatsoever in this direction: there is no point repeating in a clumsy way what is
said excellently elsewhere. Besides, one might gain by presenting early certain central and
simple ideas even if they came later in the development of the theory.10 I am in good com-
pany here, see Weinberg’s treatise [87]. Second, I concentrate on the points I had the most
difficulty understanding, and I treat these in considerable detail, trying also to explain how
these points are presented in physics textbooks. The subtitle of this book, a first introduction
for mathematicians, does not mean that it intends to be the fastest possible introduction to
the topic, but rather that the reader is not assumed to know anything whatsoever about it. A
bare-bones treatment (covering far more material than I do) has already been written [23],
and I am aiming here at a more fulfilling level of understanding.11 I felt it useful to cover
some of the fundamental structures in sufficient detail to provide a solid understanding. One
of my most glaring shortcomings is the inability to make sense of a mathematical statement
unless I have taken it apart to the very last bolt and reconstructed it entirely. I have tried to
do just that for these fundamental structures. This often takes several times longer than in
standard textbooks. Obviously in these the reader is expected to produce whatever efforts
are required to become a professional and master the field, while I try to be much less
demanding. On the other hand, some fundamentally important topics, which I found easier
to learn, get only succinct coverage here when detailed understanding is not indispensable.

8 Yes, for every topic, I do whatever it takes to complete all details.
9 The choice of these topics is highly personal and reflects both my interests and the history of my learning of

this topic. There are points which I felt I just had to understand, but which I am certain many readers will feel
comfortable to accept without proof.

10 Furthermore, it does help to entirely forget about some early missteps of the theories.
11 In practice, I have pursued every thread of thought until I felt I reached some real understanding of it, or until

I was forced to accept that some kind of miracle is taking place.
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Quantum Field Theory is difficult and voluminous. It involves a great many deep ideas.
Not all of them are extremely difficult, but the overall quantity is staggering. Being simul-
taneously detailed and thorough limits the number of topics I might cover, and difficult
choices had to be made. Roger Penrose [63, page 657], characterizes Quantum Field Theory
as “this magnificent, profound, difficult, sometimes phenomenonally accurate, and yet often
tantalizingly inconsistent scheme of things”. As the contribution of the present work is
only to describe in a self-contained manner some simple facts in mathematical language,
it seemed appropriate that it covers mostly topics where mathematical language brings
benefits well beyond a simple matter of notation. This is no longer the case when one
ventures in the “inconsistent scheme of things” part of the theory. Still, I briefly enter this
territory, in order to provide at least some form of answer to the question which serves as
title, and some glimpse at physics methods. I deliberately choose to explain these as clearly
as possible on the simplest possible “toy models” without any attempt to study realistic
models (where the principles are similar but obscured by many accessory complications). I
do not attempt what is already done in so many places, such as describing the tremendous
successes of Quantum Electrodynamics. You will not learn here any real physics or what is
the Standard Model.12 Rather, I try to prepare the reader to study books which cover these
topics, among which I first recommend Folland’s book [31].13 I have also decided to stay
entirely away from path integrals (also known as Feynman’s integrals). There is no doubt
that from the point of view of physics, path integrals are the correct approach, but they are
not well defined mathematically, and I do not see what yet another heuristic discussion of
them would bring.

On the other hand, the study of renormalization, the method to circumvent the dreadful
infinities, receives far more attention than it does in standard textbooks. The procedure itself
is rigorous. It involves only rather elementary (but magnificently clever) mathematics. There
seems to exist no other detailed source than the original papers or specialized monographs
such as [52] or [70].14 I prove in full detail the possibility of renormalization at all orders
of the so-called φ4

4 and φ3
6 theories, cases of somewhat generic difficulty.

No magic wand will make Quantum Field Theory really easy and some effort will be
required from the reader. My goal has been to make this effort easier for the reader than it
was for me without sacrificing the potential for enjoyment and enrichment this fascinating
topic offers.

A number of people helped me while I wrote this book. Shahar Mendelson had a trans-
formative impact, and there are simply no words by which I can express my gratitude for the
time and energy he invested in what was for him a pure labor of love. He and Roy Wilsker
rescued me many times from the brink of disaster. Gerald Folland spent considerable time
and displayed infinite patience in trying to explain some of the most delicate points of his
book [31]. Ellen Powell relentlessly asked for clarification of many imprecise statements.

12 Nor will you meet any idea that was not well formed fifty years ago.
13 However demanding, this book is simply brilliant at a number of places, and I see no purpose in repeating the

parts which I cannot improve in my own eyes.
14 The major textbooks do not enter into details on this topic, but only illustrate some ideas on examples,

“referring the serious reader to the study of the original papers” see e.g. [58, page 157]. This is even the case
of books which primarily deal with renormalization, such as [1, 15].
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Guilherme Henrique de Paula Reis and Shuta Nakajima read in detail every single proof,
however technical, and contributed in a major way to removing numerous obscurities and
outright mistakes.15 Comments of Sourav Chatterjee, Carlos Guesdes, Brian Hall, Amey
Joshi, Bernard Lirola, Patrick Lopatto, Hengrui Luo, David Saunders, Krzysztof Smuteck,
Phil Sosoe, Zenyuang Zhang and others on the successive versions had a major impact.
It was a pure delight to work with my editor Diana Gillooly.16 I express my gratitude
to them all.

Part of the work involved in this project was performed while the author was employed
by C.N.R.S and the author is grateful for this support.

15 I am solely responsible for the remaining ones.
16 Unless of course the matter at hand was the length of the book.



Part I

Basics

Our broad goal is to construct models explaining the interactions of elementary particles.
The multiple ingredients and fundamental ideas are introduced in succession in the main
chapters. We will then discover the bad news: even in simple models, the predictions are
non-sensical, being expressed by diverging integrals. Still, a process called renormalization
allows finite physical predictions from these infinities. Such is the program of the main
chapters. Along the way, a wealth of interesting questions of mathematics will be encoun-
tered. Many of these are explored in the appendices, which also contain more advanced
material on certain matters of physics.∗ A minimum reading program does not require you
to ever look at an appendix. The goal of such a program would be the central Chapter 13,
which explains how the infinities occur and hints at how to remove them. The chapter deals
only with spinless particles, so it can be reached without learning any of the material related
to spin (which is nonetheless of great mathematical interest), and entirely ignoring Part II
of the book. This minimum program can then be extended according to the reader’s main
interests.

The reader is assumed to be a mathematician. As far as knowledge is concerned, this
means little more than the expectation that she will not faint at reading the words “group”
and “Hilbert space”. As far as attitude is concerned this means that she is expected to
be more interested in trying to understand what is going on and why certain assumptions
and methods are reasonable rather than in the details of specific computations that can be
measured against experiments.

Here seems to be a good place to comment on the level of mathematical rigor of the book.
A very significant part (particularly in the appendices) is just standard, fully rigorous math-
ematics, since after all this is what this author is best qualified to write. Another significant
part is “basically rigorous” in the sense that it could (probably) be made rigorous but the
complication of doing so would obscure the main purpose, and whenever the choice arises,
we choose clarity over formality. The rest of the book takes place outside mathematics,
in the physicist’s fairyland where one manipulates objects whose very existence is rather

∗ Even though we have aimed at high standards of detail and clarity throughout, some of the appendices might
be a bit more demanding mathematically than the main text.
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dubious.† Roughly speaking this is the case of Part III, whereas most of Parts I, II and IV
are either fully rigorous or basically rigorous. We have tried to help the reader figure out
the level of rigor of various sections, but of course the boundaries of “basically rigorous”
are somewhat fuzzy. Let us stress, however, that Part IV, treating renormalization (the art
to make sense of certain diverging integrals) is fully rigorous.

There are many possible plans one could make to treat the present subject. One could
choose to follow the historical development. One could choose the “logical order”: explain
the basics of Classical Mechanics, Quantum Mechanics and Special Relativity before
attacking Quantum Field Theory. We have chosen a less-traveled route, which might be
more appealing to mathematicians.

First, let us ask why one might be interested in this topic. There are obvious reasons,
of course. Any learned person should want to know something about a theory, which is
certainly one of the greatest intellectual achievements of all times, and which has been so
well confirmed by experiment with the discovery of the Higgs boson.‡ But more specif-
ically, why might mathematicians be interested in Quantum Field Theory? For the very
ambitious, there is the fact that putting the theory on a firm mathematical footing remains a
formidable challenge. More modestly, an aesthetically appealing aspect of the theory is that
so much of it is determined just by the requirement that it should be consistent with Special
Relativity, i.e. invariant under Lorentz transformations. Our presentation emphasizes this
aspect, culminating in Chapter 10 with simple arguments (using no more than elementary
linear algebra) that allow the discovery of the basic free fields. Prior to this chapter, only the
minimum is said about Quantum Mechanics, delaying the description of fundamental prac-
tical matters such as perturbation theory until they are actually needed, and until motivation
has been gained.

Probably the reader would like to have a more precise road map of what lies ahead,
but whatever precise information we might try to give at this stage would only make little
sense to a reader not knowing the basic concepts of Quantum Mechanics. Consequently, a
technical overview of the first few chapters is delayed until the beginning of Chapter 3.

† And one even “proves theorems” about them!
‡ Or, maybe more accurately, of a boson that looked like a Higgs boson at the time of this writing.



1

Preliminaries

As the present project started as an attempt at rewriting Folland’s textbook [31], we begin
in the same direction, attempting though to give more details.

1.1 Dimension

The numerical value of many physical quantities depends on the unit one chooses to measure
them. My height is 1.8 m, or 180 cm, or 1.90 × 10−16 light-years. The use of light-years
here as a unit is weird, but not so much more than the use of centimeters to measure distances
at the scale of a nucleon as many textbooks do. (A nucleon has a size of about 10−15 m =
10−13 cm.) Tradition unfortunately has more weight than rationality in these matters.

The concept of “physical dimension” (which definitely differs from dimension in the
mathematical sense) expresses how the numerical value of a physical quantity depends on
the units you choose to measure it. A distance has dimension [l] where l stands of course
for length. If you increase the unit of length by a factor 100, the corresponding measure
decreases by a factor 100: 100 cm = 1 m. Then a surface has dimension [l2]: (100)2 cm2 =
1 m2. A volume has dimension [l3]: 1 km3 = (103)3 m3 = 109 m3. The unit of time can be
chosen independently from the unit of length. Time has dimension [t], so speed, which is
a distance divided by a time, has dimension [lt−1]. Thus 1 m/s = 3,600 m/h = 3.6 km/h.
Acceleration, which is a change of speed divided by a time, has dimension [lt−2]. It is of
course a convention to choose time and length as fundamental quantities. One could make
other choices, such as choosing time and speed as fundamental quantities. This is indeed
basically what is actually done. Since 1983, in the international system the speed of light is
defined to be exactly

c = 299,792,458 m/s (1.1)

and this serves as a definition of the meter given the unit of time.1

A formula in physics must give a correct result independently of the system of units used.
This is a strong constraint. This is why it often makes sense to multiply or divide quantities
of different dimensions, but it never makes sense to add them. As we learn in kindergarten,

1 The reason for this definition is that the speed of light is a fundamental constant of Nature, and that it makes
little sense to have its value change as the accuracy of measurements improves.

9
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you do not add pears with bananas. Furthermore, when a quantity occurs in a formula as the
argument of, say, an exponential, it must be dimensionless, i.e. its value must be independent
of the unit system. To understand a formula in physics it always helps to check that it makes
sense with respect to dimension, a task we will perform many times.

The unit of mass can be chosen independently of the units of length and time. Momen-
tum,2 the product of a mass and a speed, then has dimension [lt−1m], and angular momen-
tum, the product of a momentum and a distance, has dimension [l2t−1m]. Energy has the
dimension of a mass times the square of a speed, that is [l2t−2m]. Less known is the action
which occurs in Lagrangian Mechanics as the integral over a time interval of a quantity
with the dimension of energy, and thus has the same dimension [l2t−1m] as the angular
momentum.

A fundamental constant of Nature is Planck’s constant h, which represents the basic
quantum of action (and in particular has the dimension of an action). In physical equations
it often occurs in combinations with a factor of 1/2π , so one defines the reduced Planck
constant

h̄ = h

2π
, (1.2)

whose value is about3

h̄ = 1.0546× 10−34 J · s. (1.3)

This is small, as becomes more apparent if this value is expressed in units more related to
the microscopic world4 h̄ � 6.6×10−16 eV·s. It is important to note that energy times time,
momentum times length and angular momentum all have the same dimension as h̄ so that
their quotients by h̄ are dimensionless. These quotients will occur in countless formulas.

Exercise 1.1.1 The Planck-Einstein relation gives the energy E of a photon of fre-
quency ν as E = hν. Check that this formula makes sense with respect to dimension.

Exercise 1.1.2 The de Broglie momentum–wavelength relation states that to a particle
of momentum p is associated a wavelength λ = h/p. Check that this formula makes
sense with respect to dimension.

1.2 Notation

Since to enjoy this topic one has to read the work of physicists, it is best to adopt their
notation from the beginning. Complex numbers play a central role, and the conjugate of a
complex number a is denoted by a∗. Even some of the best authors let the reader decide

2 Please do not worry if you do not have a real feeling for the concepts of momentum, energy, etc. (despite the
fact that you should experience them every day). This is not going to be an obstacle.

3 An action has the dimension of an energy times a time. In the International System of Units, the unit of energy
is the joule J and the unit of time is the second s, so action is measured in J · s. From May 2019, the value of h
is defined to be exactly 6.62607015× 10−34J · s.

4 A joule is a huge energy at the microscopic scale. A more appropriate unit of energy at this scale is the
electron-volt eV, the energy acquired by an electron going through a difference of potential of one volt.
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whether i denotes a complex number with i2 = −1 or an integer index. Since this requires
no extra work, the complex number will be denoted by i, so that i∗ = −i.

When working with complex Hilbert spaces we adopt the convention that the inner prod-
uct (·,·) is anti-linear in the first variable (while often mathematicians use the convention
that it is anti-linear in the second variable). One says that the inner product is sesqui-linear.
That is, as another example of our notation for complex conjugation, we write

(ax,y) = a∗(x,y)

for any vectors x,y and any complex number a. Moreover

(y,x) = (x,y)∗. (1.4)

The norm ‖x‖ of a vector x is given by ‖x‖2 = (x,x), and we recall the Cauchy-Schwarz
inequality

|(x,y)|2 ≤ ‖x‖2‖y‖2,

where |a| denotes the modulus of the complex number a. A basic example of a complex
Hilbert space5 is the space Cn, where the inner product is defined by (x,y) = ∑

i≤n x∗i yi ,
with the obvious notation x = (xi)i≤n. Another very important example is the space L2(R)
of complex-valued functions f on the real line for which

∫
R
|f |2dx = ∫

R
|f (x)|2dx <∞,

where |f (x)| denotes the modulus of f (x). The inner product is then given by (f,g) =∫
R
f ∗gdx. A physicist would actually write

(f,g) =
∫ ∞
−∞

d1xf (x)∗g(x), (1.5)

where the superscript 1 refers to the fact that one integrates for a one-dimensional measure.
The reason for which the d1x is put before the function to integrate is that this makes
the formula easier to parse when there are multiple integrals. We will use this convention
systematically. We will not however mention the dimension in which we integrate when this
dimension is equal to one.

An operator A on a finite-dimensional Hilbert space H is simply a linear map H→ H.
Its adjoint A† is defined by

(A†(x),y) = (x,A(y)), (1.6)

for all vectors x,y. (Mathematicians would use the notation A∗ rather than A†.)

Exercise 1.2.1 (a) If A is an operator and α a number, prove the formula

(αA)† = α∗A†.

(b) If A and B are operators, prove that (AB)† = B†A†.

An operator (still on a finite-dimensional space) is called Hermitian if A=A†.
A Hermitian operator A has the crucial property that if a subspace F is such that A(F ) ⊂ F

then the orthogonal complement F⊥ of F is also such that A(F⊥) ⊂ F⊥.

5 In this work we consider only finite-dimensional or, more generally, separable Hilbert spaces.
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Exercise 1.2.2 Deduce this from the fact that (A(x),y) = (x,A(y)) for all x,y.

As a consequence, a Hermitian operator has a simple structure: there exists an orthonor-
mal basis of eigenvectors.6

Exercise 1.2.3 Give a complete proof of this fact by induction over the dimension of
the space.

Moreover the eigenvalues are real since (x,A(x)) is real for all x. Indeed,

(x,A(x)) = (A(x),x)∗ = (x,A(x))∗,

where the second equality uses that A is Hermitian. If A(x) = λx then (x,A(x)) = λ(x,x),
so that λ(x,x) = λ∗(x,x) and λ = λ∗. It is this property of having a basis of eigenvectors,
with real eigenvalues, which makes the class of Hermitian operators so important.

A few times we will need the notion of anti-linear operator. Such a map T does satisfy
T (x + y) = T (x)+ T (y) but for a scalar a we have T (ax) = a∗T (x).

We should also mention that in physics, vectors and inner products are denoted differ-
ently, using Dirac’s ubiquitous notation, which we will explain later. In most situations
however we prefer to use standard mathematical notation, and it is unlikely that anybody
reading this will mind.

1.3 Distributions

Laurent Schwartz invented the theory of distributions to give a rigorous meaning to many
formal calculations of physicists. The theory of distributions is a fully rigorous part of
mathematical analysis. In the main text however we will use only the very basics of this
theory at a purely informal level. In Appendix L the reader may find an introduction to
rigorous methods.

We will consider distributions on Rn but here we assume n = 1. The central object is
the space S = S(R) of rapidly decreasing functions, called also test functions or Schwartz
functions. A complex-valued7 function ζ on R is a test function if it has derivatives of all
orders and if for any integers k,n ≥ 0 one has8

sup
x
|xnζ (k)(x)| <∞. (1.7)

A distribution is simply a linear functional (which also satisfies certain regularity condi-
tions which will not concern us before we reach Appendix L, as they will be satisfied in all
the examples we will consider). That is, a distribution � is a complex linear map from S
to C, and for each test function ζ the number �(ζ ) makes sense. Such a distribution should
actually be called a tempered distribution, but we will simply say “distribution” since we will

6 Later we will meet a far-reaching extension of this fact, the spectral theorem for self-adjoint operators.
7 A test function is typically complex-valued. At times, to avoid complications created by anti-linear operators,

we also consider real-valued test functions. The space of such functions is denoted by SR. Please try to
remember that the subscript R on a space of test functions means that we consider only real-valued functions.

8 The property is often described in words as follows: As |x| → ∞, the function and each of its derivatives
decrease faster than |x|−n for each n. This is what motivates the name “rapidly decreasing function”.
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hardly consider any other type of distribution. Tempered distributions are also known under
the name of generalized functions. This name has the advantage of explaining the point
of the theory of distributions: it generalizes the theory of functions. Indeed, a sufficiently
well-behaved function9 f defines a distribution (= generalized function)�f by the formula

�f (ζ ) =
∫

dx ζ (x)f (x). (1.8)

Throughout the book we maintain the convention that when the domain of integration is not
mentioned, this domain is the whole space. Thus (1.8) means �f (ζ ) = ∫

R
dxf (x)ζ (x) =∫∞

−∞ dxf (x)ζ (x).
As we are going to see, distributions can be strange animals. On the other hand, distribu-

tions given by a formula such as (1.8) are much better behaved. The short way to describe
the situation where the distribution � is of the type �f as in (1.8) is to simply say that � is
a function.

In general a distribution is certainly not given by a formula of the type (1.8). However,
when dealing with distributions we will maintain the notational fiction that they are func-
tions, i.e. for a test function ζ we will write∫

dx ζ (x)�(x) := �(ζ ). (1.9)

The use of the symbol := here is to stress that the right-hand side is a definition of the
left-hand side, so that you may be reassured that your memory did not fail and that there
is no point in looking back for the definition of the left-hand side. Equation (1.9) indeed
defines the left-hand side, since the symbol �(x) is a notation, and a priori really makes no
sense whatsoever by itself. It is only the integral

∫
dx ζ (x)�(x) which makes sense for any

test function, and the value of this integral is (by definition) the quantity �(ζ ), as expressed
in (1.9).10 The central objects of this work, quantum fields, have precisely the previous
property. The value of a quantum field cannot be specified at any given point. This value
makes sense only “when it is integrated against a test function”, or smeared in physics-type
language.

Even for distributions, it is however sometimes possible to give a meaning to the quan-
tity �(x) for certain values of x. Given an open interval I of the real line, we say that
a distribution is a function on I if there exists a well-behaved function f on I such that
�(ζ ) = ∫

dx ζ (x)f (x) whenever the test function ζ has compact support contained in I .11

It is then reasonable to define �(x) = f (x) for x ∈ I . However, unless � is a function, it
is not possible to assign a meaning to the symbol �(x) for each value of x.

9 The meaning of the expression “well-behaved” varies depending on the context. In the present case, f needs
to be locally integrable and “not grow too fast at infinity”.

10 The notational fiction (1.9) is however quite useful when one likes to be informal, as we simply do not
distinguish distributions from functions until this leads us into trouble.

11 When I = R this looks different from the definition (1.8) because then it is not required that ζ has compact
support. However, using the regularity properties that are part of the definition of a distribution, and on which
we do not dwell here one may show that these definitions coincide, see Appendix L.
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Distributions can be added, or multiplied by a scalar, but in general cannot be multi-
plied.12 The great appeal of distributions is that they can always be differentiated. The
derivative of a distribution � is the distribution defined by the formula

�′(ζ ) := −�(ζ ′) (1.10)

for every test function ζ . The reason behind this definition is best understood by integrating
by parts when � is given by the formula (1.8) for a well-behaved function f . Then �′(ζ ) =∫

dxf ′(x)ζ (x).

Exercise 1.3.1 Convince yourself from the preceding definition that “if a distribution
is actually a nice function, its derivatives as a function and as a distribution coincide”.
Hint: Recalling (1.8), prove that (�f )′ = �f ′ .

Pretending that �′ is also a function, we write �′(ζ ) as
∫

dxζ (x)�′(x), and equally
shamelessly we write (1.10) as∫

dx ζ (x)�′(x) := −
∫

dx ζ ′(x)�(x). (1.11)

In several dimensions, the class of test functions is defined as the class of infinitely
differentiable functions such that the product of any partial derivative (of any order) and
any polynomial in the variables is bounded. The reader may refer to Section L.1 for more
about test functions.

1.4 The Delta Function

Besides reviewing the delta function, this section introduces the idea of a smooth cutoff,
how to get rid of the troublesome part of an integral.

Mathematically, the delta “function” δ is simply the distribution given by

δ(ζ ) = ζ (0) (1.12)

for any test function ζ ∈ S. Pretending that the delta “function” is actually a true function
we will shamelessly write (1.12) as

ζ (0) =
∫

dxζ (x)δ(x). (1.13)

The name “delta function” is historical. Physicists have been using this object long before
distributions were invented.

Exercise 1.4.1 (a) Convince yourself that it makes perfect sense to say that δ(x) = 0
if x �= 0.
(b) Make sure that you understand that despite the terminology, the delta function δ is
not a function in the mathematical sense and that the quantity δ(0) makes no sense.

12 One of the reasons for the dreaded infinities which will occur later is that we will have no other choice to
proceed than pretending we can multiply certain distributions.
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(c) Convince yourself from (1.13) that, in the words of physicists, “the delta function
δ is the function of x which is equal to zero for x �= 0 and to infinity for x = 0, but in
such a way that its integral is 1”.
(d) Convince yourself that the derivative of the delta function δ, i.e. the distribution δ′

given by δ′(ζ ) = −ζ ′(0) “does not look at all like a function”.

For a �= 0 let us define δ(ax) by∫
dxζ (x)δ(ax) := 1

|a|
∫

dxζ (x/a)δ(x) = 1

|a|ζ (0), (1.14)

so that

δ(ax) = 1

|a|δ(x), (1.15)

and in particular δ(−x) = δ(x).13

Proper mathematical terminology requires one to say “the function f ” but sooner or
later one always says “the function f (x)” to carry at the same time the information that the
variable is called x. In the same manner we will use expressions such as “the distribution
�(x)” which should not be interpreted as meaning that the quantity �(x) makes sense for
a given x.

We will often write the quantity δ(x − y). It can be seen as a “function” of x depending
on the parameter y. This “function” makes sense only when integrated in x against a test
function ζ , and one has

ζ (y) =
∫

dxζ (x)δ(x − y). (1.16)

It can also be seen as a “function” of y depending on the parameter x, and one has

ζ (x) =
∫

dyζ (y)δ(x − y). (1.17)

Exercise 1.4.2 The quantity δ(x − y) can also be seen as a distribution � in the
variables x,y. For a test function ξ (x,y) one has∫∫

dxdyξ (x,y)δ(x − y) := �(ξ ) :=
∫

dxξ (x,x).

Convince yourself that this is consistent with (1.16) and (1.17).

Note also that δ(x − y) = δ(y − x). We will shift freely between the previous meanings
of the quantity δ(x − y). More generally we will stay very informal. Everything we say at
this stage could be made rigorous, but this is not our objective.14

13 Please be prepared: soon we will start manipulating delta functions as if they were functions, for example
taking for granted the first equality in (1.14).

14 It makes no sense to carefully climb molehills when the Himalayas are waiting for us.
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Exercise 1.4.3 For a test function ξ convince yourself of the formula (various versions
of which we will use many times)∫

dzδ(x − z)δ(z− y)ξ (z) = δ(x − y)ξ (x). (1.18)

We will make massive use of the formula15

δ(x) = 1

2π

∫
dy exp(ixy), (1.19)

and we first need to make sense of it. In studying physics, one must keep in mind at all
times that the goal is to make predictions about the behavior of the physical world. This is
difficult enough. To study the physical world, one makes models of it. One should as far as
possible concentrate on problems that arise from the physical world, and stay away from
the problems that arise not from the physical world, but from the models we made of it. We
may never know for sure whether the physical world is finite or not, but certainly events
located very far from our experiments are unlikely to affect very much their outcome, so
their inclusion in our model is an idealization, and in (1.19) points very far from the origin
should be discounted, for example by a factor exp(−ay2) for a very small a > 0. This is an
example of what is called a “smooth cutoff”. Thus, rather than (1.19) we mean

δ(x) = lim
a→0

1

2π

∫
dy exp(ixy − ay2). (1.20)

Here the limit is “in the sense of distributions”. By definition of convergence in the sense of
distributions, this means that for every test function ζ ,

ζ (0) =
∫

dxζ (x)δ(x) = lim
a→0

∫
dxζ (x)ψa(x), (1.21)

where

ψa(x) := 1

2π

∫
dy exp(ixy − ay2) = 1

2
√
aπ

exp(−x2/4a),

the second equality resulting from the computation of the Gaussian integral, see Lemma
C.3.3. Making the change of variables x = √ay, (1.21) becomes

ζ (0) = lim
a→0

∫
dyζ (y

√
a)ψ1(y),

which holds by dominated convergence since ψ1 has integral 1 and ζ is uniformly
bounded.16

A regularization procedure as in (1.20) can make sense only if it is robust enough. You
might have chosen an origin different from mine, but this does not matter since for all b it
follows from (1.20) that we actually have

δ(x) = lim
a→0

1

2π

∫
dy exp(ixy − a(y − b)2).

15 exp(x) is just another notation for ex .
16 Certainly the reader has observed the fundamental idea there: a family of functions of integral 1, which peaks

more and more narrowly around zero converges to the delta function in the sense of distributions, consistently
with Exercise 1.4.1 (a).
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Exercise 1.4.4 It would seem at first that the substitution z = y− b in the right-hand
side brings a factor exp(−ixb). Why is there no such factor? Hint: Where is the delta
function different from zero?

We will also need the obvious three-dimensional generalization of (1.19). In this case, not
only might you and I have chosen different origins, we might also move at relativistic speed
with respect to each other (and consequently we may not agree on the way we measure dis-
tances). There is however little point in investigating which specific regularization schemes
would take care of this: as we will see later in this section, far more general regularization
schemes work.

1.5 The Fourier Transform

Besides reviewing some basic facts about Fourier transforms, this section provides the first
example of certain calculations common in physics.

The Fourier transform will play a fundamental role.17 Let us temporarily denote by Fm

the Fourier transform, that is

Fm(f )(x) = 1√
2π

∫
dy exp(−ixy)f (y), (1.22)

where the subscript m reminds you that this is the way mathematicians like to define it
(whereas our choice of normalization will be different). The right-hand side is defined for
f integrable, and in particular for a Schwartz function f ∈ S. Using integration by parts
in the first equality, and differentiation under the integral sign in the second one, we obtain
the fundamental facts that for any test function f ,

Fm(f ′)(x) = ixFm(f )(x) ; Fm(xf ) = iFm(f )′, (1.23)

where we abuse notation by denoting by xf the function x �→ xf (x). An essential fact is
that the Fourier transform of a test function is a test function. The details of the proof are a
bit tedious, and are given in Section L.1.18

The Plancherel formula is the equality

(Fm(f ),Fm(g)) = (f,g), (1.24)

for f,g ∈ S, where (f,g) = ∫
dxf (x)∗g(x). It is very instructive to “prove” this formula the

way a physicist would, since this is a very simplified occurrence of the type of computations
that are ubiquitous in Quantum Field Theory:

(Fm(f ),Fm(g)) = 1

2π

∫
dx
( ∫

dy1 exp(−ixy1)f (y1)
)∗ ∫

dy2 exp(−ixy2)g(y2)

= 1

2π

∫∫
dy1dy2f (y1)∗g(y2)

∫
dx exp(ix(y1 − y2))

17 As will be explained later, it provides a natural correspondence between the “position representation” and the
“momentum representation”.

18 The essential point is that iteration of the previous relations and Plancherel’s formula show that if f is a test
function then for each n,k ∈ N the function xnFm(f )(k)(x) belongs to L2.
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=
∫∫

dy1dy2f (y1)∗g(y2)δ(y1 − y2)

=
∫

dy2f (y2)∗g(y2)

= (f,g), (1.25)

where we have used (1.19) in the third line and have integrated first in y1 in the fourth line.
Although this type of manipulation might look scary at first to a mathematician, it suffices
in fact to insert a factor exp(−ax2) in the first line and let a → 0 to make the argument
rigorous using (1.20).

As a consequence of Plancherel’s formula, for f ∈ S, the Fourier transform of f has the
same L2 norm as f , i.e. Fm is an isometry when S is provided with the L2 norm. Since S is
dense in L2 for this norm, an elementary result asserts that we may extend by continuity the
Fourier transform as a linear map from L2 to itself and this extension still satisfies (1.24).
Please observe that it is by no means obvious that the right-hand side of the formula (1.22)
is well-defined when f ∈ L2.

One of the miracles of the Fourier transform is that it can be inverted by a formula very
similar to (1.22):

F−1
m (g)(y) = 1√

2π

∫
dx exp(ixy)g(x). (1.26)

To justify the notation F−1
m we observe that, using (1.26) for g = Fm(f ), and using again

(1.19),

F−1
m (Fm(f )) (y) = 1

2π

∫
dx exp(ixy)

∫
dz exp(−ixz)f (z)

= 1

2π

∫
dzf (z)

∫
dx exp(ix(y − z))

=
∫

dzf (z)δ(y − z)

= f (y). (1.27)

This again can be made rigorous just as (1.25). Let us now look back at (1.21), which we
write, using Fubini’s theorem,

ζ (0) = lim
a→0

1

2π

∫
dy exp(−ay2)

(∫
dx exp(ixy)ζ (x)

)
,

and by dominated convergence we obtain

ζ (0) = 1√
2π

∫
dy F−1

m (ζ )(y). (1.28)

Incidentally, it is now quite obvious that the regularization scheme in (1.20) is very robust.
To see this, let us investigate for which regularizing families of functions ψa , we have in
the sense of distributions

δ(x) = lim
a→0

1

2π

∫
dy exp(ixy)ψa(y).
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This means that for any test function ζ ∈ S it holds that

ζ (0) = lim
a→0

1

2π

∫∫
dxdy ζ (x) exp(ixy)ψa(y). (1.29)

The right-hand side is

lim
a→0

1√
2π

∫
dy F−1

m (ζ )(y)ψa(y) = lim
a→0

∫
dy θ(y)ψa(y),

where θ := (2π )−1/2F−1
m (ζ ). Since θ is a test function, and since its integral is ζ (0) by

(1.28), (1.29) holds true whenever ψa converges to the constant function 1 in the sense of
distributions, that is

lim
a→0

∫
dy η(y)ψa(y) =

∫
dy η(y)

for each test function η. This is the case for example (using dominated convergence) when
ψa(y) = ψ(ay) where ψ ∈ S satisfies ψ(0) = 1, and in particular when ψ(x) = exp(−x2)
as in (1.20).

Let us also mention that it is possible to define a notion of “Fourier transform of a
distribution”, and once this is done (1.28) is equivalent to the statement “the delta function
is the Fourier transform of the constant function 1/

√
2π”, which is a more elaborate way

to describe the way we made sense of (1.19).
Mathematicians love the symmetry between (1.22) and (1.26), but in physics it is better,

thinking that x has the dimension of a length and p of a momentum to define the Fourier
transform of a function f as

f̂ (p) =
∫

dx exp(−ixp/h̄)f (x) =
√

2πFm(f )(p/h̄) (1.30)

and the inverse Fourier transform as

ξ̌ (x) =
∫

dp

2πh̄
exp(ixp/h̄)ξ (p). (1.31)

This makes sense because the quantity xp/h̄ is dimensionless. The Plancherel formula then
becomes ∫

dx |f (x)|2 =
∫

dp

2πh̄
|f̂ (p)|2. (1.32)

Exercise 1.5.1 Make sure you understand (1.31) by writing out all details. The factor
2πh̄ will occur constantly.19

There are obvious multidimensional versions of these formulas. There is one factor 2πh̄
per dimension in the analog of (1.31). When integrating in p we will always include these
factors.

Exercise 1.5.2 Write the multidimensional versions of these formulas.

19 According to (1.2), we have 2πh̄ = h but we write all formulas in term of h̄.
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The formula (1.23) now becomes

̂
−ih̄

df

dx
(p) = −ih̄

d̂f

dx
(p) = pf̂ (p). (1.33)

The operator −ih̄d/dx is fundamental in Quantum Mechanics, and (1.33) means that it is
much simpler to express on f̂ than on f : applying this operator to the function f simply
amounts to multiplying the Fourier transform of f by p.

Key facts to remember:

• One should always check that an equation in physics makes sense from the point of
view of physical dimension.

• The complex conjugate of a complex number a is denoted by a∗ and the adjoint of
an operator A by A†.

• Distributions generalize functions but their value is not defined at every point and
they make sense only when integrated against a test function. The “delta function” is
not a function!

• The ubiquitous Fourier transform is not exactly defined as it would be in mathematics.



2

Basics of Non-relativistic Quantum Mechanics

Quantum Field Theory may be described as an attempt to bring together non-relativistic
Quantum Mechanics and Special Relativity. As a first task one has to understand some
basics of Quantum Mechanics. In this chapter we review the absolute minimum required.
We make no attempt to state axioms in a formal and complete way, since the goal, as so
often in this book,1 is to explain things clearly rather than formally. If you have never heard
of Quantum Mechanics, it is unlikely that these basic elements will suffice. Despite the fact
that if you pick a textbook at random from your library shelf, it is likely to vampirize your
time, there do exist good, well-written textbooks, and there is no point in duplicating too
much of them here. On the mathematical side, the reader-friendly book by Hall [40] provides
a good introduction. On the physics side, Cohen-Tannoudji, Diu, and Laloë’s treatise [11]
is a masterpiece of pedagogy. These textbooks contain far more material than will actually
be needed, but they are excellent pieces to read more if you need to do so.

Different approaches may be tried to provide a sketch of Quantum Mechanics. One could
cover right away all the needed topics systematically. The reader may then face neural
overload (as I experience myself when being confronted with such texts). Another approach,
which we try here, is to introduce every element only when and as needed, and to develop
even simple and basic ideas only when required. That may ease the mental overload, but it
may then take longer for the reader to form a global mental picture of what is going on. If
this is your experience, try Hall’s textbook [40] for help.

Another point must be stressed. We do our best to present the basics of Quantum Mechan-
ics in a non-pedantic manner, but still in mathematical language (at the expense, of course,
of not always giving complete arguments). It is far from obvious that the principles we will
explain have any relevance to the physical world. Yet it is their real justification, and one
can only marvel at the depth of insight of the great minds who discovered them. To explain
this relevance, one must lay out examples of concrete situations, where the predictions of
the model can be compared with lab experiments. Needless to say, this author is not the best
qualified to do this, but many such examples are covered in a very progressive manner in
Cohen-Tannoudji, Diu, and Laloë’s book [11].

More basic facts about Quantum Mechanics are covered at the beginning of Chapter 11
and require only the material of the present chapter as a prerequisite.

1 The appendices are more often fully mathematical.

21
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2.1 Basic Setting

We must first stress that one does not “prove” the basic concepts of Quantum Mechanics,
or of any physical theory. One builds models, and the ultimate test of the validity of such
models is whether they predict correctly the results of experiments. Still, one strives for
mathematical consistency and elegance.2

The purpose of Mechanics is to describe the state of mechanical systems and to determine
their time-evolution. Consider, for example, one of the simplest mechanical systems: a
massive dimensionless point. Its state at a given time is described by its position and velocity.
That this, indeed, is the correct way to specify even such a simple system is by itself a deep
fact: it is the position and the velocity (and not, say, the acceleration) at a given time that
determine the future motion of the point. This fact is delicate enough that apparently it is
not understood by the general public, which seems to still believe that an astronaut stepping
out of the International Space Station (ISS) will start falling toward Earth.3

As we pointed out, it is not easy to relate the principles of Quantum Mechanics to actual
physical experiments. On the positive side, this means that there is no real loss in starting
to learn them even with little knowledge of Classical Mechanics. A very brief introduction
to Classical Mechanics will be given in Sections 6.4 and 6.5.

Principle 1 4 The state of a physical system is described by a unit vector in a
complex5 Hilbert space H.

This Hilbert space is called the state space, and the unit vector is called the state vec-
tor. The state space will always be either finite-dimensional or separable (i.e. admitting a
countable orthonormal basis). As in the case of the lowly classical massive point, the correct
description of the state of a system encompasses a huge amount of wisdom. The fact that it
is done by a vector in Hilbert space allows some of the most surprising features of Quantum
Mechanics. It makes physical sense to consider linear combinations of different states.6

The principles of Quantum Mechanics, and this one in particular, really do not appeal to
our everyday intuition. There seems to be no remedy to this situation.

This is a good place to start explaining Dirac’s notation, which is nearly ubiquitous in
physics textbooks. Dirac’s notation (also called bra–ket notation) is not really appropriate
for writing mathematical arguments, so our use of it will be somewhat limited. Nonetheless,
it must be learned in order to read physics literature. In this notation, vectors (i.e. elements
of H) are denoted by |α〉,|β〉, and so on. These are called “ket vectors”. Let us stress that

2 This is a critical philosophical difference between mathematicians and physicists: mathematicians have logical
systems that they can use to have confidence in systems, and, conversely, experience has made them cautious
about vagueness and lack of logical rigor. Physicists, who can never “prove” that something is physically true,
look to experimental results (and, occasionally, beauty) to provide confidence in their assumptions or to tell
them to go back to the drawing board.

3 Of course, the ISS too is falling toward Earth, since otherwise, its motion would be in a straight line. What is
meant here is that the astronaut falls at a faster rate.

4 Particularly important principles are outlined for the reader’s convenience but there is no claim that these form
a complete or independent set of axioms. I may use at times the word “axiom” rather than principle.

5 All Hilbert spaces considered in this work are complex Hilbert spaces. According to the quote of Richard
Feynman that opens this book, he apparently considered complex numbers as a part of physics rather than a
part of mathematics. That complex numbers play such a major part in our models of the world is a rather
awesome fact.

6 This allows, in particular, for interferences.
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in this notation, α is not an element of H; it is a label. It is the whole symbol |α〉 that is
an element of H. For example, we may very well denote by {|i〉;1 ≤ i ≤ n} a basis of H,
where n is the dimension of H. The notation |i〉 for what a mathematician would write, say,
ei , looks strange at first until one realizes that the real information is carried by the index i,
and that the letter e is just a support for this index and is no longer needed in the Dirac
notation, where the support for the index is now the symbol |·〉.

On the other hand, any element x of H induces a linear functional y �→ (x,y) on H.
When x = |α〉, this linear functional is denoted by 〈α| and is called a “bra vector”. So |α〉
is an element of H, while 〈α| is a linear functional on H. The value of the functional 〈α| on
the vector |β〉 is denoted by 〈α|β〉 (rather than 〈α||β〉). This is simply the inner product of
the vector |α〉 and the vector |β〉. Thus, corresponding to (1.4) we have

〈α|β〉 = 〈β|α〉∗. (2.1)

Let us observe in particular that 〈α|α〉 is the square of the norm of |α〉.
An essential ingredient of any physical theory is the concept of an observable, that is, a

quantity that can, at least in principle, be measured by an apparatus in an experiment, and the
goal of the theory is to predict this measured value. The concept of observable is particularly
important in Quantum Mechanics. In this theory, many quantities are not observable, and
this leads to all kinds of nonsense if forgotten. In the basic example, the position of the point
should be such an observable.

To explain more about the principles of Quantum Mechanics, in the first stage, we assume
that the state space is finite-dimensional.7

Principle 2 To each observable O, there corresponds a Hermitian operator A on the
state space H.

The statement is not very precise yet, as it does not say how we use the operator A to
measure the observable, but we will come to that soon.

A fundamental fact about operators is that they may not commute. In general,AB �= BA,
and this lack of commutativity has immeasurable consequences. As a measure of the “lack
of commutativity,” we define the commutator

[A,B] := AB − BA, (2.2)

of two operators, which will be of constant use. It should be stressed that operators are a
complicated business. To a large extent, this explains the intricacies of Quantum Mechanics.

In the case of H = C2, the simplest situation of interest,8 the space of Hermitian oper-
ators is a four-dimensional real vector space. A natural basis consists of the following four
matrices:

σ0 = I =
(

1 0
0 1

)
; σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
. (2.3)

7 When that is not the case, we have to find the proper generalization of the notion of Hermitian operator, which
we will explain later.

8 Nature has made considerable use of this case, although this cannot be explained yet. In words you might have
heard, C2 is the appropriate state space to describe the spin of particles of spin 1/2.
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The matrices σ1,σ2 and σ3 are called the Pauli matrices and are of fundamental importance.
The reader may try to compute the commutators of these matrices to become convinced that
lack of commutativity is already in full force. One should also observe that σ3 is diagonal,
so it is a bit simpler than σ1 and σ2. As will become gradually clear, the reason for this
choice is that in our laboratories, the vertical direction is privileged.

In Dirac’s notation the action of the operator A on the vector |α〉 is denoted by A|α〉. In
mathematical notation the action of the operator A on the vector x ∈ H is denoted by A(x)
or sometimes Ax. Physicists like to write Ax, and my own training is to write A(x). This
schizophrenic pressure prevents me from being consistent.

Since A is Hermitian, it has an orthonormal basis of eigenvectors, which we denote by
|i〉, so that A|i〉 = λi |i〉 for some real numbers λi (which may or may not be different as i
varies). Here i ranges from 1 to the dimension n of H. Since {|i〉;i ≤ n} is an orthonormal
basis, we have

|α〉 =
∑
i≤n
〈i|α〉|i〉, (2.4)

because 〈i|α〉 equals the inner product of the vectors |i〉 and |α〉. In mathematical notation
one would write x =∑

i≤n(ei,x)ei . It is pleasant to rewrite (2.4) as

|α〉 =
∑
i≤n
|i〉〈i|α〉,

or even

1 =
∑
i≤n
|i〉〈i|, (2.5)

where 1 is the identity operator.9 Physicists call such a relation a resolution of the identity
or a completeness relation, because the system of vectors {|i〉;i ≤ n} is complete enough
to reconstitute the whole space.

Exercise 2.1.1 If |α〉 is a unit vector, describe the operator |α〉〈α|.
The next two principles relate the operator associated to an observable with the actual

measurements of this observable.

Principle 3 When measuring (by an experiment) the value of the observable O for
a system in state |α〉, the value obtained is always one of the eigenvalues λi of the
Hermitian operator A associated to O.

At this stage we can only give trivial examples of physical systems, but let us try to
consider a system consisting of one single point, which can be at any of n different locations
(λi)i≤n on the real line. (In the next few pages, this example will be referred to as the basic
example.) In this basic example, the position of the point should be such an observable.
According to Principle 3, it seems sensible that the state space is just Cn, and that the

9 This relation holds because by (2.4) it holds whenever applied to a vector |a〉.
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operator corresponding to the position of the point on the real line is such that for x =
(xi)i≤n ∈ Cn, one has A(x) = (λixi)i≤n (where (λi)i≤n are the n possible positions of
the point on the real line).10 Equivalently, each vector ei = |i〉 of the canonical basis is an
eigenvector of eigenvalue λi , A(ei) = λiei or, in Dirac’s notation, A|i〉 = λi |i〉.

The amazing thing (amazing at least compared to our macroscopic experience) is that
repeating the experiment on identically prepared systems usually gives different values,
however carefully these systems have been prepared.

Principle 4 If the system is in state |α〉 (so that 〈α|α〉 = 1), then the probability of
measuring the value λi for the observable O is∑

j ;λj=λi
|〈α|j 〉|2. (2.6)

Here, probability means that if you repeat the experiment many times on identically
prepared systems, the frequency of measuring the value λi is about the value of the right-
hand side (with an accuracy that increases with the number of experiments).

Let us examine Principle 4 in the case of the basic example. If the system is in state
|α〉 = x = (xi)i≤n ∈ Cn (with

∑
j≤n |xj |2 = 1), then xi = (ei,x) = 〈i|α〉, so that |xi |2 is

the probability of measuring the system at position λi .
As explained, the state of a physical system is described by a unit vector of H, and

conversely, every unit vector of H describes a state of the system.11 Very often we will
consider non-zero vectors that need not be unit vectors. It is very convenient, as we will do
without further warning, to consider that such a vector x describes the same state of the
system as the unit vector x/‖x‖. With this convention, when the state |α〉 is not normalized,
the expression (2.6) has to be divided by 〈α|α〉. Please note at this stage that even when we
use this convention, the state |α〉 of a system is a non-zero vector.

The statement “the state of a system is described by a unit vector in a complex Hilbert
space H” has to be qualified in a precise way. In Classical Mechanics, if you know the
state of the system, you can, in principle, know its exact state at any future time and predict
the outcome of any future measurement. Quantum Mechanics allows no such prediction.
It does not predict with certainty the outcome of a given experiment. What it does is to
make statistical predictions about the results of many identical experiments. The technically
correct way to express this is to say that “an ensemble of identical systems is described
by a unit vector in a Hilbert space”.12 For simplicity we will keep saying that “a system is
described by a given state vector”, but this does not mean, even for simple systems consisting
of one single particle, that from this state vector one could (even in principle) determine
quantities such as the position or the momentum of the particle. What Quantum Mechanics
does is to predict (statistically) the results you will get when you measure this position or this
momentum. In fact in Quantum Mechanics it does not make sense to talk about the position
of the particle or its momentum except at a time when you measure it. It is a misconception

10 For what else could A depend on?
11 The correspondence is not one-to-one, however. If a is a complex number of modulus 1, x and ax describe the

same state.
12 One may try to think of a state as specifying a preparation process. Repeating the same experiment on

similarly prepared systems yields results that are only statistically predictable.
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to think that in Quantum Mechanics, systems are in a kind of “undetermined state”. The
state vector should be thought of (at least according to the standard interpretation) as a
complete description of everything that can possibly be known about the system. (It of course
touches philosophical issues to decide whether this state vector is “a complete description
of reality”.) It is the result of measurements on the system that are not determined, not the
state of the system itself.

Going back to Principle 4, we are guaranteed to get the value λi out of our measurement
only in the very special case where |〈α|j 〉| = 0 for λj �= λi , that is, when |α〉 is an
eigenvector of eigenvalue λi . In the case of the basic example this means that only one
of the components xi of x is not zero.

Let us examine what happens if we proceed twice in succession to the measurement of O
on the same system. We consider here the idealized situation where the second measurement
takes place “immediately after” the first measurement. (What this means at the experimental
level will be discussed a few pages later.) Then both measurements must yield the same
result.13 Thus, at the time of the second measurement, the system must be such that any
measurement of O yields a given value (the value obtained in the first measurement) so
that the state of the system must be an eigenvector of A. Consequently, if before the first
measurement the state of the system was not an eigenvector ofA, this first measurement has
changed the state of the system. In the case of the basic example, this means that measuring
position changes the state x of the system as soon as at least two components of x are not
zero. Measurements typically cannot be performed without changing the state of the system.

In order to form a clearer picture of the situation, let us anticipate Section 2.15. In the
absence of measurements, the time-evolution of the state of a system is entirely determin-
istic. The measurement is not producing a temporary disturbance of the system. Rather, the
measurement sends the system on a new course for ever after. Which new course exactly
depends on the result of the measurement, a result that can be predicted only statistically.

Much ink (and ingenuity) has been expended debating the fact that randomness appears
to be intrinsic to Nature at the most fundamental level. As a probabilist, living a full century
after this discovery, I must confess that I do not find it more startling than the older discovery
that Earth is orbiting the Sun and not the other way around, so I will say no more about
this. Far more annoying is the fact that the change of state occurring in a measurement
process (which is often called “the collapse of the wave function”) is hard to describe within
the setting of Quantum Mechanics. In the preceding formulation of the basic principles,
we implicitly assumed that Quantum Mechanics applies only to the microscopic world,
while the experimental apparatus, as well as the physicist performing the experiment are
outside its domain of validity. But where, then, is the boundary of the domain of validity?
It would be more satisfactory that Quantum Mechanics should itself be able to describe the
measuring apparatus as well as the observer performing the experiment. This raises issues
that are not fully resolved to this day. For a simple discussion of these issues, we refer to
Isham’s book [43], and for a more detailed (yet accessible) account to Weinberg’s book [88].
In fact there remain a number of other conceptual difficulties within Quantum Mechanics

13 At least that is the way things behave. Physics would be harder otherwise.
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(see e.g. [20]). The legendary question by A. Einstein to N. Bohr offers a glimpse of this:
Do you really believe that the moon is not there when nobody looks at it? (According to the
standard interpretation of Quantum Mechanics, it makes no sense to assert that the moon is
there when nobody looks at it.14)

In Dirac’s notation, 〈β|A|α〉 denotes the inner product of the vectors |β〉 and A|α〉. To
compute this quantity one may use (2.4), but this computation gives us an opportunity to
illustrate one of the strengths of Dirac’s notation, the use of (2.5) to obtain the following:

〈β|A|α〉 =
∑
i,j≤n
〈β|i〉〈i|A|j 〉〈j |α〉 =

∑
i,j≤n
〈β|i〉〈α|j 〉∗〈i|A|j 〉. (2.7)

This type of manipulation using completeness relations is of constant use in physics.15

A consequence of Principle 4 and (2.6) is that for a system in state |α〉, the expected
value,16 or average value, of the measurement of the observable O is∑

i≤n
|〈α|i〉|2λi = 〈α|A|α〉, (2.8)

where the equality is obtained using (2.7) together with the fact that 〈i|A|j 〉 = 〈i|j 〉λj = λi

if i = j and zero otherwise. To lighten our terminology, we will use expressions such as
“average value of the observable” or even “average of the observable” as shorthand for
“average value of the measurement of the observable”. Similarly we will say “expected
value of the observable” for “expected value of the measurement of the observable”. Let us
note that the expected value 〈α|A|α〉 of the observable O does not determine the probability
law of Principle 4.

We obviously get the same result in (2.8) if we replace |α〉 by a|α〉 where the complex
number a is of modulus 1, |a| = 1. Thus as far as predicting the result of the measurement
of O (which is the purpose of the model) is concerned, all these vectors represent the same
state, and one should say that the state of the system is actually represented by a unitary
ray, the set of vectors a|α〉 for |a| = 1 and a certain unit vector |α〉. (The name unitary ray
is traditional, even though this set is a circle!)

2.2 Measuring Two Different Observables on the Same System

Suppose now that we consider a second observable O′ with a corresponding Hermitian
operator B. Then if a system in state |α〉 is such that it will always yield the same value

14 One should say that the problem here is formulated in a rather outrageous way to make the point clear. The
universe seems to have done fine prior to our existing! The problem is nonetheless real. On the one hand, one
may argue that Quantum Mechanics applies only to the microscopic world. Then a measurement process will
be anything that interacts with a macroscopic object such as a photosensitive chemical in a photographic
emulsion and has nothing to do with a conscious observer. On the other hand, if one refuses this arbitrary and
ill-defined boundary between macroscopic and microscopic worlds, the quantum realm extends all the way to
the consciousness of the observer. It is then very difficult to escape the conclusion that this consciousness
plays a role, and matters become very murky. The theory of decoherence tries to address these issues.

15 Including cases where the mathematical justification is not ironclad.
16 The measured value of the observable O in state |α〉 is a random variable, and as such has an expected value.

When we repeat the experiment many times and average the corresponding measurements, the quantity we
obtain is near this expected value. This is why both names are used.
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when O is measured, and also when O′ is measured, then |α〉must be an eigenvector of both
A and B. Then [A,B]|α〉 = 0. When no such |α〉 exists,17 there does not exist a state for
which both O and O′ can be measured with certainty. It is simply impossible to ever know
at the same time the values of both O and O′ for any state of the system. It is fallacious to
think that to know them both one just has to measure O and then O′. After the measurement
of O′ has taken place you no longer know the value of O. If you measure O, then measure
O′, and “immediately after” measure O again, the result of this second measurement of O
will sometimes be different from the result of the first measurement. This is because, as we
explained earlier, the measurement of O′ has changed the state of the system. Right after
the measurement of O′, the state of the system is an eigenvector of B, and by hypothesis,
this eigenvector of B is not an eigenvector of A, so that in this state of the system, the result
of the measurement of A cannot be predicted with certainty.

To prove at the experimental level that the difference between the first and the second
measurements of O is really due to the measurement of O′, but not to the evolution of
the system, one cannot of course perform the measurements of O, O′, and then O again
“immediately after each other”. One simply arranges that the time between the measure-
ments is very short compared with the timescale at which the system evolves. This is most
easily done when the spontaneous evolution of the system is very slow, as in the case of
the spin of an electron in Earth’s very weak magnetic field. The actual spectacular physical
experiment, where O and O′ are, for example, the x and y components of the spin of an
electron, is described in many introductory textbooks. (Generally speaking, the predictions
of Quantum Mechanics are extremely well confirmed by experiments.)

Exercise 2.2.1 Consider two observables O and O′ and the corresponding Hermitian
operatorsA andA′. Assume for simplicity that all the eigenvalues ofA are distinct, and
all the eigenvalues of A′ are distinct. Prove that if A and A′ commute, the probability
to measure a certain value λ of O for a system in a given state |α〉 remains the same if
we measure O′ before we measure O. Prove that if A and A′ do not commute, there
are certain states |α〉 for which this is not true. Hint: A and A′ commute if and only if
they have a common basis of eigenvectors.

2.3 Uncertainty

Heisenberg’s uncertainty principle, which we will study in the present section, is related to
but different from the phenomenon of the previous section. If the system is in state x with
(x,[A,B]x) �= 0, one cannot measure both observables O and O′ with arbitrary accuracy.
We are not talking here of successive measurements on the same experiment, where the first
measurement changes the state of the system. We are talking of measurements on different
experiments. One repeats the experiment many times, each time measuring either O or O′.
If the results of measuring O are concentrated in a small interval, then the results of mea-
suring O′ must spread out. In the important special case where [A,B] is a multiple of the

17 Recall here that since |a〉 is the state of the system, it must be non-zero. An important particular case is when
[A,B] is a multiple of the identity.
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identity, whatever the state of the system, you can never measure both O and O′ with
arbitrary accuracy. A quantitative version of this statement is given in Proposition 2.3.2.

Definition 2.3.1 Consider an observable O with associated Hermitian operator A.
The uncertainty �xA ≥ 0 of O in the state x ∈ H is given by

(�xA)2 := (x,A2x)− (x,Ax)2. (2.9)

For instance, in the case of the basic example, the uncertainty of the position in state x is√∑
i≤n λ2

i |xi |2 − (
∑

i≤n λi |xi |2)2. To make sense of (2.9), one may observe that (�xA)2 is
just the variance of the probability distribution of Principle 4, or in other words, �xA is the
standard deviation of this probability distribution. The physical content of this definition
should be stressed. When you make a measurement of the observable O for a system in
state x, you get a random result, and �xA is the standard deviation of this random result.18

To explain (2.9) in more mathematical terms, this quantity measures “the square-
deviation of O from its average in state x”. Indeed, denoting by 1 the identity operator
of H (and since x is of norm 1),

(�xA)2 = (x,A′2x), (2.10)

where the Hermitian operator A′ := A − (x,Ax)1 is “the deviation of O from its average
in state x”. When x is an eigenvector of A, obviously (�xA)2 = 0. Conversely, when
(�xA)2 = 0, since

(x,A′2x) = (A′x,A′x) = ‖A′x‖2,

then A′x = 0 so that x is an eigenvector of A. Therefore, (�xA)2 = 0 if and only if x is an
eigenvector of A, i.e. if and only if the measurement of O in state x offers no uncertainty,
in accord with our calling �xA the “uncertainty of O in state x”.

Observe finally that (x,A′x) = 0, so that (2.10) means

(�xA)2 = (�xA
′)2. (2.11)

Proposition 2.3.2 ([71]) For two Hermitian operators A and B,

�xA�xB ≥ 1

2
|(x,[A,B]x)|. (2.12)

When the right-hand side is not zero, this gives a quantitative lower bound on the product
of the uncertainty of measuring O and O′ in state x, a quantitative version of Heisenberg’s
uncertainty principle. We will soon meet fundamental operators for which [A,B] is a non-
zero multiple of the identity and the right-hand side is never zero.

Proof Defining B ′ in the obvious manner, using (2.11), and observing that [A,B] =
[A′,B ′] because 1 commutes with everything, we see that it suffices to prove (2.12)
for A′ and B ′ or, equivalently, in the case where (x,Ax) = (x,Bx) = 0. In that case,

18 Standard deviation is a statistical measure of how “spread out” a random variable is. Intuitively this means
here that the outcomes of different experiments are likely to differ by values of order �xA.
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(�xA)2= (x,A2x), and similarly for B. The key fact is that, using symmetry (and denoting
by Im z the imaginary part of the complex number z),

(x,[A,B]x) = (x,ABx)− (x,BAx) = (Ax,Bx)− (Bx,Ax)

= (Ax,Bx)− (Ax,Bx)∗ = 2iIm (Ax,Bx). (2.13)

Therefore, using the Cauchy-Schwarz inequality,

|(x,[A,B]x)| ≤ 2|(Ax,Bx)| ≤ 2‖Ax‖‖Bx‖. (2.14)

Now, since ‖Ax‖2 = (Ax,Ax) = (x,A2x) = (�xA)2 and similarly for B, (2.14) proves
(2.12).

2.4 Finite versus Continuous Models

Mathematicians are trained to think of physical space as R3. But our continuous model of
physical space as R3 is of course an idealization, both at the scale of the very large and
at the scale of the very small. This idealization has proved to be very powerful, but in the
case of Quantum Field Theory, it creates multiple problems, and in particular the infamous
infinities (in the form of diverging integrals).

Can we dispense with continuous models and their analytical problems? A physical mea-
surement is made through a device with finite accuracy, and this measurement is no different
from the same measurement rounded to the last significant digit. The result of the measure-
ment is also bounded,19 so it may yield only finitely many possible values, and we might
be able to study physics using only finite-dimensional Hilbert spaces (of huge dimension).

There is a fundamental reason why we stubbornly keep infinite models. Probably the
most important guiding principle in finding good models is that a proper theory should
be Lorentz invariant,20 reflecting the fact that physics should be the same for all inertial
observers21 (who undergo no acceleration). There is no way this can be implemented in
a finite model, say one which replaces the continuous model of physical space by a finite
grid. Lorentz invariance can be recovered from a finite model only “in the infinite limit”.
Further, there is no canonical choice for such a finite model, so that one has to show that the
results obtained by a finite approximation are indeed essentially independent of how this
approximation is performed. Heuristically, this is plausible but it is quite another matter to
really prove independence. In fact, it can be argued that settling this question is of the same
order of difficulty as constructing a continuous model which in some sense would be the
limit of the finite model as the grid becomes finer. In the case of Quantum Field Theory,
this is a highly non-trivial task. Most importantly, considering finite models does not really
solve anything. The infinities reappear in the guise of quantities that blow up as the grid
becomes finer, and it is very hard to make sense of this behavior.

19 For example, as of today, no object at distance from us greater than a few billion light-years has been
observed. If you feel like arguing that this bound is not large enough, then try to argue that the bound of
1010000 light-years is not large enough.

20 See Chapter 4.
21 This fact is extremely well-established experimentally.
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For these reasons we uncomfortably but realistically consider continuous models, even
though they are not really well defined. Since nobody really knows how to solve the ana-
lytical difficulties related to these models, there is little point in working toward a partial
solution to these difficulties, and our efforts in this direction will be minimal. It is embarrass-
ing (in particular for this author) to write quantities that do not really make sense, but they
would make sense if we replaced the continuous model by a suitable finite approximation.22

The simple device of “putting the universe in a box” which we study later in Section 3.9
goes a long way in this direction.

2.5 Position State Space for a Particle

In this section we analyze how the previous machinery works to describe a very simple
system, a massive point that can be located anywhere on the real line. This provides a
first concrete example, and at the same time allows us to discuss the intricacies of con-
sidering infinite-dimensional state spaces. Almost nothing of what we explained in the
finite-dimensional case will carry on exactly the same, but a suitable infinite-dimensional
reinterpretation of the concepts will basically suffice.

The state space H is the space L2 = L2(R,dx) of complex-valued square-integrable
functions23 on the real line.24 An element of H is thus a complex-valued function25 f on
R. The traditional terminology is to call this function the wave function. A wave function
of norm 1 therefore describes the possible state of a massive point, which for simplicity we
will call a particle.

The basic idea is that the position of a particle in state f is not really determined, but that
the function |f |2 represents the probability density to find this particle at a given location.
This statement will eventually appear as the proper interpretation of (2.6) in the present
“continuous case”. To develop this idea, consider an interval I of R, and the operator 1I
defined by 1I (f )(x) = f (x) if x ∈ I and 1I (f )(x) = 0 if x �∈ I . This operator is bounded
since ‖1I (f )‖ ≤ ‖f ‖. After we develop the right generalization of Hermitian operators in
infinite dimensions, it will become apparent that this operator corresponds to an observable,
and the average value of this observable on the state f is

(f,1I (f )) =
∫
I

dx|f (x)|2,

which is the probability to find the particle in the set I . It is worth repeating the fundamental
fact: When you actually measure whether the particle is in I or not, you get a yes/no answer.
But you are certain to find the particle in I only if its state vector f is an eigenvector of 1I

22 As far as we know, there is no other way to give a precise meaning to these quantities. Physicists seriously
trying to explain why what they do makes sense use exactly this procedure, see e.g. Duncan’s book [24].

23 In L2, functions which differ on a set of measure zero are identified, but this is never an issue here.
24 You may also wonder why we choose such a state space. It is quite natural in view of our “basic example” of a

point taking n possible positions on the real line. The true answer that this is the fruitful model which will
become only gradually apparent.

25 For clarity we often denote functions in position state space by Latin letters and functions on momentum state
space by Greek letters.
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of eigenvalue 1, i.e. f (x) = 0 for x �∈ I , and you are certain not to find it in I only when f
is an eigenvector of 1I of eigenvalue 0, i.e. f (x) = 0 for x ∈ I .26

In the present setting, the position of the particle is an observable so that it corresponds
to a “Hermitian operator” X, which will be called the position operator. It is not difficult to
guess what the operator X should be. If indeed |f |2 represents the probability density that
the particle is at a given location, its average position is given by∫

dxx|f (x)|2 =
∫

dxf (x)∗(xf (x)). (2.15)

This quantity should be (f,X(f )), so that X should be the operator which sends f to the
function xf (where of course xf is the function x �→ xf (x)).

This operator X is not defined everywhere, because the function xf may not be square-
integrable. It is defined only for the functions f such that xf ∈ L2. Accordingly we need
to introduce the concept of unbounded operators.

Definition 2.5.1 An unbounded operator A on a Hilbert space H is a linear map from
a dense linear subspace D(A) into H. The space D(A) on which A is defined is called
the domain of A.

We will say “operator” rather than “unbounded operator”, and when the operator is
bounded, i.e. ‖A(y)‖ ≤ C‖y‖ for some constant C and all y ∈ H we will say “bounded
operator”.27 The reason for this terminology is that most of the operators we shall use are
unbounded. Not all unbounded operators are of interest. The important class, the so-called
“self-adjoint operators”, is the proper generalization of the Hermitian operators, and we
start to introduce the necessary concepts to define it. These concepts are important in the
rigorous study of Quantum Mechanics, but they will be rather marginal for us. If you find
their study too demanding, you should jump right after Exercise 2.5.20.

Let us recall from Section 1.2 that in finite dimension the adjoint A† of an operator A
is given by (1.6), i.e. (A†(y),x) = (y,A(x)) for all x,y ∈ H. We would like to use the
same definition (1.6) in infinite dimensions. Certainly this formula can make sense only for
x ∈ D(A). Looking at the left-hand side, we see that when this formula holds, we have

|(y,A(x))| = |(A†(y),x)| ≤ ‖A†(y)‖‖x‖,
so that A†(y) may exist only when y ∈ H such that the linear map x �→ (y,A(x)), which is
defined on D(A), is also bounded; |(y,A(x))| ≤ C‖x‖ for a constant C independent of x.

These observations point the way to the proper definition of the adjoint of an unbounded
operator. We define the subspace D(A†) as the set of y ∈ H for which there exists a constant
C independent of x such that |(y,A(x))| ≤ C‖x‖ for all x ∈ D(A). For such a y, by

26 Generally speaking, it is not always obvious to understand the meaning of the observable corresponding to a
given operator.

27 The reader may of course wonder why an operator which is not defined everywhere is called an “unbounded
operator”. The reason is that it can be shown that an operator which is defined everywhere and is not
extremely pathological is automatically bounded. It is obvious that the position operator cannot be bounded,
because if ‖X(f )‖ ≤ C‖f ‖, then (f,X(f )) ≤ C for ‖f ‖ = 1. This is absurd because (f,X(f )) is the average
of the measured position of the particle, and there exist of course particles that are arbitrarily far away.
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continuity, the map x �→ (y,A(x)) from D(A) to C extends to the whole of H. Therefore,
by the Riesz representation theorem,28 there exists an element A†(y) of H such that

∀x ∈ D(A) , (A†(y),x) = (y,A(x)), (2.16)

and A†(y) is uniquely determined by this condition since D(A) is dense.

Definition 2.5.2 When D(A†) is dense, the operator A† with domain D(A†) defined
by (2.16) is called the adjoint of A.

Observe that when A is a bounded operator we have D(A†) = H.

Definition 2.5.3 An operator A is called symmetric if

∀x,y ∈ D(A) , (A(y),x) = (y,A(x)). (2.17)

Exercise 2.5.4 Consider the space D of continuously differentiable functions f on
[0,1]. Consider the operator A on L2([0,1]) with domain D defined by A(f ) = if ′.
Is A symmetric? What happens if one considers instead the domain Dα = {f ∈ D;
f (1) = αf (0)}, where α is a complex number of modulus 1?

The following should be obvious.

Lemma 2.5.5 If A is symmetric, then D(A) ⊂ D(A†)29 and A†(y) = A(y) for
y ∈ D(A).

Definition 2.5.6 An operator is called self-adjoint if it is symmetric and if
D(A†) = D(A).

If we remember that in finite dimensions an operator A is Hermitian if and only if
A = A†, we see that the previous definition exactly generalizes this definition to the
infinite-dimensional case: A is self-adjoint if it is equal to its adjoint, i.e. A† has the same
domain as A and coincides with A on this domain. The fundamental importance of self-
adjoint operators in Quantum Mechanics is that they correspond to observables. In infinite
dimensions physicists often call an operator Hermitian when in fact they mean self-adjoint
(so, you will hardly ever see the word “self-adjoint” in physics textbooks).

One may stress the point of Definition 2.5.6 as follows. If we decrease D(A) we increase
D(A†). That is if D′ ⊂ D(A) and we denote by B the operator with domain D′, given by
B(x) = A(x) for x ∈ D′, then the domain of B† contains the domain of A†. This should be
obvious from the definitions. Thus in a sense a self-adjoint operator is a symmetric operator
such that its domain is as large as possible.

Exercise 2.5.7 Prove that if the operator A is symmetric and if A† is symmetric, then
A† is self-adjoint.

28 The Riesz representation theorem states that given a bounded linear functional ϕ on H, that is |ϕ(x)| ≤ C‖x‖
for all x, there exists y ∈ H such that ϕ(x) = (y,x).

29 In particular, D(A†) is dense and the adjoint is well defined.
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The following exercise is of fundamental importance to get a feeling for self-adjoint
operators.

Exercise 2.5.8 Consider the Hilbert space H of sequences x = (xn)n≥0 with norm
‖x‖2 =∑

n≥0 |xn|2. Consider a sequence (λn)n≥0 of complex numbers.
(a) Prove that the formula

A((xn)n≥0) = (λnxn)n≥0

defines an operator on the domain

D(A) =
{
x = (xn)n≥0 ∈ H ;

∑
n≥0

|λnxn|2 <∞
}

.

(b) Prove that A is symmetric if and only if λn ∈ R for each n ≥ 0.
(c) Prove that the adjoint of A† of A has the domain D(A†) = D(A) and is given by
the formula

A†((xn)n≥0) = (λ∗nxn)n≥0.

(d) Prove that A is self-adjoint when λn ∈ R for each n.

Exercise 2.5.9 Consider a sequence (Hn)n≥0 of Hilbert spaces and their direct sum⊕
n≥0 Hn. Thus an element x ∈ ⊕

n≥0 Hn is a sequence (xn)n≥0 where xn ∈ Hn,
with norm ‖x‖2 := ∑

n≥0 ‖xn‖2. Consider for each n ≥ 0 a bounded operator An

from Hn to Hn+1 and the adjoint operator Bn from Hn+1 to Hn, that is the operator
such that (x,An(y)) = (Bn(x),y) for x ∈ Hn+1 and y ∈ Hn. Consider the following
domain:

D(A) =
{
x = (xn)n≥0 ;

∑
n≥0

‖xn‖2 <∞ ,
∑
n≥0

‖An(xn)‖2 <∞
}
,

and define D(B) similarly. Then the operator A: (xn)n≥0 �→ (0,A0(x0),A1(x1), . . .) is
defined on the domain D(A). Define the operator B similarly and prove that A and B
are adjoint of each other.

Exercise 2.5.10 Recall that 1 denotes the identity operator. Prove that a symmetric
operator A is self-adjoint if A + i1 and A − i1 are onto.30 Caution: This takes only
four lines but is very tricky.

Exercise 2.5.11 If A is as in Exercise 2.5.8 and symmetric, prove that A + i1 and
A− i1 are onto.

Exercise 2.5.12 Consider the space D of continuously differentiable functions on the
unit circle and the operator on L2 (of the unit circle) with domain D given for f ∈ D
by A(f ) = if ′. Prove that A is symmetric. Prove that if f is in the domain of A† one
may find a continuous function g such that f = g a.e. Hint: This is difficult if you do
not use Fourier series.

30 The converse is proved in Theorem J.1.
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When we define an operatorA by a concrete formula, in typical cases this formula shows
that the operator is defined on a dense subspaceD(A), but this subspace is often too small for
A to be self-adjoint. When A is the restriction to D(A) of a self-adjoint operator defined on
the larger domain, there is a simple “automatic procedure” to construct this larger domain,
based on the following elementary fact.

Definition 2.5.13 The graph of the operator A is the set of pairs (u,v) ∈ H×H with
u ∈ D(A) and v = A(u).

Lemma 2.5.14 If A is an unbounded operator on a Hilbert space H, the graph of A†

is a closed subset of H×H.

Proof By definition of the adjoint we have z ∈ D(A†) and y = A†(z) if and only if for
each x ∈ D(A) it holds that (y,x) = (z,A(x)). Given x, the set of pairs (z,y) ⊂ H × H
which satisfy this condition defines a closed subset of H ×H. Thus the graph of A† is the
intersection of a family of closed sets and therefore is closed.

Thus, ifA is self-adjoint, its graph is a closed subset ofH×H. This leads to the following
definition:

Definition 2.5.15 An operator A is essentially self-adjoint if the closure in H×H of
the graph of A is the graph of a self-adjoint operator.

Thus the “automatic procedure” to check if an operator A can be “made self-adjoint” by
properly extending its domain of definition is to compute the closure of the graph of A and
see if it is the graph of a self-adjoint operator. This method is much used in serious rigorous
texts, but we choose here not to concentrate on “technicalities”.

Exercise 2.5.16 Consider the subspace L0 of L2 = L2([0,1]) consisting of functions
of integral zero. Consider the map T : L2 → L2 given by T (f )(x) = ∫ x

0 dtf (t). Prove
that it is one-to-one. Let D0 = T (L0). Prove that the operator A = iT −1 with domain
D0 is symmetric, that its graph is closed but that it is not self-adjoint.

One rarely uses the actual details of the domain of a self-adjoint operator, and it usually
suffices to know that a given operator is essentially self-adjoint. In some sense, self-adjoint
operators have a simple structure (while operators which are simply symmetric may have
all kinds of pathologies). The most spectacular way to reveal this structure is called the
“spectral theory for self-adjoint operators”. It is a generalization of the fact that in finite
dimensions a Hermitian operator has an orthogonal basis of eigenvectors. This theory is
of fundamental importance in Quantum Mechanics. As it is a favorite topic for authors
attempting a rigorous presentation of the subject, many proofs are available, and those
presented in the textbook of Brian Hall [40] are particularly detailed. The spectral theorem
is arguably of less fundamental importance in Quantum Field Theory, for the simple reason
that the central parts of Quantum Field Theory are too far from mathematical rigor to really
take advantage of this result. While the spectral theory solves some of the difficulties in
constructing a suitable continuous model, this is of limited help as other difficulties remain
unsolved to this day.
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For this reason, and in order to keep the present volume to a reasonable size, we will not
enter spectral theory here, which is extensively covered in the treatise by Reed and Simon
[68]. We limit ourselves to an intuitive understanding of some of the main conclusions of this
theory. For this we return to the “multiplication by x” operator of (2.15), which is obviously
self-adjoint since it is symmetric and both its domain and the domain of its adjoint consist
of the functions f such that xf ∈ L2.

Exercise 2.5.17 Prove this last statement concerning the domain of the adjoint. Hint:
A function f belongs to this domain if the integral

∫
dxf (x)xg(x) exists whenever

g ∈ L2.

It is important to observe that this operator does not have any eigenvector (although a
function with support near a given point x should be thought of as an approximate eigen-
vector with eigenvalue x).31 A more general example of a self-adjoint operator is obtained
by considering the “same” “multiplication by x” operator on the space L2 = L2(R,dμ,C)
of functions which are square-integrable for a more general measure dμ than Lebesgue’s
measure.32 The measure dμ is always assumed to give finite mass to bounded sets.

Exercise 2.5.18 Prove that the “multiplication by x” operator has an eigenvector with
eigenvalue a if and only if the measure dμ gives positive mass to the point a.

In the previous example the eigenvalues have “multiplicity 1”. A more general exam-
ple consists of the “multiplication by x” operator on the space L2(R2,dμ,C), where the
coordinates of a point in R2 are denoted by (x,y). The good news is that the most general
self-adjoint operator is just a tad more complicated than this operator.

Exercise 2.5.19 Prove that this operator has an eigenvector with eigenvalue a if and
only if the measure dμ gives positive mass to the set {a}×R. Prove that this eigenvalue
has finite multiplicity n if and only if the restriction of μ to this set is supported by a
set of cardinality n but not by a set of cardinality n− 1.

Thus in this example, the multiplicity of an eigenvalue can be finite or infinite. Spectral
theory then asserts that a “generic” self-adjoint A operator is not more complicated than
this, in a sense that we will develop in Section 2.6. When facing a statement on unbounded
operators, one should first try to understand what it means for the “multiplication by x”
operator.

It is very easy to write all kinds of nonsense if one ignores the fact that unbounded
operators are not defined everywhere (but only on their domain D). Many such examples
are given in this book by Hall [40]. Interestingly enough, in a random sample of physics
textbooks on the shelves of my university’s library, it turned out that only a very small
fraction even mentions potential problems on this matter. Rather, one pretends that every
self-adjoint operator33 is defined everywhere and diagonalizable. Of course, it is more

31 Thus in general a self-adjoint operator does not have eigenvectors.
32 Mathematicians love to call Lebesgue’s measure the standard volume measure on Rn.
33 Words like “self-adjoint” themselves are rarely to be found in these books.
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admissible in physics than in mathematics to forge ahead and ignore all kinds of potential
problems until a looming disaster imposes more caution.

Exercise 2.5.20 Convince yourself that if |γ 〉 = A|β〉 then 〈γ | = 〈β|A†, where
〈β|A† denotes the composition of the operator A† from H to itself and the operator
〈β| from H to R.

It would have been an embarrassment not to state Definitions 2.5.1–2.5.6 in this book,
but as we manage to mostly skirt spectral theory they will play a rather small part in the
sequel.

Going back to our model for a particle on the line, the state spaceL2 on which the position
operator is represented by the “multiplication by x” operator X will be used many times.
We will call it the “position state space” since “the position of the particle” is simply related
to the element of L2 (the wave function) which represents the state of the particle.

A second fundamental operator is the momentum operator34 P defined by

P (f ) = −ih̄
df

dx
. (2.18)

Its domain consists of the functions f which are differentiable almost everywhere and such
that their differential belongs to L2. It is not at all intuitive that such an operator measures
the momentum of a particle, and it is best for us to take this fact for granted as one of
those fundamental principles of Quantum Mechanics whose success is every day confirmed
by experience.35 The momentum operator will also appear very naturally when we study
Stone’s theorem in Section 2.14.

Exercise 2.5.21 Prove that the momentum operator commutes with the translation
operators given by T (f )(x) = f (x+a) when a ∈ R and explain the physical meaning
of this relation.

The momentum operator does not have any eigenvectors. Such an eigenvector would be
a function f (x) = a exp(ipx/h̄) but such a function is not square-integrable for a �= 0.

A fundamental property is that the position operator and the momentum operator do not
commute, but rather satisfy the following so-called canonical commutation relation:

[X,P ] = ih̄1. (2.19)

Generally speaking, the domain of the commutator of two unbounded operators might be
very small.36 In the present case, the commutator is defined on well-behaved functions,
and in particular on Schwartz functions. Formula (2.19) is a consequence of the formula
(xf )′ − xf ′ = f .

34 One may regret that the letter P has not been reserved for the position operator, but in physics it is irrevocably
associated to momentum. The letter P comes from the Latin pulsus. The occurrence of a “momentum
operator”, rather than a “velocity operator” is less surprising if one knows that in Classical Mechanics
momentum, the product of the mass of the particle and its velocity, is indeed more fundamental than velocity.

35 At a very intrinsic level, (2.18) has to do with the wave-particle duality. As we shall see soon, particles are
also waves. On page 40 we will give arguments making this formula less mysterious.

36 It might happen that this domain consists only of the 0 vector, even when the domains of the two operators are
dense.
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It is a good time to mention that 1 will always in our notation denote the identity operator
of the Hilbert space under study (unless H = C2 in which case it will be denoted by I ).
Many textbooks make the more sweeping convention of simply omitting such an operator
and write simply [X,P ] = ih̄. Also, the desire to respect alphabetic order makes us often
write (2.19) as [P,X] = −ih̄1.

Exercise 2.5.22 Consider two operators A,B which are assumed to be defined every-
where and satisfy [A,B] = 1. Prove by induction on n that [A,Bn] = nBn−1. Prove
that A and B cannot both be bounded.37 Hint: Arguing by contradiction, prove that
n‖Bn−1‖ ≤ 2‖A‖‖B‖‖Bn−1‖.

The momentum operator looks very different from the position operator, but in some
sense it is a very similar operator, but “in a very different position”. This will be explained
in Section 2.7.

2.6 Unitary Operators

We introduce now unitary operators between Hilbert spaces. It is a fundamental notion in
at least two respects:

• Mathematically it provides (as explained in this section) a way to recognize whether
two different models “are in fact the same”.

• Physically, countless processes are represented by unitary operators. Why this is the
case is explained at the beginning of Section 2.10.

Definition 2.6.1 A linear operator U between Hilbert spaces is called unitary if it is
one-to-one, onto, and preserves the norm, ‖U (x)‖ = ‖x‖.

Unitary transformations are in a sense the “natural class of isomorphisms between Hilbert
spaces”. The “polarization identity” ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re(x,y) shows that a
unitary operator preserves the inner product,38

(U (x),U (y)) = (x,y). (2.20)

It is almost obvious that the set U (H) of unitary operators on a Hilbert space H forms a
group.

Next we reformulate the condition that an operator on a Hilbert space H is unitary using
the notion of adjoint operator. As already noted, for a bounded operator A one has D(A) =
D(A†) = H and

∀x,y ∈ H ; (A†(x),y) = (x,A(y)). (2.21)

A unitary operator on a Hilbert space is bounded, so its adjoint is defined everywhere.
Furthermore by (2.21) one has (U†U (x),y) = (U (x),U (y)) and (2.20) is equivalent to

37 We recall that an operator A is bounded if for some constant C and all x we have ‖A(x)‖ ≤ C‖x‖. The
operator norm ‖A‖ of A is then the smallest possible value of C.

38 One has to be careful that an operator preserving the inner product is necessarily one-to-one, but need not be
onto.
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U†U = 1. Consequently, an operator on a complex Hilbert space is unitary if and only if it
is invertible and

U−1 = U†. (2.22)

Thus a unitary operator also satisfies UU† = 1.
The following trivial fact is stressed because of its considerable importance.

Lemma 2.6.2 A unitary operator U from a Hilbert space H to a Hilbert space H′
induces a map

A �→ A′ = UAU−1

from the operators on H to the operators on H′.

Of course here D(A′) = U (D(A)). The philosophy is that “A′ is a copy of A so it has
the same properties as A”. For example, if A is self-adjoint, so is A′.

If you use the Hilbert space H, the vector x to model a state of a physical system and
the operator A to represent an observable, while I use H′, Ux and A′ respectively, we will
get the same predictions. Such models are called unitarily equivalent. This seems to be a
trivial observation, but the point is that even if the models are unitarily equivalent, one might
be easier to use than the other (because unitary transformations are far from being trivial).
Using a basis of eigenvectors of A surely makes computations related to A simpler. Quite
accurately, one may think of unitary transformations simply as changes of basis.

2.7 Momentum State Space for a Particle

To put the ideas of the previous section to use we go back to the model of a massive particle
on the line which we studied in Section 2.5. Let us consider H′ = L2(R,dp/(2πh̄)), where
the notation dp/(2πh̄) means that we include the factor 1/(2πh̄) whenever we integrate in
p. Consider the Fourier transformU : f �→ f̂ of (1.30) from H to H′. It is a unitary operator
since it preserves the scalar product by (1.32) and since it has an inverse, the inverse Fourier
transform ϕ �→ ϕ̌. The state which was represented by f ∈ H is now represented by
ϕ = f̂ ∈ H′. As in Lemma 2.6.2 the Fourier transform U transports an operator A on H to

the operator A′ = UAU−1 on H′ given by A′(ϕ) = Â(ϕ̌). Using (1.33) for f = ϕ̌ yields
(provided ϕ is well behaved)

P ′(ϕ)(p) = pϕ(p) (2.23)

and, similarly,

X′(ϕ) = ih̄
dϕ

dp
. (2.24)

(The plus sign here is not surprising since (2.19) implies that [X′,P ′] = ih̄1.) It is now the
momentum operator which looks simple and the position operator which looks complicated.
Just as in position state space |f |2 represented the probability density of the location of the
particle in state f , we can now argue that |ϕ|2 represents the probability density of the
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momentum of the particle (when the basic measure is dp/2πh̄). For this reason we will call
this space H′ the momentum state space. Taking the Fourier transform is the standard way
to analyze a wave. Thus it can be said that using momentum state space amounts to thinking
of a particle as wave. This is the wave-particle duality.39

So, the probability density of the location of the particle is |f |2, and the probability
density of its momentum is |ϕ|2, where ϕ is the Fourier transform of f . One shows in Fourier
analysis that it never happens that both a function and its Fourier transform are sharply con-
centrated around a single value. This is closely related to Heisenberg’s uncertainty principle,
which here asserts according to (2.19) that it is impossible that both position and momentum
have a sharply defined value. Momentum state space is of fundamental importance (much
more so than position state space) because the kinetic energy of a particle depends simply on
its momentum (and its mass). The fun however is that particles interact not only according to
their momenta, but also according to their respective positions, and this largely contributes
to make the universe quite complicated and interesting.

The self-adjoint momentum operator (2.18) on position state space does not look at
all like an operator of “multiplication by a function”. Yet, after Fourier transform, on
momentum state space, this operator is just “multiplication by p”. This is a particularly
striking instance of the general fact mentioned on page 36: given a self-adjoint operator A
on a Hilbert space H one may find a unitary map U (to a certain L2 space) such that the
operator UAU−1 is a “multiplication by a function” operator, refer to Hall’s textbook [40,
Theorem 10.9].

Exercise 2.7.1 Consider a self-adjoint operator which in momentum state space is
given by “multiplication by a function g(p)”. Prove that this operator commutes with
the translations of Exercise 2.5.21.

It can be shown that Exercise 2.7.1 has a converse: operators commuting with the trans-
lations are of the from “multiplication by a function g(p)”. Thus the momentum operator
must be of this type. The formula (2.23) corresponds to the simplest case of interest of such
an operator.

2.8 Dirac’s Formalism

It is regrettable that neither the position nor the momentum operator has a basis of eigenvec-
tors, for this would indeed be very convenient. Paul Dirac invented a remarkable formalism
to deal with this problem. It is used in almost every physics textbook, where it is typically
considered as self-evident. We try to explain some of the basic features and meaning of this
formalism here, striving as usual to explain what this means, but with no serious attempt to
make matters rigorous.40

39 Not everybody uses the name “momentum state space”.
40 The so-called theory of “rigged Hilbert spaces” can be used to make matters rigorous, but we have chosen to

stay on the heuristic level.
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Dirac’s formalism works beautifully. It allows a great economy of thought and notation.
It is however unfriendly to mathematicians, and the mathematically inclined reader must
brace for a kind of cold shower, as things are likely to look horrendously confusing at first.
Let us stress that it is not necessary to master this formalism to follow most of the rest of this
book. Still, we will use it at times, if only to formulate results in the same language as they
are found in physics textbooks. The reader who finds the present section overwhelming is
encouraged to move on and to come back when the need arises.

As a consequence of the use of Dirac’s formalism, if one looks at a physics textbook
discussing (say) particles on the real line, one may find it difficult to recognize any of the
previous material. First, one is likely to find very early the sentence “let |x〉 denote the state
of a particle located at x…”. An element of the position state space H = L2(R,dx) that
could be said to be located at x would have to be an eigenvector of the position operator
X with eigenvalue x and these do not exist. The expression |x〉 can however be given a
meaning in a kind of “distributional sense”. It makes sense only when integrated against a
Schwartz function f , that is for such a function the integral

∫
dx|x〉f (x) makes sense as an

element of H. The value of this integral is simply the function f seen as an element of H.
Quite naturally, we denote by

|f 〉 the function f ∈ S seen as an element of H, (2.25)

so that

|f 〉 =
∫

dx |x〉f (x). (2.26)

This should certainly remind us of a basis expansion f =∑
i(f,ei)ei =

∑
i ei(f,ei), and

physicists think of |x〉 as a “continuous basis”. In this manner we have given a meaning to
the quantity |x〉 as “an element of H in the distributional sense”. The principle at work here
is important enough to be stated clearly:41

To make sense of a formula written in Dirac’s formalism, try to integrate it
against one or several Schwartz functions. (2.27)

We will however not stop at considering Dirac formalism as just a way to encode compli-
cated formulas in a simpler manner. Rather, we will try to free our imagination and to give a
“mathematical” interpretation of the objects appearing in this formalism, at least at the level
of intuition. Matters will get slippery, since to really make mathematical sense42 of what
we shall do would require heavy formalism which we want to avoid. Still, in this way we
will develop a way to look at things which in the long run helps intuition.43 Another point
which must be stressed is that our manipulations of quantities involving Dirac’s formalism,
as e.g. in the rest of this section, never pretend to “prove” anything, and simply check on
important instances that the formalism is self-consistent.

41 Thus, you will know what to try first when meeting exercises asking you to make sense of formulas written in
this formalism!

42 However hard this may be for a mathematician, one has to accept that certain things make some kind of sense
even if it is not mathematical.

43 Please trust me on that assertion, even if you suffer now.
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Let us then look at |x〉 again. If we recall (1.16), that is

f (y) =
∫

dxf (x)δ(x − y) =
∫

dxf (x)δx(y)

where δx(y) = δ(x − y) = δ(y − x), so that f = ∫
dxf (x)δx . Comparing with (2.26), we

see that in position state space |x〉 “corresponds to the Dirac function δx”,44 even though
H consists of square-integrable functions, which is not the case of “the function δ”. This
matches very well with the fact that an eigenvector of the position operator of eigenvalue x
must take value zero at points different from x.

Let us next try to give a meaning to the quantity 〈x|. As a consequence of (2.26), given
a test function g we should have

〈g| =
∫

dxg(x)∗〈x|,

so that 〈g|f 〉 = ∫
dxg(x)∗〈x|f 〉. Comparing with the formula

〈g|f 〉 =
∫

dxg(x)∗f (x) (2.28)

we conclude that

〈x|f 〉 = f (x). (2.29)

This formula is not really defined for all f ∈ L2 = H, but it certainly makes sense for
f ∈ S. This formula also makes 〈x| appear as a linear functional defined on a subspace
of H, and in particular on S.45 The formula (2.29) is also consistent with the interpretation
that “|x〉 corresponds to the function δx”.

Using (2.29) we reformulate (2.26) as follows: for f ∈ S,

|f 〉 =
∫

dx|x〉〈x|f 〉, (2.30)

which looks much better than (2.26) (but means the same). It can be summarized in the
formula ∫

dx|x〉〈x| = 1, (2.31)

which is a kind of continuous version of (2.5). Physicists call (2.31) a “completeness rela-
tion”, meaning that there are enough elements in the continuous basis |x〉 to capture the
whole space. They are well aware that |x〉 �∈ H, but pretend nonetheless that this is the case
and that |x〉 is an eigenvector of the position operator X with eigenvalue x. They maintain
this position until disaster strikes, and then they call the attention of the reader to the fact
that “the state |x〉 is unphysical” or sometimes, that it is “improper”.

44 You might have observed at this stage that one has sometimes to use somewhat ill-defined expressions such as
this one. As far as possible they are always between quotes.

45 Of course the function f �→ f (x) is not continuous in theL2 norm, i.e. there does not exist a numberC such that
|f (x)| ≤ C‖f ‖2 for all f ∈ S. This corresponds to the fact that the functional 〈x| is not defined on all of L2.
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Now, how can we define 〈y|x〉 for two such “states” x,y? Applying the functional 〈y| to
both sides of (2.26), we should get

f (y) = 〈y|f 〉 =
∫

dx〈y|x〉f (x), (2.32)

and since f (y) = ∫
dxf (x)δ(x − y) from (1.16) we can summarize this by the formula

〈y|x〉 = δ(x − y) (= δ(y − x)). (2.33)

It is important for the sequel that the first part of the next exercise be very clear to you.

Exercise 2.8.1 (a) Convince yourself that (2.33) is nothing more than a compact way
to write the formula (2.28).

(b) Convince yourself that (2.33) is consistent with the interpretation of |x〉 as the
Dirac function δx , that is that the following somehow makes sense:

〈y|x〉 =
∫

dzδy(z)δx(z) = δ(y − x). (2.34)

Given x prove this equality as an equality of distributions in y, that is prove that for
any test function f one has∫

dyf (y)
∫

dzδy(z)δx(z) =
∫

dyδ(y − x)f (y),

by proving that both sides are equal to f (x). (The formula (2.34) can also be seen as
a result on convolution of measures.)

Even though (2.33) sounds like a triviality, this is not the case because it defines a kind
of normalization of the “states” |x〉. (Elements of H can be normalized to norm 1, but |x〉 is
not such an element.) This is obscured here by the simplicity of the situation, but the proper
normalization would be less apparent, if, as will occur later, rather than L2 we would use
the Hilbert space with squared norm

∫
dx|f (x)|2w(x) for a weight function w(x). We will

come back to this later in Section 4.10.
Besides the “states” |x〉, physics textbooks consider for p ∈ R the “states |p〉 of momen-

tum p”. Such a state would have to be an eigenvector of the momentum operator P , and
the corresponding differential equation yields the solution a exp(ipx/h̄), which does not
belong to H for a �= 0. Nonetheless, thinking of |p〉 as the function x �→ exp(ipx/h̄) and
thus of 〈p| as the function x �→ exp(−ipx/h̄), at least for f ∈ S it makes perfect sense to
consider (using again the notation (2.25))

〈p|f 〉 :=
∫

dx exp(−ipx/h̄)f (x) = f̂ (p), (2.35)

which turns out to be the Fourier transform of f . Also, since |x〉 corresponds to the case
f = δx , we get

〈p|x〉 = exp(−ipx/h̄).
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Moreover, recalling (1.19) and (1.15),

〈p|p′〉 =
∫

dx exp(i(p′ − p)x/h̄) = 2πδ((p′ − p)/h̄) = 2πh̄δ(p′ − p).

We observe here the factor 2πh̄ on the right-hand side. Generally speaking delta functions
on momentum space go with a factor 2πh̄ (or more precisely one such factor for each
dimension) because we have chosen our normalization in order that the proper measure
on this space is dp/2πh̄, and thus the integral of 2πh̄δ is still 1.

We also have the completeness relation∫
dp

2πh̄
|p〉〈p| = 1, (2.36)

which is a concise way to express that for f ∈ S one has

|f 〉 =
∫

dp

2πh̄
|p〉〈p|f 〉. (2.37)

Indeed, 〈p|f 〉 = f̂ (p), and recalling that |p〉 is just the function x �→ exp(ipx/h̄), so that
〈x|p〉 = exp(ipx/h̄) the required equality

〈x|f 〉 = f (x) =
∫

dp

2πh̄
exp(ipx/h̄)f̂ (p)

is just the Fourier inversion formula (1.31).

Exercise 2.8.2 Convince yourself that in momentum state space, “|p〉 corresponds to
the function 2πh̄δp”.

However, this is not the end of the story. Physicists think of the state space as some
unspecified abstract Hilbert space, and the state of the system is represented by a vector |α〉
“independent of any specific representation”. Using the “position state space” amounts to
describing the state |α〉 by the function46 x �→ 〈x|α〉, while using “momentum state space”
amounts to describing it by the function p �→ 〈p|α〉. These are related by the completeness
relations (2.31) and (2.36)

〈p|α〉 =
∫

dx〈p|x〉〈x|α〉 =
∫

dx exp(−ipx/h̄)〈x|α〉 (2.38)

〈x|α〉 =
∫

dp

2πh̄
〈x|p〉〈p|α〉 =

∫
dp

2πh̄
exp(ipx/h̄)〈p|α〉 (2.39)

which simply express that these functions are Fourier and inverse Fourier transforms of each
other. We have checked that these claims are indeed correct when one uses the position state
space, with the proper interpretation of these formulas. This formalism works beautifully
in many more situations. Once it has been developed, it never becomes necessary to use
a specific Hilbert space as a state space, which is the way the vast majority of physics

46 For physicists this function is always well-defined, so please accept their point of view here, as we do not go
into technicalities.
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textbooks proceed. As we strive to formulate results in a more precise mathematical
language we shall mostly not use this point of view.

Let us pursue a bit by a sample computation in the physicist’s way [73]. If O is an
observable, why not consider the matrix47 〈x|O|y〉 for x,y ∈ R? Let us compute this matrix
when O is the momentum operator (2.18). First, using the completeness relation (2.36),

〈x|P |y〉 =
∫

dp

2πh̄
〈x|P |p〉〈p|y〉. (2.40)

Now, since we are arguing as physicists, we use that “|p〉 is an eigenvector for P , of eigen-
value p”, so that P |p〉 = p|p〉, and thus

〈x|P |p〉〈p|y〉 = p〈x|p〉〈p|y〉 = p exp(ip(x − y)/h̄).

Now, recalling (1.19) we have∫
dp

2πh̄
exp(ip(x − y)/h̄) = δ(x − y)

and thus (differentiating with respect to x under the integral sign),∫
dp

2πh̄
p exp(ip(x − y)/h̄) = −ih̄δ′(x − y),

and the above relations yield the formal expression

〈x|P |y〉 = −ih̄δ′(x − y) = ih̄δ′(y − x). (2.41)

In the present case, while the previous computation might seem mysterious to a mathe-
matician, it is easy to understand the result. The quantity 〈x|P |y〉 can be defined in the
distributional sense, requiring that for f,g ∈ S one should have∫∫

dxdyg(x)∗f (y)〈x|P |y〉 = 〈g|P |f 〉, (2.42)

while, by definition of P , writing f ′ the derivative of f , Pf (x) = −ih̄f ′(x), so that

〈g|P |f 〉 = −ih̄
∫

dxg(x)∗f ′(x).

Now, using successively (1.16) and (1.11),

f ′(x) =
∫

dyf ′(y)δ(y − x) = −
∫

dyf (y)δ′(y − x),

so that one may write

−ih̄
∫

dxg∗(x)f ′(x) =
∫∫

dxdy g(x)∗f (y)(ih̄δ′(y − x)).

Thus the right-hand side above equals the left-hand side of (2.42), and this is the meaning
of (2.41).

47 The name “matrix” is Physics terminology.



46 Basics of Non-relativistic Quantum Mechanics

2.9 Why Are Unitary Transformations Ubiquitous?

Let us go back to the setting of a general Hilbert space, whose elements are denoted
x,y,z, . . . . To each observable is associated a self-adjoint operator. Conversely, to each
self-adjoint operator is associated an observable (although it is another matter in concrete
situations to design an experiment that actually measures it). We now describe a fundamental
class of such observables. Given x ∈ H of norm 1, (x,x) = 1, the projectorPx(y) := (x,y)x
is Hermitian since

(z,Px(y)) = (z,x)(x,y) = (x,z)∗(x,y) = ((x,z)x,y) = (Px(z),y).

Exercise 2.9.1 In Dirac’s formalism for a norm-1 vector |α〉 one writes the projector
Pα = |α〉〈α|. Why does it seem to require no proof that Pα is Hermitian?

Thus the operator Px corresponds to an observable O. The possible values of O are
the eigenvalues of P , namely 0 and 1. We may describe O as asking the question: Is the
state of the system equal to x?48 The average value of this operator in state y is given by
(y,Px(y)) = (y,x)(x,y) = |(x,y)|2 and is the probability to obtain the answer “yes” to
your question. It is called the transition probability between x and y.49 In physics, the inner
product (x,y) is often called an amplitude, so that the transition probability is the square of
the modulus of the amplitude.50 The transition probability does not change if one multiplies
x and y by complex numbers of modulus 1, as expected from the fact that this multiplication
does not change the state represented by either x or y.

We should expect that any transformation51 which preserves the physical properties of
a system preserves the transition probabilities. Transition probabilities are preserved by
unitary transformations, since for such a transformation |(Ux,Uy)|2 = |(x,y)|2. They are
also preserved under anti-unitary transformations, i.e. anti-linear operators which preserve
the inner product. Conversely, which are the transformations of H which preserve transition
probabilities? A deep theorem of Eugene Wigner [92, appendix to Chapter 20] shows that
this is the case only for unitary and anti-unitary transformations.52 A fundamental conse-
quence is that any transformation which preserves the physics of the system corresponds to
a unitary or anti-unitary transformation. As we explain in the next section, there are many
of these, corresponding to the symmetries of Nature. The symmetries of Nature of a certain
type naturally form a group, bringing us to group theory. Furthermore time-evolution will
also be represented by a unitary transformation.

48 This does not mean that there is any way to “determine” the state y of the system. You may only perform a
measurement that will give you a yes/no answer to the question: Is the system in state x? This experiment
changes the state of the system.

49 The reason for this name is that indeed this is the probability that the system exhibits a transition from state y
to state x when you measure the observable O.

50 It would help to remember now the general principle that the square of the modulus of an amplitude
represents a probability.

51 The next section will make clear what is meant exactly by “transformation of the system”.
52 Anti-unitary transformations are much less used than unitary ones. They occur naturally in the study of

time-reversal, a topic we do not treat at all.
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2.10 Unitary Representations of Groups

Certain types of invariance in Nature are among the most important guiding principles in
developing physical theories about the real world. This will be a recurring theme in this
book. It forces us to choose models which satisfy certain symmetries and this implies
extremely strict restrictions on the possible forms of physical theories.

In this section we start to use this principle in the simplest case, translation invariance.
In physics each observer uses a reference frame to describe the positions of points in space
(or in space-time). These reference frames need not have the same origin, may use different
privileged directions and may even move with respect to each other.53 Here we just consider
the situation of different origins. If you study the motion of an object using a different origin
for your reference frame than mine, we may disagree on the coordinates of the object, but
we should agree that it follows the same laws of physics. Mathematically, the space R3 acts
on itself by translations, and we examine first the effect of these translations at a purely
classical level. Suppose that the system you are studying is translated by a vector a.54 The
object at position x that you were studying has now been moved to position x + a. Say
that you use a function f on R3 to measure e.g. the electrical potential at a point of space.
Before you translate the system, the value f (x) measures the potential at the point x. After
the translation this value of the potential occurs at the point x + a. Thus the value of the
new function U (a)(f ) you use to measure the potential at this point x + a equals the value
of the old function f at the point x:

U (a)(f )(x + a) = f (x),

i.e.

U (a)(f )(x) = f (x − a). (2.43)

Observe the all-important minus sign and note the fundamental property U (a + b) =
U (a)U (b).

Suppose now that more generally we study a system whose state is described by a vector
x in a Hilbert space H. If the system is translated by a vector a we expect that the system
will be described by a new state U (a)(x). This new description should not change the
physics. The transition probability between x and y should be the same as the transition
probability between U (a)(x) andU (a)(y), i.e. |(x,y)|2 = |(U (a)(x),U (a)(y))|2. According
to the discussion of the previous section, U (a) is either unitary or anti-unitary. Moreover,
it is obvious that U (0) should be the identity. What becomes very interesting is when we
perform two such translations in succession, first by a vector a and then by a vector b. The
state x is transformed first in U (a)(x) and then in U (b)(U (a)(x)). This also amounts to
perform the translation by the vector a + b, and this transforms the state x into the state
U (a + b)(x). Therefore U (b)U (a) and U (a + b) should represent the same transformation
of the system. We cannot conclude that these transformations are equal, because states are

53 If you sit in a train, you will typically think of the train as fixed and the landscape as moving.
54 Equivalently, assume that this system remains fixed, but that you translate your reference frame by a vector
−a. Translating the system by a is called an active transformation whereas translating your reference frame
by a vector −a is called a passive transformation.
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really represented by whole rays rather than points, and operators of the form c1, where c is
of modulus 1 and 1 is the identity operator, are unitary, but do not change the ray structure.
Rather, we expect that

U (a + b) = r(a,b)U (a)U (b), (2.44)

where r(a,b) is a complex number of modulus 1. In particular

U (a) = r(a/2,a/2)U (a/2)U (a/2).

Since the composition of two anti-unitary transformations is unitary, we have shown that
U (a) is always unitary. This motivates the following definition.

Definition 2.10.1 A mapU which associates to each element a in a groupG a unitary
operator U (a) on H is called a projective unitary representation55 if for each a,b ∈ G
it satisfies

U (ab) = r(a,b)U (a)U (b) (2.45)

where the complex number r(a,b) is of modulus 1.

In this definition G denotes a group that is not necessarily commutative, so as customary
the group operation is denoted in multiplicative form. In the caseG = R3, (2.45) specializes
to (2.44). We may then rephrase the argument which opens this section:

Any quantum system comes equipped with a projective unitary representation
of the group of translations. This representation describes how translations
affect the state of the system. (2.46)

The word “quantum” in the expression “quantum system” simply stresses the fact that
the system is studied through Quantum Mechanics. The same argument shows also that the
Euclidean group (generated by translations and rotations) has a projective unitary represen-
tation in any quantum system.

Exercise 2.10.2 Using that (ab)c = a(bc) prove that the function r of (2.45) satisfies
the identity

r(a,bc)r(b,c) = r(ab,c)r(a,b).

Our Definition 2.10.1 of projective representations is perfectly adapted to Quantum
Mechanics, and follows the way physicists actually think about these objects.
Mathematicians however like to look at these somewhat differently. This point of view
brings conceptual clarification at the expense of an extra (thin) layer of abstraction, and
is explained in Section 2.12. The mathematically inclined reader may like to look at this
material now.

55 These representations are also called ray representations.
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Definition 2.10.3 A mapU which associates to each element a in a groupG a unitary
operator U (a) on H is called a unitary representation if it satisfies

U (ab) = U (a)U (b) (2.47)

for a,b ∈ G.

Thus, a unitary representation is simply a projective unitary representation for which
r(a,b) ≡ 1 for a,b ∈ G.

2.11 Projective versus True Unitary Representations

Let us start the discussion of the concepts involved in Definitions 2.10.1 and 2.10.3. The
word “unitary” refers of course to the fact that each of the operators U (a) is unitary. Unless
mentioned otherwise, all representations are unitary, so that we shall nearly always omit
the word “unitary”, and the expressions “representation” and “projective representations”
have to be understood by default as “unitary representation” and “projective unitary
representations”.

To insist that a representation satisfies r(a,b) = 1 for all a,b we will sometimes say true
representation, even though throughout the book, the word “representation” means “true
representation”. When we consider a representation that is only a projective representation
we will always say so explicitly. It is most important to understand the relationship between
representations and projective representations.

• The concept of “representation” is far more restrictive than the concept of “projective
representation”.

• From the point of view of mathematics, the nice objects are representations. The study
of group representations is a vast subject in mathematics.

• From the point of view of Quantum Mechanics, the natural objects are projective
representations.

The following explains an important relationship between representations and projective
representations.

Definition 2.11.1 Given a true representation V of G, and for a ∈ G a number λ(a)
of modulus 1, the formula

U (a) := λ(a)V (a) (2.48)

defines a projective representation, since (2.45) holds for the function

r(a,b) = λ(ab)/(λ(a)λ(b)). (2.49)

When this is the case we will say that the projective representation Uarises from the
true representation V .

More generally, there is an important idea behind this definition: two projective repre-
sentations U,U ′ such for each a ∈ G one has U (a) = λ(a)U ′(a) for some complex number
λ(a) with |λ(a)| = 1 are to be thought of as “the same projective representation”.
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Given a projective representation, the immediate question is whether it arises from a
true representation as in Definition 2.11.1. The point here is that even though projective
representations are natural for Quantum Mechanics, true representations are much nicer
mathematical objects, and it is easier to calculate with them. It would be sad to go through
the complications of dealing with a projective representation just because we cannot recog-
nize that this representation is really a true representation in disguise as given by (2.48).

Lemma 2.11.2 Consider a projective representation U and assume that we can find
a function λ(a) with |λ(a)| = 1 such that (2.49) holds. Then U arises from a true
representation.

Proof It is immediate to check that V (a) = λ(a)−1U (a) is a true representation, and U

arises from V .

Thus, to prove that a projective representation arises from a true representation, given the
function r it “is sufficient” to find a function λwhich satisfies (2.49). This might be difficult
if r is complicated.

We shall study later a projective representation that does not arise from a true representa-
tion, and which will be of constant use. That example motivates the fundamental program of
investigating in detail how true and projective representations are related, and what obstacles
may prevent a projective representation from arising from a true representation. We shall
say a few words about this in Appendix A. We do not pursue this goal in the main text,
since our priority is not to understand all possible projective representations, but rather to
describe as simply as possible those which are the most important in our topic.

2.12 Mathematicians Look at Projective Representations

This material is not needed to follow the main story. It assumes that you know some very
basic group theory. A map U from G to the group U (H) of unitary transformations of H
is a true representation if and only if it is a group homomorphism. The group U (H) has
a remarkable subgroup, the subgroup consisting of the transformations λ1 with |λ| = 1.
Let us denote by Up(H) the quotient of U (H) by this subgroup, and by � the quotient map
U (H)→ Up(H). Thus the elements of Up(H) are unitary operators “up to a phase”, i.e. up
to a multiplicative constant of modulus 1. It is immediate to check that a mapU from a group
G into U (H) is a projective representation in the sense of Definition 2.10.1 if and only�◦U
is a group homomorphism from G to Up(H). The important object is thus the map � ◦ U .
Accordingly, mathematicians define a projective representation as a group homomorphism
fromG toUp(H). This formalizes the idea that two projective representationsU andU ′ such
that U (a) = λ(a)U ′(a) “are the same projective representation” (because this is the case if
and only if � ◦U = � ◦U ′). Another benefit of this approach is that it becomes natural to
define “continuous projective representations”, a topic which is investigated in Section A.2.

In mathematical language, the fundamental question, is, given a projective representation
U of G, that is a group homomorphism from G to Up(H), whether there exists a true
representation V , that is a group homomorphism from G to U (H), such that U = � ◦ V .
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2.13 Projective Representations of R

We do not investigate in detail how true and projective representations are related in general,
but we examine this question in the centrally important caseG = R. However, we must first
discuss a technical question. In the cases of greatest interest, G is a topological group, and
to avoid pathologies, one requires also a mild continuity assumption.

Definition 2.13.1 The map a �→ U (a) which associates to each element a of G
a unitary operator U (a) is called strongly continuous if for each x ∈ H the map
a �→ U (a)(x) from G to H is continuous.

The topology on H is the topology induced by its norm, so the condition of strong
continuity means that for each x ∈ H the norm ‖U (a)(x)−U (a0)(x)‖ goes to 0 as a→ a0.
Despite the adjective “strong”, this condition is much weaker than the continuity of the map
a �→ U (a) in the operator norm.

A simple but instructive example of a representation is the case where G=R,
H = L2(R) and U (a)(f ) ∈ L2(R) is the function w �→ f (w − a). The map a �→ U (a) is
not continuous when the space of unitary operators is provided with the topology induced
by the operator norm but it is strongly continuous (as one sees by approximating f with a
continuous function of bounded support).

When the map a �→U (a) is strongly continuous, then for x,y ∈H the map
a �→ (x,U (a)(y)) is continuous. This apparently weaker condition is equivalent to strong
continuity. To prove this, assume the weaker condition. Then as a→ a0, (U (a)(x),U (a0)(x))
tends to the square of the norm of U (a0)(x), and since both vectors U (a)(x) and U (a0)(x)
have the same norm they become close to each other (as follows from the relation
‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2Re(u,v)).

Theorem 2.13.2 A strongly continuous projective unitary representation of R arises
from a true representation. That is, for such a projective representation U (u) we have
U (u) = λ(u)V (u) where V (u) is a true representation.

Physicist’s proof of Theorem 2.13.2 Since U (u) is unitary, it is invertible. Since U (0) =
r(0,0)U (0)2, it holds that r(0,0)U (0) = 1. Since U is unitary, we have |r(0,0)| = 1, and
U ′(u) := r(0,0)U (u) is a strongly continuous projective representation with U ′(0) = 1. To
prove that U arises from a true representation, it is sufficient to prove that U ′ arises from a
true representation. Thus we may assume thatU (0) = 1. A physicist will by default assume
that for u small,56 one has

U (u) = 1+ uiH +O(u2), (2.50)

for a certain operator H . Since U (u) is unitary,

1 = U (u)U (u)† = 1+ ui(H −H †)+O(u2),

56 We will comment a bit later on this.
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so that H −H † = 0, i.e. H is Hermitian. Let us then set V (u) = exp(iuH ). This operator
is unitary since

V (u)† = exp(−iuH †) = exp(−iuH ) = V (u)−1,

and we thus define a true unitary representation. (If you find the first equality mysterious,
please think of the finite-dimensional case, where the exponential is given by the usual
power series.) Next, we prove that U (u) = λ(u)V (u) where λ(u) is of modulus 1. For this
we fix u and we observe that for an integer n (and because u/n is small for n large),

U (u/n) = 1+ i
u

n
H +O(n−2) = V (u/n)+O(n−2),

so that one should have

U (u/n)n = V (u)+O(n−1).

Since U is a projective representation, U (u/n)n = λ(n)U (u) where |λ(n)| = 1, and thus
U (u) = λ(n)−1V (u)+O(n−1). Considering a subsequence (nk) such that λ(nk) converges
as k→∞ and letting k→∞ we conclude that U (u) = λV (u) where |λ| = 1.57

Even in finite dimension the previous proof assumes more aboutU than what the theorem
states. The relation (2.50) holds if and only if the map u �→ U (u) is differentiable at
u = 0 and this is not one of the hypotheses of the theorem. There is no reason whatsoever
why a continuous projective representation should be differentiable since we may obtain
a projective representation from a true representation using (2.48) for a nasty function λ.
Furthermore, the previous argument fails in infinite dimension, because (2.50) cannot pos-
sibly be true. Even for a true representation there exist in general many vectors x for which
the map u �→ U (u)(x) is not differentiable at 0. A mathematician’s proof of Theorem 2.13.2
may be found in Section A.1.

We may also define the concept of (not necessarily unitary) projective representation
by keeping the relation (2.45) but dropping the requirement that the operators are unitary.
Similarly we may define the concept of (not necessarily unitary) representation. When we
consider representations that are not unitary we will say so explicitly.

2.14 One-parameter Unitary Groups and Stone’s Theorem

A (strongly continuous) one-parameter unitary group is simply a (strongly continuous)
unitary representation of R, that is a map which associates to t ∈ R a unitary operator
U (t) on Hilbert space H in such a manner that

U (s)U (t) = U (s + t), (2.51)

and (the continuity condition)

∀x,y ∈ H , lim
t→0

(x,U (t)(y)) = (x,y). (2.52)

57 In Quantum Mechanics a phase is a complex number of modulus 1. To lighten terminology we will say that
“U (u) = V (u) up to a phase”.
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The archetypical example is the operator U (t) on L2(R) given for f ∈ L2 and w ∈ R by

U (t)(f )(w) = exp(itw/h̄)f (w). (2.53)

This is simply the operator “multiplication by the function exp(it · /h̄).” Another example
is the operator V (t) on L2(R) given for f ∈ L2 and w ∈ R by

V (t)(f )(w) = f (w + t). (2.54)

In both cases it is a nice exercise of elementary analysis to prove that these operators
are strongly continuous. These one-parameter groups are closely related by the Fourier
transform. Indeed,

V̂ (t)(f ) = U (t)f̂ . (2.55)

Exercise 2.14.1 Make sure you understand every detail of the proof of the important
formula (2.55).

Theorem 2.14.2 (Stone’s theorem) There is a one-to-one correspondence between
the strongly continuous one-parameter unitary groups on a Hilbert space H and the
self-adjoint operators onH. Given the unitary groupU , the corresponding self-adjoint
operator A is called the infinitesimal generator of U . It is defined by the formula58

A(x) = lim
t→0

h̄

it
(U (t)(x)− x). (2.56)

and its domain D = D(A) is the set of x for which the previous limit exists.

The most important part of Stone’s theorem is the statement that the formula (2.56)
defines a self-adjoint operator. Recalling that the domain of a self-adjoint operator “is large”,
the mathematical content of this part of Stone’s theorem can be understood as a differentia-
bility statement: there are many points x for which the map t �→ U (t)(x) is differentiable
at t = 0.

The impact on Quantum Mechanics of this part of Stone’s theorem is simply staggering.
Each time we are given a one-parameter unitary group, we can construct a self-adjoint
operator, which means that there is a new fundamental quantity with physical meaning
which we can measure. One-parameter unitary groups occur e.g. as follows:

• From the operation of space translation in a given direction (to be detailed later in
the present section). The corresponding operator is called the momentum operator in
that direction.

• From the operation of rotation around a given axis. The corresponding operator is
called angular momentum about this axis.59

• From time-evolution, with the construction of the fundamental Hamiltonian operator,
as studied in the next section.

58 The use of the factor i in the denominator of (2.56) is precisely to ensure that A is self-adjoint (as opposed to
skew-adjoint i.e. A† = −A) since self-adjoint operators are the class of interest in physics. Conventions such
as this one often differ between mathematicians and physicists.

59 The theory of angular momentum occupies a large part in Quantum Mechanics textbooks. We say a few
words about it in Section 8.7.



54 Basics of Non-relativistic Quantum Mechanics

Given the self-adjoint operator A, the converse part of Stone’s theorem constructs a corre-
sponding one-parameter group denoted by

U (t) = exp(itA/h̄). (2.57)

It is easy to understand what this means when H is finite-dimensional (so that A is then
simply a Hermitian operator). Then the exponential of an operator is simply given by the
usual power series, and it should then be obvious that exp(B)† = exp(B†). Since A is
Hermitian (A = A†), it holds that U (t)† = exp(−itA/h̄) = U (−t) = U (t)−1 so that
U (t) is indeed unitary. It should also be obvious that when A and B commute one has
exp(A + B) = exp(A) exp(B) and this implies the formula U (s + t) = U (s)U (t). If one
has developed spectral theory, it is easy to understand (2.57). A self-adjoint operator A is
essentially a “multiplication by x operator” and exp(itA/h̄) is simply “multiplication by
exp(itx/h̄)”, see Exercise 2.14.3. In Appendix B we provide a self-contained construction
of the operator exp(itA/h̄) which does not use spectral theory.

The following exercise should not be missed, as it provides some intuition for Stone’s
theorem. It requires some fluency with integration theory.

Exercise 2.14.3 (a) Consider a real-valued measurable function h on R. Prove that
the operators U (t) defined by U (t)(f ) = exp(ith/h̄)f form a strongly continuous
one-parameter group of unitary operators of L2 = L2(R,dx,C).
(b) Prove that the operator A of (2.56) has domain D = {f ∈ L2;hf ∈ L2} and that
for f ∈ D one has A(f ) = hf .
(c) Consider the self-adjoint operator A “multiplication by the function h” given by
A(f ) = hf for f ∈ D = {f ∈ L2;hf ∈ L2}. Prove that the corresponding one-
parameter group is the group U (t) considered in (a).

Let us now suppose that we are given a one-parameter unitary group U (t). We no longer
assume that H is finite-dimensional, and we proceed to prove the truly remarkable fact that
the formula (2.56) defines a self-adjoint operator. The proof takes about three pages, and
is rather rewarding. The underlying ideas however are not needed for the sequel, so this
material may be skipped without harm.

Lemma 2.14.4 The operator A is symmetric, that is (A(y),x)= (y,A(x)) for
x,y ∈ D.

Proof We observe the obvious but important fact that

(U (t)(y)− y,x) = (y,U (−t)(x)− x) (2.58)

so that ( h̄
it

(U (t)(y)− y),x
)
=
(
y,

h̄

−it
(U (−t)(x)− x)

)
, (2.59)

and letting t → 0 gives the result.

Lemma 2.14.5 The domain D where the limit (2.56) exists is a dense subspace of H.
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Assuming this lemma for a moment, to help the reader form an understanding of the
situation, we complete the proof of Theorem 2.14.2 when H is finite-dimensional (the
general case requires extra work). Then a dense subspace ofH can be onlyH itself, and since
A is symmetric it is Hermitian. Moreover, taking the derivative of t �→ U (t+s) = U (t)U (s)
at t = 0 yields U ′(s) = (i/h̄)AU (s) hence the formula U (t) = exp(itA/h̄). In the finite-
dimensional case this formula makes it obvious that there is a one-to-one correspondence
between A and U .

Our proof of Stone’s theorem is rather elementary, but it requires the concept of integra-
tion of a continuous Hilbert-space-valued function h(s) with compact support. This integral
is defined in a quite straightforward manner by approximation by step functions. We shall
use that60 ∥∥∥ ∫ dsh(s)

∥∥∥ ≤ ∫
ds‖h(s)‖, (2.60)

and that for a bounded linear operator B (possibly valued in another Hilbert space) one has

B
( ∫

dsh(s)
)
=
∫

dsB(h(s)). (2.61)

Proof of Lemma 2.14.5 Consider an infinitely differentiable function f with compact sup-
port, an element x ∈ H and define

y :=
∫

dsU (s)(x)f (s), (2.62)

the integral of the Hilbert-space-valued function h(s) = U (s)(x)f (s). We prove first that
y ∈ D. First we note the formula

U (t)(y) =
∫

dsU (t)U (s)(x)f (s) =
∫

dsU (t + s)(x)f (s)

=
∫

dsU (s)(x)f (s − t), (2.63)

using (2.61) in the first equality and change of variables in the last one. The dependence on
t in the right-hand side is then through the differentiable function f (s − t), and we are in
a situation where we may differentiate under the integral sign. It is then straightforward to
see that y ∈ D(A) and A(y) = ih̄

∫
dsU (s)(x)f ′(s).

Next, we prove that the elements of the type (2.62) are dense in H. Given x ∈ H we
construct f such that the element (2.62) of D is arbitrarily close to x. Since U is strongly
continuous, for each ε > 0 there exists α > 0 such that ‖U (t)(x) − x‖ ≤ ε for |t | < α.
Choosing f ≥ 0 supported in [−α,α] and of integral 1 we obtain, using (2.60),

‖y − x‖ =
∥∥∥ ∫ dsU (s)(x)f (s)−

∫
dsxf (s)

∥∥∥ ≤ ∫
dsf (s)‖U (s)(x)− x‖ ≤ ε.

Our next observation is that D is stable under the action of the operators U (s).

60 As usual when the domain of integration is not specified, the integration is over the whole space, here R.
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Lemma 2.14.6 For each s ∈R and each x ∈D we haveU (s)(x) ∈ D andAU (s)(x) =
U (s)A(x). Furthermore for x ∈ D the function ϕ(s) = U (s)(x) is differentiable and

ϕ′(s) = i

h̄
U (s)A(x) = i

h̄
AU (s)(x). (2.64)

Proof Let s and x be as above and y = ϕ(s) = U (s)(x). We first note the formula

ϕ(t + s)− ϕ(s) = U (t)(y)− y = U (s)(U (t)(x)− x).

Taking the derivative in t at t = 0 in the equality ϕ(t+s)−ϕ(s) = U (s)(U (t)(x)−x) implies
that ϕ is differentiable and ϕ′(s) = (i/h̄)U (s)A(x), whereas taking the same derivative in the
equality ϕ(t + s)− ϕ(s) = U (t)(y)− y implies that y ∈ D(A) and ϕ′(s) = (i/h̄)A(y).

Now comes the key idea of the proof. For x ∈D there is an explicit formula for
U (s)(x) − x, and moreover this formula demonstrates that x ∈ D. This allows a complete
understanding of D.

Lemma 2.14.7 If x ∈ D then for all s we have

U (s)(x)− x = i

h̄

∫ s

0
dvU (v)A(x) = i

h̄

∫ s

0
dvA(U (v)(x)). (2.65)

Conversely, if

U (s)(x)− x = i

h̄

∫ s

0
dvU (v)(z) (2.66)

for all s ∈ R and some z ∈ H then x ∈ D and A(x) = z.

Proof First, (2.64) implies (2.65). Conversely, if (2.66) holds then

U (t)(x)− x

t
− i

h̄
z = i

h̄t

∫ t

0
dv(U (v)(z)− z)

and the right-hand side goes to 0 as t → 0 because v �→ U (v) is strongly continuous, so
that v �→ U (v)(z) is continuous.

Here starts the tricky part: we have to prove that A is self-adjoint, that is (since we know
that A is symmetric) that every element of the domain of A† is an element of D. So, let
us consider an element y in the domain of A†, with the goal of proving that y ∈ D. By
definition of the domain of A†, there exists z ∈ H for which

∀x ∈ D , (y,A(x)) = (z,x). (2.67)

We will prove that

U (s)(y)− y = i

h̄

∫ s

0
dvU (v)(z), (2.68)

which implies that y ∈ D according to the second part of Lemma 2.14.7. To prove (2.68)
the idea is to prove that both sides have the same inner product with every element x in the
dense space D. Considering such x, let us recall that by (2.58) we have

(U (s)(y)− y,x) = (y,U (t)(x)− x), (2.69)
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for t = −s. Now, (2.65) implies

U (t)(x)− x = i

h̄

∫ t

0
dvA(U (v)(x)),

so that, using (2.61) for the operator B: x �→ (y,x) in the first line, and (2.67) in the
second line,

(y,U (t)(x)− x) = i

h̄

∫ t

0
dv(y,A(U (v)(x)))

= i

h̄

∫ t

0
dv(z,U (v)(x))

= i

h̄

∫ t

0
dv(U (−v)(z),x)

=
(
− i

h̄

∫ t

0
dvU (−v)(z),x

)
.

Using (2.69), and since D is dense, we obtain

U (s)(y)− y = − i

h̄

∫ −s
0

dvU (−v)(z).

Changing v into −v in the integral implies (2.68) and we have proved one direction in
Stone’s theorem. We recall that a self-contained proof of the converse can be found in
Appendix B.

Let us note the following easy but important fact.

Proposition 2.14.8 We have x ∈D(A) and Ax = λx if and only if U (t)(x) =
exp(itλ/h̄)x.

Proof It is obvious from (2.56) that if U (t)(x) = exp(itλ/h̄)x then x ∈ D(A) and Ax =
λx. To prove the converse we observe that the first equality in (2.65) implies dU (s)(x)/ds =
iλU (s)(x)/h̄ and U (0)(x) = x.

Let us investigate the contents of Stone’s theorem in the case of the one-parameter groups
(2.53) and (2.54) given by

U (t)(f )(w) = exp(itw/h̄)f (w) ; V (t)(f )(w) = f (w + t).

As the state space is now L2(R) its generic element is denoted f , while x and y now denote
elements of R. It should be obvious that the infinitesimal generator of the group (2.53) is
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the “multiplication by x” operator X. The infinitesimal generator P of the group (2.54) is
given by

P (f )(x) = lim
t→0

h̄

it
(f (x + t)− f (x)) = −ih̄

∂

∂x
f (x),

and this is the momentum operator P = −ih̄∂/∂x. As the group is really natural, it is less
surprising that its infinitesimal generator should be fundamental. It is quite instructive in
this case to look at the relation (2.57) which here becomes

V (t) = exp(itP/h̄) = exp(t∂/∂x). (2.70)

Applied on a well-behaved function this is Taylor’s formula:

f (x + t) =
∑
n≥0

tn

n!

( ∂

∂x

)n
(f )(x) = exp(itP/h̄)(f )(x). (2.71)

It bears repeating the considerable importance of Stone’s theorem as a means of constructing
self-adjoint operators: each time we construct a one-parameter unitary group we construct
such an operator. Here is a fundamental example.

Definition 2.14.9 Assume that the one-parameter group Ui(s) describes the action of
translation of physical space by s in the ith direction. Then the momentum operator
Pi in the same direction is defined by

Ui(s) = exp(−isPi/h̄). (2.72)

At first it sounds strange to define the momentum operator in this way because we might
feel that we know it from the physics of the model, but at a deeper level the important
relation is (2.72). We will soon meet situations where it is the unitary group Ui(t) rather
than Pi which is naturally constructed.61

To understand the reason behind the definition (2.72), and in particular the reason behind
the minus sign in the exponent, let us look at a special case. We go back to the relation (2.43)
(in one dimension), where f is not a potential, but a wave function in position state space,
measuring the probability density of the presence of a particle. Then the action U (s) of
translation of physical space by s on the wave function f is given by

U (s)(f )(x) = f (x − s) = exp(−isP/h̄)(f )(x),

where we use (2.71) in the second equality. This is indeed a special case of (2.72).
Let us recall that the operatorsP andX satisfy the canonical commutation relation (2.19):

[X,P ] = ih̄1. (2.73)

It is absolutely fundamental that in a precise sense there is a unique pair of “nice” operators
which satisfy it. “Nice” operators satisfy a slightly stronger form of the relation (2.73) which
we explain now. First, recalling the operators U , V of (2.53) and (2.54), we observe that

61 This is also related to a fundamental principle of Classical Mechanics: Noether’s theorem relating symmetries
of Lagrangians with invariants of the corresponding theory.
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U (t)
(
V (s)(f )

)
(x) = exp(itx/h̄)f (x + s),

while

V (s)
(
U (t)(f )

)
(x) = exp(it(x + s)/h̄)f (x + s).

Since this relation holds whatever the function f we have

V (s)U (t) = exp(its/h̄)U (t)V (s). (2.74)

This relation is called the integrated version of the canonical commutation relation (2.73).
We now proceed to show that (2.74) formally implies (2.73). Taking the derivative of

(2.74) at zero in t gives, since U ′(0) = iX/h̄,

i

h̄
V (s)X = is

h̄
V (s)+ i

h̄
XV (s).

Since V ′(0) = iP/h̄, taking now the derivative at s = 0 gives the required relation
−PX/h̄2 = i1/h̄−XP/h̄2. This argument is formal: since X is not bounded it is far from
obvious that the function s �→ XV (s) has a derivative, but nonetheless it can be shown
that the argument is correct when the operators are applied to a nice function, say in the
Schwartz space S.

On the other hand, there are examples of operators satisfying (2.73) but not (2.74). To
see this, consider H = L2([0,1]), and for x ∈ [0,1] and s ∈ R, denote byws(x) the value of
x+s modulo 1. ConsiderU (t) given by (2.53), and define V (s) by V (s)(f )(x) = f (ws(x)).
Then since V (1) is the identity, (2.74) is certainly not satisfied. The infinitesimal generators
X and P of these one-parameter groups are respectively given by X(f )(x) = xf (x) and
P (f ) = −ih̄df/dx. The operator X is now bounded, and these operators satisfy (2.73) on
the domain of P .

One should say that (2.74) is the fruitful form of the commutation relation (2.73), as
it rules out pathologies such as in the previous example. The Stone and von Neumann
theorem (which is stated precisely in Theorem C.3.1 in Appendix C) asserts that up to
unitary equivalence there is only one minimal way to realize the commutation relation
(2.74). In particular, once we reached the understanding that the commutation relation (2.74)
is central, we know that our model for a particle is unique and canonical. The study of (2.74)
is pursued in Appendix C.

2.15 Time-evolution

Consider a physical system, the state of which is described by a vector in H.

Principle 5 If the system does not change with time (not in the sense that it does not
evolve, but in the sense that it is not subjected to variable external influences), its
evolution between time t0 and time t1 is described by a unitary operator62 U (t1,t0).

62 Popular accounts of advanced physics concerning the properties of black holes often discuss the mysterious
fact that in certain approaches “information is lost”. It was a revelation when Peter Woit explained to me that
this just amounts to the fact that unitarity of time-evolution fails, indeed a revolutionary idea.
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This operator depends only on t1 − t0, reflecting the fact that the laws of physics are
believed not to change with time.63

Please observe the notation: the evolution U (t1,t0) is from t0 to t1. The reason for this
notation is that the evolution of the system from t0 to t1 and then from t1 to t2 is represented
byU (t2,t1)U (t1,t0), which also represents the same evolution asU (t2,t0) so that as in (2.45)
these two operators should differ only by a phase, U (t2,t1)U (t1,t0) = cU (t2,t0) for some
c of modulus 1. Thus U (t2 − t1,0)U (t1 − t0,0) = cU (t2 − t0,0). This means that U (t) :=
U (t,0) should be a projective representation of R in H, and on physical grounds it should
be continuous in some sense. As shown in Section 2.13 this projective representation arises
from a true representation, so we can as well assume that it already is a true representation,
and Stone’s theorem describes these. Therefore, there exists a self-adjoint operator H on H
such that

U (t) = exp(−itH/h̄). (2.75)

Probably it is worth making explicit the following fundamental point:

The time-evolution of a quantum system is entirely deterministic.

The minus sign in (2.75) is conventional. The reason for this convention will appear in
Section 9.7. Since h̄ has the dimension of an energy times a time, H has the dimension of
an energy. It is called the Hamiltonian of the system. Although this is certainly not obvious64

The Hamiltonian should be thought of as representing the energy of the system.

A consequence of (2.75) is that if ψ belongs to the domain of H , then, by the second
part of (2.64), ψ(t) := U (t)(ψ) satisfies the equation

ψ ′(t) = − i

h̄
H (ψ(t)). (2.76)

This is the fundamental Schrödinger equation. The case one sees first when opening a
textbook on Quantum Mechanics concerns a free (i.e. submitted to no influence) particle of
mass m on the line. In this case the Hilbert space is L2(R,dx). We denote an element of L2

by f , while x denotes a point of R. Then

H = P 2

2m
, (2.77)

or, equivalently,

H (f ) = − h̄2

2m

d2f

dx2 .

It is absolutely not obvious or intuitive yet that this is the correct formula, although one
should note that if p = mv is the momentum of a classical particle, then p2/2m = mv2/2

63 Thus, during a given interval of time, the time-evolution of the system has to be the same, independently of
the moment at which the time-evolution started.

64 We will take this for granted. It is difficult to justify this without some notions of Classical Mechanics.
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is its kinetic energy, so that (2.77) is consistent with the fact that the Hamiltonian should
represent the energy of the system.

The state of the particle at time t is described by the wave function f (·,t) ∈ L2. It satisfies
the equation (2.76) which here is

∂f (x,t)

∂t
= ih̄

2m

∂2f (x,t)

∂x2 . (2.78)

Free particles are not very exciting. More interesting is the case where there is a potential
V , so that V is a function on R. The Hamiltonian is then

H (f ) = − h̄2

2m

d2f

dx2 + Vf, (2.79)

where Vf is the multiplication of f by the function V . The wave function then satisfies the
relation

∂f (x,t)

∂t
= ih̄

2m

∂2f (x,t)

∂x2
− i

h̄
V (x)f (x,t), (2.80)

which is called Schrödinger equation as well. Countlessly many examples of this situation
(and higher-dimensional cases) can be found in Quantum Mechanics textbooks. The funda-
mental case of quadratic potentials will be examined in Section 2.18. Mathematically, the
challenge is to show that the Hamiltonian (2.79), which is defined, say, on functions in the
Schwartz space is actually a self-adjoint operator when considered on the proper domain.
Stone’s theorem tells us that it makes sense to consider the time-evolution of the system as
provided by (2.75) if and only if this is the case. It bears repeating that it makes no sense to
speak of time-evolution unless H is self-adjoint. It is in this kind of situation that the notion
of essentially self-adjoint operators of Definition 2.5.15 is useful, as it provides a method to
construct the domain of H . It is an important topic to prove that certain classes of operators
are self-adjoint and many results exist in that direction.

Going back to the general setting, the fundamental problem is to compute the time-
evolution, that is to compute ψ(t) knowing ψ(0). This is very easy when ψ(0) is an eigen-
vector of H , H (ψ(0)) = Eψ(0) because then

ψ(t) = exp(−itE/h̄)ψ(0) (2.81)

solves the equation (2.76). The eigenvalue equation

H (ψ) = Eψ (2.82)

is called the time-independent Schrödinger equation. If H has a basis of eigenvectors,
we can then describe the time-evolution of the system by approximating any vector by a
combination of such vectors. In other words, whenH is diagonalizable, it is easy to compute
exp(−itH/h̄). Therefore once we have found a basis of eigenvectors of H we have reached
as complete an understanding of time-evolution as is possible. Alas, more often than not it
is impossible to solve exactly the time-independent Schrödinger equation, so that one needs
to develop approximation methods, another important topic for practitioners.
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Another issue is that H may not have a basis of eigenvectors, as is typically the case for
the Hamiltonian in equation (2.80). There is a simple reason for that, which we explain now.
Under (2.81), ψ(t) is of the type αψ(0) where α is a complex number of modulus 1, and
as we have seen at the end of Section 2.1 it represents the same physical state, so that the
measurements at time t do not differ from the measurements at time zero. Let us describe
without any proof the case of a potential V ≤ 0, which goes to zero fast enough at infinity
(and for which |V | is “not too large”). Then there is a sequence (possibly finite or even
empty) of eigenstates with negative eigenvalues which correspond to “bound states”. The
name “bound state” reflects the fact that a particle in this state is “bound” by the potential, it
does not go away. If one measures the position of the particle at any time, there only a small
probability that it is far away. The corresponding eigenstates do not however span the whole
state space. The orthogonal complement Hscat of their span consists of “scattering states”,
which one should picture as particles coming from infinity, interacting with the potential and
going to infinity again. The space Hscat contains no eigenvector. This is not surprising: the
results we obtain when measuring the position of such a particle at time t certainly depend
on t , so the time-evolution cannot be of the type 2.81.

2.16 Schrödinger and Heisenberg Pictures

The previous description of an evolving state ψ(t) and of time-independent operators is
called the Schrödinger picture.

We have seen that we may be able to improve matters by re-shuffling the state space
using a unitary transformation. A fundamental idea is to try this using a time-dependent
unitary transformation V (t), replacing the state ψ by V (t)(ψ), and replacing the operator
A by A(t) = V (t)AV (t)−1. Here we use a first simple implementation, with V (t) =
exp(itH/h̄) = U (t)−1. This is called the Heisenberg picture. In the Heisenberg picture the
state ψ(t) is replaced by V (t)(ψ(t)) = U (t)−1U (t)(ψ) = ψ , so that states do not change
with time. On the other hand, an operator A is replaced by the operator

A(t) = U (t)−1AU (t) = exp(itH/h̄)A exp(−itH/h̄). (2.83)

Suppose that at time t = 0 the system is in state ψ . Then, in the Schrödinger picture, the
average value of A at time t is given by

(ψ(t),Aψ(t)) = (U (t)ψ,AU (t)ψ) = (ψ,U (t)−1AU (t)ψ) = (ψ,A(t)ψ), (2.84)

where the last expression is the same quantity in the Heisenberg picture. Thus these two
pictures are fortunately consistent with each other.

We may wonder why there is anything to gain by moving from the Schrödinger picture,
where the simpler objects, the states, evolve, but where the complicated objects, the opera-
tors, are constant, to the Heisenberg picture where the simpler objects are constant, but the
complicated ones evolve. One reason is that while it is correct in principle that the states,
which are simply vectors of H are simpler objects than operators, it will often happen that
the operators of interest have a simple description, while the states have a very complicated
one. Another reason will be given at the end of the present section.
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The evolution (2.83) results in the equation65

Ȧ(t) := dA(t)

dt
= i

h̄
[H,A(t)]. (2.85)

Thus whenA andH commute,A(t) = A does not depend on time. Operators which com-
mute with the Hamiltonian have the same expression in the Schrödinger and the Heisenberg
picture. In particular if this is the case the average observed value of A on a given state does
not depend on time. This is of course fundamental. In particular since H commutes with
itself, its average value does not change over time. AsH represents the energy of the system,
this is the principle of conservation of energy.66

At this point the reader would certainly like to see concrete examples. However the time-
evolution of an operator in the Heisenberg picture depends not only on the operator but
also on the Hamiltonian, and we should not expect any simple way to write this time-
evolution unless we understand the Hamiltonian well. The only simple Hamiltonian we
have written so far is given by H = P 2/(2m). It commutes with P , so that P (t) = P .
To compute X(t), it is convenient to work in momentum state space (and in this case
the operator is denoted X′(t) as in (2.24) and the generic element of the state space is
denoted by ϕ), because then H is just “multiplication by p2/(2m)” and exp(itH/h̄) is
multiplication by exp(itp2/(2mh̄)). To compute X′(t)(ϕ), according to (2.83), we multiply
ϕ by the function p �→ exp(−itp2/(2mh̄)), we apply X′(0), and we multiply again by the
function exp(itp2/(2mh̄)). According to (2.24), applying X′(0) is simply taking ih̄ times
the derivative in p, so that finally

X′(t)(ϕ) = X′(0)(ϕ)+ pt

m
ϕ, (2.86)

where the last term is the application of the operator “multiplication by pt/m” to the func-
tion ϕ. More examples will be given in Section 2.18.

Exercise 2.16.1 Convince yourself that when the support of ϕ is close to a given value
p, the last term in (2.86) represents the shift in position due to the velocity p/m of
the “particle represented by the state ϕ”.

The following observation is also very important. In non-relativistic Quantum Mechan-
ics, position is given by an operator, while time is a label. So in this approach, position
and time are of a different nature, in contradiction with the theory of Special Relativity.
In the Heisenberg picture, Hermitian operators are labeled with t when they represent a
measurement at time t . In Quantum Field Theory, there will be no position operator. Position
will be demoted to a simple label and Hermitian operators will be labeled by points in space-
time. Such an operator should be thought of as making a measurement at the corresponding
point of space-time. The Heisenberg picture is important because it allows in this manner
to put space and time on an equal footing.

65 Informality starts to creep in, as it is not clear in which domain the following equality should hold.
66 A fundamental theorem of Classical Mechanics, called Noether’s theorem, relates symmetries of a system

with invariant quantities. It brings clearly forward the fact that conservation of energy is a consequence of the
fact that the laws of physics are time-invariant. If you plan to build a perpetual motion machine, you will save
much effort by studying this theorem first.
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2.17 A First Contact with Creation and Annihilation Operators

High-energy interacting particles create other particles, and a relativistic theory must con-
sider multiparticle systems, where the number of particles may vary.

Let us describe what is probably the simplest example of a multiparticle system.67 The
“particles” are as simple as possible.68

Consider a separable Hilbert space with an orthonormal basis (en)n≥0. The idea is that the
state of the system is described by en when the system consists of n particles. The important
structure consists of the operators a and a† defined on the domain

D =
{∑
n≥0

αnen ;
∑
n≥0

n|αn|2 <∞
}

(2.87)

by

a(en) = √n en−1 ; a†(en) = √n+ 1 en+1. (2.88)

The definition of a(en) is to be understood as a(e0) = 0 when n = 0. The reason for the
factors

√
n and

√
n+ 1 is not intuitive, and will become clear only gradually.

The notation is consistent, since for each n,m,

(en,a(em)) = √mδm−1
n = √mδmn+1 = (a†(en),em), (2.89)

where δmn is the Kronecker symbol (equal to 1 if n = m and to 0 otherwise).

Exercise 2.17.1 Prove that a† is the adjoint of a. Prove in particular that if |(y,a(x))| ≤
C‖x‖ for x ∈ D then y ∈ D.

Exercise 2.17.2 Prove that for each λ ∈ C the operator a has an eigenvector with
eigenvalue λ. Can this happen for a symmetric operator?

It should be obvious from (2.88) that

a†a(en) = nen ; aa†(en) = (n+ 1)en. (2.90)

Let us then consider the self-adjoint operator69

N := a†a. (2.91)

Thus N (en) = nen. Since a system in state en has n particles, the observable corresponding
to this operator is “the number of particles”. The operator N is therefore called the number
operator.

As another consequence of (2.90),

[a,a†](en) = en, (2.92)

67 I will not apologize for being the only author in the known universe to present this material before introducing
the harmonic oscillator rather than the other way around. My point is to emphasize that for the purposes of
Quantum Field Theory the idea of creation and annihilation operators is absolutely central.

68 I will write the word particle without quotes, but as we will see later these are not really particles in the usual
sense.

69 It is formally obvious that N is self-adjoint using the formula (AB)† = B†A†, but of course it requires a little
proof to show that N is self-adjoint with domain {y ; ∑n≥0 n

2|yn|2 <∞}.
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which one can write as

[a,a†] = 1, (2.93)

at least on the domain D.70 It is not surprising that such a simple basic relation will turn out
to be fundamentally important. In fact, at least formally, the operators

P := i

√
h̄

2
(a† − a) ; X :=

√
h̄

2
(a† + a) (2.94)

are self-adjoint and satisfy the canonical commutation relation [X,P ] = ih̄1, so in a sense
(2.93) is just another way to look at this relation. The operators (2.94) are called X and P as
in Section 2.5 because (barring pathologies) by the Stone–von Neumann theorem mentioned
at the end of Section 2.14, the pair (P,X) is (up to a unitary transformation) characterized
by the canonical commutation relation.71

Since the relation (2.93) is just a reformulation of the canonical commutation relation,
the Stone–von Neumann theorem implies that, barring pathologies,

There is a unique minimal operator a which satisfies (2.93).

Minimal here means that there is no non-trivial subspace that is invariant under both a

and a†. Unique means that two such operators are related by a unitary transformation. The
intuitive reason for this result is clear: one can find an orthonormal basis (en) in which the
operators a and a† are given by (2.88).72 As the operator a satisfying (2.93) is essentially
unique, there is no point to specify it.

In the sequel we will write countless formulas involving an unspecified operator a

satisfying (2.93).
Let us look again at the operators a and a†. By our convention, the non-unit vector√
n+ 1en+1 represents the same state of the system as the unit vector en+1, i.e. the state

where n + 1 particles are present. Thus a† transforms the n-particle state en into the
(n+1)-particle state

√
n+ 1en+1. It “creates a particle” and is therefore called the creation

operator. For similar reasons the operator a is called the annihilation operator as it destroys
a particle. One should carefully distinguish e0, the unit vector describing the state where
no particles are present, from the element zero of the state space, which does not represent
any state of the system, and one should remember the relation a(e0) = 0.

We comment now on the square root factors in (2.88). These factors are related to a
very deep law of Nature: bosons (in a very simple form here) like to huddle together (and,
among other things, this is what makes the laser possible). You may have heard of bosons
and fermions in connection with spin, but this is a different and even deeper story. It will
become clearer only gradually why our quanta of excitation here should be called bosons.
Here we simply explain why they like to huddle together by making a sample computation.
Consider the state e0+ en, or if one wants to stick with unit vectors, the state (e0+ en)/

√
2.

70 We remind the reader that when writing the commutator of unbounded operators, one always must inquire
what is its domain of definition.

71 In fact, the work of the next section will prove that there exists an orthonormal sequence (en) in L2(R) such
that the operators (2.94) are exactly the operators of Section 2.5.

72 As exemplified in the next section it does require work to find the proper vectors en!
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It is not an eigenvector of the number operator N , so it does not have a well-defined number
of particles. Using the operator (2.91) to count the number of particles of this state, (2.6)
shows that we will obtain either 0 or n each with probability 1/2. Let us now create a new
particle by applying the operator a† to this state. We obtain the vector e1+

√
n+ 1en+1. The

corresponding state does not have a well-defined number of particles either. If we normalize
this vector to unity and use (2.6), we find that when measuring the number of particles,
the probability to observe 1 particle is 1/(1 + (n + 1)), much smaller than the probability
(n+ 1)/(1+ (n+ 1)) of observing n+ 1 particles. Informally, the new particle loves to join
the existing n particles. Bosons are gregarious.

2.18 The Harmonic Oscillator

The fundamental structure outlined in the previous section is connected to an equally fun-
damental system, the harmonic oscillator. A classical one-dimensional harmonic oscillator
of angular frequency73 ω consists of a point of mass m on the real line which is pulled back
to the origin with a force mω2 times the distance to the origin. The quantum version of this
system is the space H = L2(R) with Hamiltonian

H := 1

2m
(P 2 + ω2m2X2), (2.95)

where P and X are respectively the momentum and the position operators of Section 2.5.
This is the Hamiltonian (2.79) in the case where V (x) = mω2x2/2. That this formula
provides a quantized version of the classical harmonic oscillator is not obvious at all.74 We
will explain in Section 6.6 the systematic procedure of “canonical quantization” to discover
formulas such as (2.77) or (2.95). This procedure is by no means a proof of anything, and the
resulting formulas are justified only by the fact that they provide a fruitful model. So there
is little harm to accept at this stage that the formula (2.95) is indeed fundamental. We have
not proved yet that this formula defines a self-adjoint operator, but this is a consequence of
the analysis below.

Exercise 2.18.1 Prove that a symmetric operator which admits an orthonormal basis
of eigenvectors is self-adjoint. Hint: If we denote by (en) an orthonormal basis of
eigenvectors, and λn the eigenvalue of en, the natural domain D of the operator is{

x =
∑
n

xnen ;
∑
n

(1+ |λn|2)|xn|2 <∞
}

.

The program for this section is first to find a basis of eigenvectors for the Hamiltonian
(2.95), and then to examine how some classical quantities transform under quantization.

73 For a periodic function such as exp(iωt), the quantity ω is called the angular frequency, whereas the
frequency, i.e. the reciprocal of the period, equals ω/2π .

74 On the other hand we should certainly expect that quadratic potentials will be important, as they are among
the simplest non-linear potentials.



2.18 The Harmonic Oscillator 67

To start the study of this Hamiltonian, we recall that P and X satisfy the commutation
relation [X,P ] = ih̄1. Let us now consider

a = αX + iβP (2.96)

where

α =
√
ωm

2h̄
; β =

√
1

2ωmh̄
,

so that αβ = 1/(2h̄) and (at least formally)

a† = αX − iβP, (2.97)

and thus

[a,a†] = −iαβ[X,P ]+ iαβ[P,X] = 2αβh̄1 = 1, (2.98)

the fundamental relation (2.93). Let us also observe that ωmh̄ has the dimension of the
square of a momentum, and that h̄/ωm has the dimension of the square of a length, so that
a and a† are dimensionless.75 We observe that

P = i

√
ωmh̄

2
(a† − a), (2.99)

X =
√

h̄

2ωm
(a† + a), (2.100)

and then

H = 1

2m
(P 2 + ω2m2X2) = ωh̄

4
(−(a − a†)2 + (a + a†)2)

= ωh̄

2
(a†a + aa†) = ωh̄

(
a†a + 1

2
1
)
. (2.101)

This is basically the number operator (2.91), so we may guess that a basis of eigenvectors
for the Hamiltonian is simply a basis of vectors en as in (2.88).

Theorem 2.18.2 The Hamiltonian (2.95) admits an orthogonal basis of eigenvec-
tors en with corresponding eigenvalues (n + 1/2)ωh̄. These eigenvectors satisfy the
relations (2.88).

The heuristic argument found in the vast majority of physics textbooks proceeds as
follows. First, one computes

[H,a] = ωh̄(a†a2 − aa†a) = ωh̄(a†a2 − (a†a + 1)a) = −ωh̄a, (2.102)

and, similarly, [H,a†] = ωh̄a†. If ϕ is an eigenvector for H , H (ϕ) = λϕ, then

Ha(ϕ) = aH (ϕ)− ωh̄a(ϕ) = (λ− ωh̄)a(ϕ),

75 In the sense that they do not need to be rescaled if we change our system of units.
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so that either a(ϕ) is an eigenvector of eigenvalue λ−ωh̄ or it is 0. Iterating this statement,
for each k, either ak(ϕ) = 0 or else ak(ϕ) is an eigenvector of eigenvalue λ− kωh̄. On the
other hand, (2.101) implies that

(H (ϕ),ϕ) = ωh̄
(
(a†a(ϕ),ϕ)+ 1

2
(ϕ,ϕ)

) = ωh̄
(
(a(ϕ),a(ϕ))+ 1

2
(ϕ,ϕ)

) ≥ 0,

so that all the eigenvalues of H are ≥ 0.
Let us then start with an eigenvector ϕ of eigenvalue λ. As we have seen, for each k, either

ak(ϕ) = 0 or else ak(ϕ) is an eigenvector of eigenvalue λ − kωh̄. Since all eigenvalues
are ≥ 0, there exists a largest k for which ψ := ak(ϕ) �= 0 and therefore a(ψ) = 0.
Since a(ψ) = 0, it is obvious from (2.101) that ψ is an eigenvector with eigenvalue ωh̄/2.
Consequently the original eigenvalue λ is of the type λ = ωh̄(k + 1/2). One can then
continue the analysis as will be detailed below, using now that since [H,a†] = ωh̄a†, if ϕ
is an eigenvector of eigenvalue λ, then a†(ϕ) is an eigenvector of eigenvalue λ+ ωh̄.

The problem with the previous argument is that we implicitly assume that the eigenvector
ϕ belongs to the domain of a (or a†), in line with physicists’ approach which assumes by
default that all operators are defined everywhere.

Proof of Theorem 2.18.2 The secret of a rigorous argument is to construct only Schwartz
functions on which P and X, and hence a and a† are well-defined. The first step is to look
for a norm-1 vector e0 which satisfies a(e0) = 0, because we have observed that such a
vector will be an eigenvector, presumably with the smallest possible eigenvalue. Recalling
the definition (2.96) of a this amounts to solving the differential equation ωmxϕ+ h̄ϕ′ = 0,
so that we can choose e0 given by the function

ϕ0(x) = θ exp(−ωmx2/2h̄) (2.103)

for an appropriate value of θ (= (mω/πh̄)1/4) which makes it of norm 1. One then defines
recursively the vectors en by the second part of (2.88), i.e. en+1 = a†(en)/

√
n+ 1 and one

uses (2.92) to obtain

√
n+ 1a(en+1) = aa†(en) = a†a(en)+ en.

It follows recursively from this equality that a(en) = √nen−1, the first part of (2.88),
because

a†a(en)+ en =
√
na†(en−1)+ en = (n+ 1)en.

Moreover

√
n+ 1(en+1,en+1) = (en+1,a

†(en)) = (a(en+1),en) = √n+ 1(en,en),

so that recursively the norm of en is 1. Furthermore, (2.101) shows that en is an eigen-
vector of H of eigenvalue (n + 1/2)ωh̄. Thus the vectors en are orthogonal to each other
since they are eigenvectors of the Hamiltonian with different eigenvalues. Finally, one sees
by induction that en is a function of the type Pn(x)ϕ0(x) where Pn is a polynomial of
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degree n.76 Thus the closed linear span G of the vectors en contains all the functions which
are the product of a polynomial by ϕ0. Thus G contains all the functions exp(itx)ϕ0(x), as
is seen by approximating the exponential by the first terms of its power series. Moreover,
by computing averages

∫
dtψ(t) exp(itx)ϕ0(x) of the functions exp(itx)ϕ0(x), G contains

all functions ϕ(x)ϕ0(x) where ϕ is the Fourier transform of a Schwartz function. Since
every Schwartz function is the Fourier transform of a Schwartz function (its inverse Fourier
transform), G contains all functions ϕ(x)ϕ0(x) where ϕ is a Schwartz function. Since the
previous set of functions is dense we have G = H and the vectors en form an orthonormal
basis of L2.

Exercise 2.18.3 Prove in detail that the closure of the space of functions of the type
P (x)ϕ0(x) where P is a polynomial contains the functions exp(itx)ϕ0(x) for t ∈ R.
Hint: Use the dominated convergence theorem.

Since en is an eigenvector for the Hamiltonian H with eigenvalue ωh̄(n + 1/2) it rep-
resents a state of energy ωh̄(n + 1/2). We will describe the situation by saying that this
state has “n quanta of excitation”.77 Let us pause a moment here. The classical harmonic
oscillator is a continuous system, which can have any positive energy. On the other hand, the
possible values of the energy of the quantum harmonic oscillator form a discrete set. This is
quite a general phenomenon. It motivates the “quantum” in the name Quantum Mechanics.

The state with lowest energy has no quantum of excitation. It is important that it does not
have zero energy, but rather energy ωh̄/2. To understand why the energy of a state cannot
be zero, going back to (2.95), the harmonic oscillator models a particle on the line in a
certain potential which is zero only at the origin. To have zero energy the particle would
need to have both kinetic and potential energy zero, that is to be still at the origin. Thus
we would exactly know both its momentum and its position. This is however impossible by
Heisenberg’s uncertainty principle.

If we think of a quantum of excitation as a (very simplified) “particle”, the harmonic
oscillator is a model where the number of particles can take any value n ≥ 0. The average
number of particles is given by the number operatorN . Since obviouslyN andH commute,
“the average number of particles does not change with time”. Moreover, it can be said that
the “particles” do not interact with each other (as will become gradually apparent).

Later, in Section 3.4 we will study the following problem.78 Given a space H which
describes the possible states of a single particle, what is the state space of the system
where any number of the same particle type may be present? In a sense the harmonic
oscillator is the simplest example of this situation. The individual particle is just a quantum
of excitation79 and the harmonic oscillator is a state space where any number of particles
of this type may be present. This explains why the harmonic oscillator will be ubiquitous
in the sequel. More precisely, systems unitarily equivalent to it will be ubiquitous. The par-
ticular sequence of energy eigenfunctions in L2(R) which we constructed is not important,

76 The relationship between these polynomials and the classical Hermite polynomials is explained in
Section C.2.

77 Do not look for some deep meaning here, this is just a convenient way to describe the situation.
78 Specifically on page 84.
79 We should think of a quantum of excitation as having state space C.
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compared to the pair of operators a,a† satisfying the relations (2.88) in an orthonormal
basis en, together with a Hamiltonian of the form h̄ω(a†a + (1/2)1), for which en is an
eigenvector of eigenvalue h̄ω(n+ 1/2).

The free quantum field, a basic object of our future studies is in a sense a sum80 of
non-interacting81 harmonic oscillators (in the previous sense).82 Some mysterious looking
formulas become transparent when one realizes that they reduce to calculations on a single
harmonic oscillator.

We perform below some simple computations for later use, that also have some intrinsic
interest. Indeed, when we quantize a classical system, we find a quantized version of all the
classical quantities attached to the system, and we expect that they satisfy the same relations
as the corresponding classical quantities. It is a good consistency check to prove some of
these relations. Changing focus, it is in general difficult to explain how the classical behavior
of a system emerges from quantum behavior. This can be done simply for the harmonic
oscillator (see Section C.2).

We now compute how the various operators connected with the harmonic oscillator
evolve in the Heisenberg picture. We recall that the evolution of an operator A is given
by (2.83) or, equivalently, (2.85).

Exercise 2.18.4 Prove directly from the definition that

a(t) = exp(−itω)a. (2.104)

Alternatively (2.104) follows from (2.85) and (2.102). Of course, one has

a†(t) = exp(itω)a†. (2.105)

One can then time-evolve the operators P and X of (2.99) and (2.100):

P (t) = i

√
ωmh̄

2
(a† exp(itω)− a exp(−itω)) (2.106)

X(t) =
√

h̄

2ωm
(a† exp(itω)+ a exp(−itω)), (2.107)

yielding the relation

Ẋ(t) := dX(t)

dt
= 1

m
P (t). (2.108)

This echoes the classical relation that the momentum is the mass times the time-derivative
of the position. As a consequence of (2.108),[

Ẋ(t),X(t)
] = − ih̄

m
1. (2.109)

80 This statement is correct when we put the universe in a box, otherwise it is a kind of continuous sum.
81 I will sometimes use the word “independent” as synonymous to “non-interacting”.
82 I wasted an infinitely long time trying to figure out what the authors of many elementary textbooks mean

when they say “one replaces each point of space-time by a harmonic oscillator”.
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Let us note also that, reproducing the computation of (2.101) we have

H = 1

2m

(
P (t)2 + ω2m2X(t)2). (2.110)

This is expected sinceH does not evolve with time as it commutes with itself, so that (2.110)
also follows from time-evolving (2.95), i.e. multiplication by exp(iH/h̄) to the left and
exp(−iH/h̄) to the right.

Let us also note for further use that combining with (2.108) this yields

H = m

2

(
Ẋ(t)2 + ω2X(t)2). (2.111)

This equation has an important content. Under the Hamiltonian of the harmonic oscillator,
the time-evolution of the position operator is given by (2.107), and conversely, the time-
evolution (2.107) determines the Hamiltonian.

Key ideas to remember:83

• One does not “prove” the basic principles of Quantum Mechanics. The ultimate test
for a model is the agreement of its predictions with experiments.

• In Quantum Mechanics the state of a physical system is represented by a vector in
a complex Hilbert space, the state space H. This vector encompasses everything we
can possibly know about the system.

• When the state space H is finite-dimensional, observables correspond to Hermitian
operators on H.

• The predictions of Quantum Mechanics are only statistical in nature.
• It is typically not possible to know the values of two different observables at the same

time.
• Measurements typically change the state of the system.
• The theory of self-adjoint operators generalizes the theory of Hermitian operators to

infinite-dimensional state spaces.
• Massive particles can also be seen as waves. Position state space is the appropriate

way to describe a massive particle when it is thought of as a particle, and momentum
state space when it is thought of as a wave.

• The position operatorX and the momentum operator P of a particle in one dimension
satisfy the canonical commutation relation [X,P ] = ih̄1.

• Fear not Dirac formalism, but make sense of it by integration against test functions.
• Unitary operators are the natural class of isomorphisms between complex Hilbert

spaces.
• Projective unitary representations are ubiquitous, reflecting the symmetries of the

universe, but mathematicians prefer true unitary representations.
• Stone’s theorem provides a one-to-one correspondence between self-adjoint opera-

tors and strongly continuous unitary representations of R.

83 If you have any doubt about what the following succinct statements mean, please review the corresponding
section.



72 Basics of Non-relativistic Quantum Mechanics

• The time-evolution of a quantum system is entirely deterministic. It is governed
by a special self-adjoint operator, the Hamiltonian, which should be thought of as
representing the energy of the system.

• The Schrödinger picture and the Heisenberg picture are equivalent ways to describe
the time-evolution of a quantum system.

• The harmonic oscillator is a ubiquitous quantum system. It can be thought of as
describing a multiparticle system. The creation and annihilation operators on the state
space are a fundamental structure associated to this system.



3

Non-relativistic Quantum Fields

We will learn in Section 3.1 how to describe a multiparticle system, and to construct Hamil-
tonians describing the evolution of particles that do not interact. Their total number remains
constant. This is not necessarily the case for interacting particles, a phenomenon that has
its roots in the equivalence of mass and energy. For example an electron may annihilate
with a positron, leaving (at low kinetic energy) only energy in the form of two photons.1

To describe interacting particles we must consider situations where the number of particles
may not be fixed. This is the purpose of Section 3.4.

Interesting physics comes from interactions, and our long-term goal is to construct
Hamiltonians which model these interactions, and to study the corresponding time-
evolution. It turns out that the need to make the theory compatible with Special Relativity
puts very stringent requirements on the possible form of the Hamiltonians, and that their
construction is a highly non-trivial task. They will be built out of simpler objects, quantum
fields, which are operator-valued distributions. In Section 3.10 we will construct a first
toy example of such a field, not trying yet to make it compatible with Special Relativity.
It will then be a long road to learn how our theory should be consistent with Special
Relativity, what we should choose as models for a particle, and what kind of quantum fields
are consistent with Special Relativity. All these are necessary steps before any sensible
Hamiltonian can be written out.

3.1 Tensor Products

The present section is standard material, but our presentation attempts to balance rigor and
readability.

Principle 6 If the states of two systems S1 and S2 are represented by the unitary
rays in two Hilbert spaces H1 and H2 respectively, the appropriate Hilbert space
to represent the system consisting of the union of S1 and S2 is the tensor product
H1 ⊗H2.

1 The reason why there cannot be a single photon produced is the conservation of momentum. At high energy
other particles may be created.

73
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Our first task is to describe this space.2 A mathematician would love to see an “intrinsic”
definition of this tensor product, a definition that does not use bases or a special representa-
tion of these Hilbert spaces. This can be done elegantly as in e.g. Dimock’s book [23]. We
shall not enjoy this piece of abstraction and we shall go the ugly way.

If (en)n≥1 is an orthonormal basis of H1 and (fn)n≥1 is an orthonormal basis of H2

then the vectors en ⊗ fm constitute an orthonormal basis of H1 ⊗ H2, which is thus the
set of vectors of the type

∑
n,m≥1 an,men ⊗ fm where the complex numbers an,m satisfy∑

n,m≥1 |an,m|2 < ∞. Here the quantity en ⊗ fm is just a notation, which is motivated by
the fact that for x = ∑

n≥1 αnen ∈ H1 and y = ∑
n≥1 βnfn ∈ H2 one defines x ⊗ y ∈

H1 ⊗H2 by

x ⊗ y =
∑
m,n≥1

αnβmen ⊗ fm. (3.1)

When either H1 or H2, or both, are finite-dimensional, the definition is modified in the
obvious manner.

Exercise 3.1.1 When H1 and H2 are finite-dimensional, what is the dimension of
H1 ⊗H2? How does it compare with the dimension of the usual product H1 ×H2?

When eitherH1 orH2 is infinite-dimensional,H1⊗H2 is an infinite-dimensional Hilbert
space. The important structure is the bilinear form from H1 × H2 into this space given
by (3.1).

Recalling that (x,y) denotes the inner product in a Hilbert space we observe the formula

(x ⊗ y,x′ ⊗ y′) = (x,x′)(y,y′), (3.2)

which is a straightforward consequence of the fact that the basis en ⊗ fm is orthonormal.3

The problem with our definition of the tensor product is that one is supposed to check
that “it does not depend on the choice of the orthonormal basis”, a tedious task that joins
similar tasks under the carpet.4 The good news is that all the identifications one may wish
for are true. If both H1 and H2 are the space of square-integrable functions on R3, then
H1⊗H2 is the space of square-integrable functions onR6.5 This fits very well with the Dirac
formalism: If |x〉 denotes the Dirac function at x, (so that these generalized vectors provide
a generalized basis of H1, and similarly for |y〉, then |x〉|y〉 denotes the Dirac function at the
point (x,y) ∈ R6, and these generalized vectors provide a generalized basis of H1 ⊗H2.
Furthermore, if f ∈ H1 and g ∈ H2 then f ⊗ g identifies with the function (x,y) �→
f (x)g(y) on R6.

As another example, assume that H1 is the space of square-integrable functions over R3

and that H2 has dimension 2. Let (e1,e2) be an orthogonal basis of H2. Then each element
f ∈ H1 ⊗ H2 is of the type f1 ⊗ e1 + f2 ⊗ e2 where f1,f2 ∈ H1. That is, H1 ⊗ H2

identifies with the space of pairs (f1,f2) of functions on R3. According to (3.2) the norm

2 It is not indicated in the notation that we consider the tensor product of H1 and H2 “as complex Hilbert
spaces”, because we will never consider other types of tensor products.

3 This may also serve as a basis-independent definition of the inner product on H1 ⊗H2, but it is a non-trivial
task.

4 Viewing a change of basis as a unitary transformation, this is essentially the same task as checking (3.4) below.
5 This is of course a special case of a general theorem on the tensor product of two L2 spaces.
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is given by ‖(f1,f2)‖2 = ∫
d3x(|f1(x)|2 + |f2(x)|2). If H1 is used to describe the position

of a particle, and H2 is used to describe some kind of internal state (spin, as we will study
later) then H1 ⊗H2 can be used to describe both the position of the particle together with
its internal state. In the case of the electron, this pair of functions is called a Pauli spinor,
and provides a (non-relativistic) description of a particle of spin 1/2.

The axiom that tensor products correctly describe systems composed of several elements
might look innocuous enough, but in fact it has stupendous consequences. To get a glimpse
at these, let us consider a system consisting of two components, with the state of the first
component being described by a vector in a two-dimensional space H1, and the state of the
second component by a vector in another two-dimensional space H2. Let e1,e2 be the basis
of H1, and f1,f2 the basis of H2. Then H1 ⊗H2 contains elements such as

x = 1√
2

(e1 ⊗ f2 − e2 ⊗ f1). (3.3)

A state like x is “entangled”.6 The idea of this name is that the “properties of the two
components of the system cannot be separated from each other”. This is true in a very deep
sense. It has been possible to prepare entangled states consisting of two photons moving in
opposite directions, and to design and carry out (fantastically difficult) experiments whose
results cannot be explained if one assumes that each of the photons has well-defined prop-
erties independent of the other photon.7 A very accessible discussion can be found e.g. in
Isham’s textbook [43, Section 9.3]. Quantum Mechanics forces us to revise the notion, based
on our macroscopic experience, that a system is made from smaller, well-localized parts.
This is a real conceptual revolution.

There is no doubt that entangled states exist at the quantum level. If, however, one
assumes that the rules of Quantum Mechanics extend8 to the macroscopic world, entangled
states are at the root of some thorny issues (which are not fully resolved to this day) such
as the famous Schrödinger’s cat paradox and its refinement called Wigner’s friend.

The notion of tensor product generalizes in a straightforward manner to several com-
ponents. A simple but important result concerns extension of operators to such a tensor
product. Consider Hilbert spaces H1, . . . ,Hn and their tensor product

⊗
k≤nHk . Consider

for k ≤ n a unitary operator Uk on Hk . Then there is a unitary operator U on
⊗

k≤nHk

such that if xi ∈ Hi for i ≤ n,

U (x1 ⊗ · · · ⊗ xn) = U1(x1)⊗ · · · ⊗ Un(xn). (3.4)

This is straightforward to check but uninspiring.
When each Uk = Uk(t) = exp(itAk) is a strongly continuous unitary group, then (3.4)

defines a strongly continuous unitary group of operatorsU (t). Let us callA the infinitesimal
generator of this semigroup, as provided by Stone’s theorem. It is almost obvious that if xk
belongs to the domain of Ak for each k ≤ n then

⊗
k≤n xk belongs to the domain of A, and

moreover

6 The technical definition of an entangled state is that it is not of the type e ⊗ f for e ∈ H1 and f ∈ H2.
7 The key term here is: violation of the Bell inequalities.
8 And if they do not, where is the boundary?
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A(x1 ⊗ · · · ⊗ xn) = A1(x1)⊗ x2 ⊗ · · · ⊗ xn + x1 ⊗ A2(x2)⊗ · · · ⊗ xn

+ · · · + x1 ⊗ · · · ⊗ An(xn). (3.5)

Exercise 3.1.2 Prove the previous statements in every detail.

As a special case assume that for each k ≤ n we are given a time-independent Hamil-
tonian Hk on Hk , and the corresponding time-evolution Uk(t). The corresponding strongly
continuous unitary groupU (t) represents a certain evolution of the joint “n-particle system”.
We will define the expression “the particles do not interact with each other” as meaning that
the time-evolution of the n-particle system is described byU (t). The formula corresponding
to (3.5) giving the Hamiltonian H of the n-particle system simply expresses that the energy
of this system is the sum of the individual energies of each particle.

Let us now examine the case where Hk = L2(R) for k ≤ n, and where Hk = h̄ωk(a†a+
(1/2)1) is the Hamiltonian of a harmonic oscillator as in (2.101). Then (when the particles
do not interact with each other) the Hamiltonian of the n-particle system is given by

H =
∑
k≤n

h̄ωk

(
a

†
kak +

1

2
1
)

. (3.6)

Here, ak =
⊗

�≤n a�,n where a�,n = 1 for � �= k and ak,n = a. The operators ak satisfy

[ak,a
†
k ] = 1 whereas for k �= �, ak and a

†
k commute with a� and a

†
� . The formula (3.6)

represents the “sum of the energies of independent harmonic oscillators” and will occur
many times in the sequel. In particular each of the individual terms of this formula can be
described as “the energy of a harmonic oscillator”.9

Non-interacting particles are not so interesting, it is the interaction that contains the
physics. To obtain models where these particles interact, one then adds an “interaction term”
to the Hamiltonian, a topic to which we will return later.

3.2 Symmetric Tensors

There is a very important twist to the notion of tensor product when one considers systems
composed of several, say n identical particles. Identical particles are indistinguishable from
each other, even in principle. If an electron in motion scatters on an electron at rest, two
moving electrons come out of the experiment and there is no way telling which of them
was the electron at rest (and it can be argued that the question may not even make sense).
This has to be built in the model. To this aim, we consider a Hilbert space H with a basis
(ei)i≥1, a given integer n and we denote by Hn the tensor product of n copies of it, in the
above sense. We observe that a permutation σ of {1,2, . . . ,n} induces a transformation of
Hn, simply by transforming the basis element

⊗
k≤n eik into

⊗
k≤n eiσ (k) . If an element x

of Hn describes the state of a system consisting of n identical particles, its image under
this transformation describes the same particle system, so that it must be of the type λx for

9 And this despite the fact that the operator ak is not unitarily equivalent to the operator a. We leave as a teaser

to the reader to show that there are many non-trivial subspaces of H which are invariant under ak and a†
k

.
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λ ∈ C. Since the transform of x has the same norm as x then |λ| = 1, that is the transform
of x differs from x only by a phase.10

In Part I of this book we consider the simplest case where the transform of each state x is
x itself. Particles with this property are called bosons.11 These are not the most common and
interesting particles, but must be understood first. Later on, we will meet fermions, which
comprise most of the important particles (and in particular electrons). Let us denote by Sn

the group of permutations of {1, . . . ,n}.
Principle 7 Consider the state space H of a boson, provided with a basis (ei)i≥1. Then
the state space which represents a system of n such identical bosons12 is

Hn,s =
{ ∑
i1,...,in

αi1,i2,...,inei1 ⊗ · · · ⊗ ein ∈ Hn ; ∀σ ∈ Sn , αi1,...,in = αiσ (1),...,iσ (n)

}
.

(3.7)

The subscript s stands for “symmetric”. For example, the tensor e1 ⊗ e2 + e2 ⊗ e1 is
symmetric but the tensor e1⊗e2−e2⊗e1 is not (it is “anti-symmetric”). The norm on Hn,s

is the obvious quadratic norm. We observe that H is the 1-particle space,

H = H1,s .

We may also consider an element α of Hn,s as just a family of numbers (αi1,...,in )i1,...,in≥1

with αi1,...,in = αiσ (1),...,iσ (n) for each σ ∈ Sn. For obvious reasons we call such a family a
tensor. The squared norm of such a tensor is simply

∑
i1,...,in

|αi1,...,in |2.

Exercise 3.2.1 The previous description assumes that H is infinite-dimensional. Con-
vince yourself that when H is one-dimensional, this is also the case for Hn,s .

Computations in Hn,s simplify considerably if one uses a proper basis. You will under-
stand much better what happens if you try to solve the next exercise before reading the
general construction.

Exercise 3.2.2 Prove that the elements of the type ej⊗ej and (ej1⊗ej2+ej2⊗ej1 )/
√

2
for j1 �= j2 form an orthonormal basis of H2,s . Try to extend the construction to the
case n = 3. Hint: You may look at (3.11) below.

To define the appropriate basis of Hn,s , let us consider an integer sequence (nk)k≥1 with
nk ≥ 0 and

∑
k≥1 nk = n. We consider the element f (n1, . . . ,nk, . . .) of Hn,s defined as

follows: It is the element α = (αi1,...,in )i1,...,in≥1 of Hn,s such that αi1,...,in = 0 unless for
each k ≥ 1 exactly nk of the indices i1, . . . ,in are equal to k, in which case αi1,...,in = 1 (see
(3.9) below if this definition does not appeal to you). Thus for example f (2,0, . . .) = e1⊗e1,

10 Let us recall that two vectors x,y differ by a phase if x = λy where |λ| = 1. More generally a phase is a
complex number of modulus 1.

11 There are different types of bosons, say with different masses, etc. and these types can be distinguished from
one another. It is the bosons of the same type which cannot be distinguished from one another.

12 So, an n-particle state is simply a non-zero element of Hn,s .
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f (1,1,0, . . .) = e1⊗e2+e2⊗e1 and f (1,2,0, . . .) = e1⊗e2⊗e2+e2⊗e1⊗e2+e2⊗e2⊗e1.
There are n! /

∏
k≥1 nk! coefficients αi1,...,in which are equal to 1 and the others are 0, so that

‖f (n1, . . . ,nk, . . .)‖n,s =
√

n!∏
k nk!

. (3.8)

A synthetic expression can be given as follows: If i1, . . . ,in is a sequence such that exactly
nk of these indices equal k, then

f (n1, . . . ,nk, . . .) = 1∏
k≥1 nk!

∑
σ∈Sn

eiσ (1) ⊗ · · · ⊗ eiσ (n) . (3.9)

Using Dirac’s notation, for a sequence (ni)i≥1 of integers with
∑

i≥1 ni = n we define

|n1,n2, . . . ,nk, . . .〉 :=
√∏

k≥1 nk!

n!
f (n1,n2, . . . ,nk, . . .), (3.10)

and one easily checks that these elements form an orthonormal basis of Hn,s . For example,

|2,1,0,0, . . .〉 = 1√
3

(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1). (3.11)

This basis is very convenient. It has a simple physical meaning. The basis vectors ek
represent different states of a single particle, labeled 1, . . . ,k, . . .. In the n-particle state
|n1,n2, . . . ,nk, . . .〉 exactly nk of the n particles are in the state k.

Exercise 3.2.3 (a) Write the complete proof that Hn,s is the closed linear span of the
elements |n1,n2, . . . ,nk, . . .〉 with

∑
i≥1 ni = n.

(b) What happens when H is one-dimensional?

3.3 Creation and Annihilation Operators

We define and study the operators An(ξ ) and A
†
n(η), which will play a crucial role in the

next section. It is convenient here to define H0,s := C. For n ≥ 1 and ξ ∈ H the operator
An(ξ ): Hn,s → Hn−1,s transforms an n-particle state into an (n− 1)-particle state, and for
this reason is called an annihilation operator. For n ≥ 0 and η ∈ H the operator A†

n(η):
Hn,s → Hn+1,s transforms an n-particle state into an (n+ 1)-particle state, and is called a
creation operator.

In order to avoid writing formulas which are too abstract, we pick an orthonormal basis
(ei)i≥1 of H, so that an element η of H identifies with a sequence (ηi)i≥1.13 Similarly we
think of an element α of Hn,s as a symmetric tensor (αi1,...,in )i1,...,in≥1.

Let us then introduce an important notation: Given a sequence i1, . . . ,in+1 of length
n+1 we denote by i1, . . . ,îk, . . . in+1 the sequence of length nwhere the term ik is omitted.

13 Thus we assume that H is infinite-dimensional, leaving the finite-dimensional case to the reader.
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Thus, for example, 1,2,3̂,4 is the sequence 1,2,4. Given η ∈ H, n ≥ 0 and α ∈ Hn,s we
define14

A†
n(η)(α)i1,...,in+1 := 1√

n+ 1

∑
�≤n+1

ηi�αi1,...,̂i�,...,in+1
. (3.12)

This makes sense since the sequence i1, . . . ,̂i�, . . . ,in+1 is of length n and α ∈ Hn,s has n
indices. For example,

A
†
2(η)(α)i1,i2,i3 =

1√
3

(ηi1αi2,i3 + ηi2αi1,i3 + ηi3αi1,i2 ).

To see that the left-hand side of (3.12) is also symmetric in i1, . . . ,in+1, look at what happens
when you exchange i1 and i2: the first two terms of the summation get exchanged, while
all the other ones do not change since α is symmetric in its indices. Defining the operator
C�(η) by

C�(η)(α)i1,...,in+1 := ηi�αi1,...,̂i�,...,in+1
,

one has

‖C�(η)(α)‖2 =
∑

i1,...,in+1≥1

|ηi� |2|αi1,...,̂i�,...,in+1
|2 = ‖η‖2‖α‖2

and since (3.12) implies A†
n(η)(α) = (n+ 1)−1/2 ∑

�≤n+1 C�(η)(α) it holds that

‖A†
n(η)(α)‖ ≤ 1√

n+ 1

∑
�≤n+1

‖C�(η)(α)‖ ≤ √n+ 1‖η‖‖α‖, (3.13)

and indeed A†
n(η)(α) ∈ Hn+1,s .

Consider next ξ ∈ H and β in Hn,s . We define An(ξ )(β) ∈ Hn−1,s by

An(ξ )(β)i1,...,in−1 := √n
∑
i≥1

ξ∗i βi1,...,in−1,i . (3.14)

It is obvious that this quantity is symmetric in i1, . . . ,in−1. Let us note a striking feature here:
the dependence of An(ξ ) in ξ is anti-linear. Also, using the Cauchy-Schwarz inequality,∣∣∑

i≥1

ξ∗i βi1,...,in−1,i

∣∣2 ≤∑
i≥1

|ξi |2
∑
i≥1

|βi1,...,in−1,i |2

we obtain

‖An(ξ )(β)‖2 =
∑

i1,...,in−1≥1

|An(ξ )(β)i1,...,in−1 |2 ≤ n
∑
i≥1

|ξi |2
∑

i1,...,in−1,i≥1

|βi1,...,in−1,i |2,

(3.15)

14 This formula might be hard to understand right now but it will become transparent very soon.
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so that

‖An(ξ )(β)‖ ≤ √n‖ξ‖‖β‖, (3.16)

and indeed An(ξ )(β) ∈ Hn−1,s .
The meaning of the formulas (3.14) and (3.12) will become much clearer using the basis

(3.10) of the spaces Hn,s . Recalling the quantity f (n1, . . . ,nk, . . .) defined on page 78, let
us first prove that

An(ek)(f (n1, . . . ,nk, . . .)) =
√
nf (n1, . . . ,nk−1,nk − 1,nk+1, . . .), (3.17)

where it is understood that the right-hand side is zero if nk = 0. For this we use (3.14) for
β = f (n1, . . . ,nk, . . .) and for ξ = ek , so that ξ = ∑

ξiei where ξi = δik , for the usual
Kronecker symbol δik . Consequently the terms in the summation in the right-hand side of
(3.14) are zero unless i = k, so this relation becomes

An(ξ )(β)i1,...,in−1 =
√
nβi1,...,in−1,k .

Since β = f (n1, . . . ,nk, . . .), by definition of this quantity, the right-hand side is zero
unless among the indices i1, . . . ,in−1 there are exactly n� indices which are equal to � for
� �= k, and exactly nk − 1 indices which are equal to k. In this case it is equal to

√
n, and

this proves (3.17).
Next we prove that

A†
n(ek)(f (n1, . . . ,nk, . . .)) = nk + 1√

n+ 1
f (n1, . . . ,nk−1,nk + 1,nk+1, . . .). (3.18)

For this we now appeal to (3.12), with η = ek , and α = f (n1, . . . ,nk, . . .), that is

A†
n(ek)(α)i1,...,in+1 =

1√
n+ 1

∑
�≤n+1

δki�αi1,...,̂i�,...,in+1
.

Then the terms in the summation are zero unless i� = k, and unless, among the indices
i1, . . . ,i�−1,i�+1, . . . ,in+1, for each k′ the value k′ occurs exactly nk′ times. That is, the
summation is zero unless this occurs for at least one value of �. But then among the indices
i1, . . . ,in+1 the value k′ must occur nk′ times, except for k′ = k where it must occur nk + 1
times. Furthermore the summation is then equal to nk + 1, which proves (3.18).

Using (3.10) the formulas (3.18) and (3.17) imply respectively15

A†
n(ek)|n1,n2, . . . ,nk, . . .〉 =

√
nk + 1|n1,n2, . . . ,nk + 1, . . .〉, (3.19)

and

An(ek)|n1,n2, . . . ,nk, . . .〉 = √nk|n1,n2, . . . ,nk − 1, . . .〉. (3.20)

Exercise 3.3.1 Given an operator A: H1 → H2 between Hilbert spaces, the formula
(1.6) defines its adjoint from H2 to H1. Use the previous formulas to prove thatA†

n(γ )
and An+1(γ ) are adjoint of each other.

15 You may wonder why I did not use these formulas to define A and A†. The problem is that then it takes some
work to prove (3.13) and (3.16), which are needed to prove that An(ξ )(β) and A†(η)(α) are well defined.
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Given γ1, . . . ,γn ∈ H we define the element ϕn(γ1, . . . ,γn) ∈ Hn,s by

ϕn(γ1, . . . ,γn) = 1√
n!

∑
σ∈Sn

γσ (1) ⊗ · · · ⊗ γσ (n), (3.21)

so that e.g. ϕ2(e1,e2) = (e1 ⊗ e2 + e2 ⊗ e1)/
√

2 and ϕ2(e1,e1) = √2e1 ⊗ e1. The
normalization factor

√
n! is to ensure that ϕn(γ1, . . . ,γn) is of norm 1 when the sequence

(γi) is orthonormal. These elements will be given a natural interpretation in the next section.

Proposition 3.3.2 We have

A†
n(η)(ϕn(γ1, . . . ,γn)) = ϕn+1(γ1, . . . ,γn,η), (3.22)

An(ξ )(ϕn(γ1, . . . ,γn)) =
∑
�≤n

(ξ,γ�)ϕn−1(γ1, . . . ,γ̂�, . . . ,γn), (3.23)

and these formulas entirely determine the operators A†
n(η) and An(ξ ).

As a consequence our construction does not depend on the choice of the orthogonal basis
of H.

Proof Using linearity, anti-linearity and continuity it suffices to prove these formulas when
ξ,η,γ1, . . . ,γn are basis vectors. Consider indices i1, . . . ,in and let nk be the number of
indices i1, . . . ,in equal to k. Then (3.9) implies

ϕn(ei1, . . . ,ein ) =
∏

k≥1 nk!√
n!

f (n1, . . . ,nk, . . .) =
√∏
k≥1

nk!|n1, . . . ,nk, . . .〉,

and the required formulas are a simple consequence of (3.19) and (3.20). The last assertion
is obvious since the elements of the type ϕn(γ1, . . . ,γn) span Hn,s .

Exercise 3.3.3 Assume that H is the space of square-integrable functions on R.
Prove that Hn,s identifies with the class of square-integrable functions f on Rn

which are symmetric in their arguments. (For simplicity we will simply call such a
function symmetric.) Hint: Use an orthonormal basis of H. We denote by x1, . . . ,xn,y

real numbers, so that e.g. (x1, . . . ,xn−1,y) ∈ Rn and for f ∈ Hn,s the quantity
f (x1, . . . ,xn−1,y) denotes the value of the function f at this point of Rn.

Given n ≥ 1, f ∈ Hn,s and g ∈ H prove that the value An(g)(f )(x1, . . . ,xn−1) at
the point (x1, . . . ,xn−1) ∈ Rn−1 is given by

An(g)(f )(x1, . . . ,xn−1) = √n
∫

dyg(y)∗f (x1, . . . ,xn−1,y). (3.24)

Given f in Hn,s and h ∈ H prove that

A†
n(h)(f )(x1, . . . ,xn+1) = 1√

n+ 1

∑
k≤n+1

h(xk)f (x1, . . . ,x̂k, . . . ,xn+1). (3.25)

For g,h ∈ H and f ∈ Hn,s prove that A†
n−1(h)An(g)(f ) ∈ Hn,s is n times the

symmetrized version of the function
∫

dyg(y)∗h(x1)f (y,x2, . . . ,xn).
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3.4 Boson Fock Space

A relativistically correct version of Quantum Mechanics must describe systems with a
variable number of particles, because the equivalence of mass and energy allows creation
and destruction of particles. Let us assume that the space H describes a single particle. We
have constructed in (3.7) the space Hn,s which describes a collection of n identical particles.
The boson Fock space will simply be the direct sum of these spaces (in the sense of Hilbert
space) as n ≥ 0 and will describe collections of any number of identical particles.16 We
do not yet incorporate any idea from Special Relativity. The construction of the boson Fock
space is almost trivial. The non-trivial structure of importance is a special family of operators
described in Theorem 3.4.2.

For n = 0 we defineH0,s = C, and we denote by e∅ its basis element (e.g. the number 1).
The element e∅ represents the state where no particles are present, that is, the vacuum. It is
of course of fundamental importance. Then we define

B0 =
⊕
n≥0

Hn,s, (3.26)

the algebraic sum of the spaces Hn,s, where again Hn,s is the space defined in (3.7). By
definition of the algebraic sum, any element α of B0 is a sequence α = (α(n))n≥0 with
α(n) ∈ Hn,s and α(n) = 0 for n large enough. Let us denote by (·,·)n the inner product on
Hn,s . Consider α(n),β(n) ∈ Hn,s and α = (α(n))n≥0, β = (β(n))n≥0. We define

(α,β) :=
∑
n≥0

(α(n),β(n))n. (3.27)

The boson Fock space B is the space of sequences (α(n))n≥0 such that α(n) ∈ Hn,s and

‖(α(n))n≥0‖2 :=
∑
n≥0

‖α(n)‖2 <∞,

where ‖α(n)‖ is the norm in Hn,s . We will hardly ever need to write down elements of B
which are not in B0.

We will somewhat abuse notation by considering each Hn,s , and in particular H = H1,s ,
as a subspace of B0. Again, Hn,s represents the n-particle states. Given ξ,η in H we recall
the operators An(ξ ) and A†

n(η) of the previous section.

Definition 3.4.1 (The creation and annihilation operators) Given ξ,η in H we
define the operators A†(η) and A(ξ ) on B0 as follows. If α ∈ C = H0,s we set

A†(η)(α) = αη ; A(ξ )(α) = 0

and for n ≥ 1,α ∈ Hn,s we set

A†(η)(α) = A†
n(η)(α) ; A(ξ )(α) = An(ξ )(α). (3.28)

16 In old textbooks this construction is called second quantization.
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Theorem 3.4.2 The operators A(ξ ) and A†(η) on B0 have the following properties.

For n ≥ 1 , A(ξ ) maps Hn,s into Hn−1,s . (3.29)

For n ≥ 0 , A†(η) maps Hn,s into Hn+1,s . (3.30)

A(ξ )(e∅) = 0 ; A†(η)(e∅) = η ∈ H = H1,s ⊂ B0. (3.31)

∀γ ∈ H , ∀α,β ∈ B0 , (A†(γ )(α),β) = (α,A(γ )(β)). (3.32)

∀ξ,η ∈ H , [A(ξ ),A†(η)] = (ξ,η)1. (3.33)

∀ξ,η ∈ H , [A(ξ ),A(η)] = [A†(ξ ),A†(η)] = 0. (3.34)

The map η �→ A†(η) is linear. The map ξ �→ A(ξ ) is anti-linear. (3.35)

Property (3.29) shows that A(ξ ) decreases the number of particles by 1, and for this
reason it is called an annihilation operator.17 Similarly, from (3.30), A†(η) increases the
number of particles by 1 and is called a creation operator. Let us stress the meaning of
(3.31): B contains a copy of H. This copy is obtained by applying the creation operators
A†(η) to the vacuum e∅. Property (3.32) does not say that A†(γ ) is the adjoint A(γ )† of
A(γ ). To reach such a conclusion we would have to define A(γ ) and A†(γ ) on a proper
domain. This is a question of mathematical interest which is examined in Exercise 3.4.3.
However defining A(ξ ) and A†(η) on B0 is sufficient for our needs.

The operator-valued maps ξ �→ A(ξ ) and η �→ A†(η) appearing in Theorem 3.4.2 are of
fundamental importance for the rest of the book. These are the key ingredients from which
we may construct quantum fields, i.e. operator-valued maps. We stress the content of (3.35):
The map A† is linear whereas the map A is anti-linear.

We may now consider the vectors |n1, . . . ,nk, . . .〉 of (3.10) for any sequence (nk) such
that finitely many of these integers are not zero. These constitute an orthogonal basis of B.
Let us write ak = A(ek) and a†

k = A†(ek). Then (3.19) and (3.20) become respectively

a
†
k |n1,n2, . . . ,nk, . . .〉 =

√
nk + 1|n1,n2, . . . ,nk + 1, . . .〉, (3.36)

and

ak|n1,n2, . . . ,nk, . . .〉 = √nk|n1,n2, . . . ,nk − 1, . . .〉, (3.37)

to be compared with (2.88).

Proof of Theorem 3.4.2 Only (3.32) to (3.34) are not obvious at this stage. Using linearity
and continuity as expressed by (3.16) and (3.13), it suffices to prove these formulas when
ξ and η are basis vectors of H and when both α and β are of the type |n1,n2, . . . ,nk, . . .〉.
But in that case they are straightforward consequences of (3.36) and (3.37).

17 From now on this name is reserved for the operator A(ξ ) on the boson Fock space and will never be used for
the operator An(ξ ) of the previous section.
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The following very simple exercise explains in which domain one should define A(ξ )
and A†(ξ ) so that they are adjoints of each other.

Exercise 3.4.3 Figure out the relevance of Exercise 2.5.9 to the situation of Theorem
3.4.2.

Exercise 3.4.4 Find a direct proof of (3.32) to (3.34) from (3.14) and (3.12). (This is
somewhat challenging.)

The creation and annihilation operators greatly simplify the manipulation of the elements
of the boson Fock space. Indeed, as a consequence of (3.22) for any n one has

A†(η1) · · ·A†(ηn)(e∅) = ϕn(η1, . . . ,ηn). (3.38)

In words: Repeated applications of n creation operators A†(ηk) to the vacuum (the state
e∅) results in a state consisting of n particles in the corresponding states. This will be used
many times. Informally, one may say that ϕn(η1, . . . ,ηn) “represents n particles in the states
η1, . . . ,ηn”.

It can be very challenging for a mathematician to understand how physics textbooks
usually describe the boson Fock space. The elements of this space are always written as
A†(η1) · · ·A†(ηn)(e∅), or in Dirac’s notation A†(η1) · · ·A†(ηn)|0〉. One is not told on which
space the creation operators act, as it is understood that they act “on the state space”.
Furthermore, η1, etc. are usually not true states, but “improper states” e.g. “states with a
definite momentum” such as the improper states |p〉 we met in Section 2.8.

The previous formulas need to be modified in the obvious manner when H is finite-
dimensional. The case H = C is of importance. In this case, let us denote by e1 a basis of
H (e.g. the number 1). Then |n〉 = e1 ⊗ · · · ⊗ e1 ∈ Hn,s is a unit vector, which is a basis
of Hn,s . The vectors |n〉 (n ≥ 0) form an orthonormal basis of the boson Fock space. The
operators a = A(e1) and a† = A†(e1) satisfy the relations a|0〉 = 0, a|n〉 = √n|n − 1〉
for n ≥ 1 and a†|n〉 = √n+ 1|n + 1〉 for n ≥ 0. Up to the name for the basis, these are
the relations (2.88). With respect to these natural creation and annihilation operators, the
boson Fock space of H = C has exactly the same structure as the harmonic oscillator with
respect to its own natural creation and annihilation operators. Since we think of the boson
Fock space as describing a multiparticle system, this confirms the idea that the harmonic
oscillator is in a sense a multiparticle system, and it is the simplest possible because H = C

is the simplest possible.18

Conversely the boson Fock space of a one-dimensional Hilbert space naturally appears
as the state space of the harmonic oscillator of Hamiltonian h̄ω(a†a + (1/2)1).

3.5 Unitary Evolution in the Boson Fock Space

We now explain how time-evolution taking place in H can be extended in a canonical way to
the whole of B, describing the evolution of non-interacting particles. (Using the larger space

18 The particles there are the “quanta of excitation” of page 69.
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B however allows one to construct more complicated Hamiltonians which make different
particles interact.) For this consider a unitary operator U on H and as explained at the end
of Section 3.1 for n ≥ 1 the unitary operator Un on H⊗n such that

∀x1, . . . ,xn ∈ H , Un(x1 ⊗ · · · ⊗ xn) =
⊗
i≤n

U (xi). (3.39)

It is straightforward to check that Un(Hn,s) ⊂ Hn,s , see also Exercise 3.5.1. Thus the
restriction of Un to Hn,s is a unitary operator on Hn,s . Therefore, there exists a unitary
operator UB on B which coincides with Un on Hn,s . For n = 0 we define U0 as the identity
on H0,s = C.

Exercise 3.5.1 With the notation (3.21), prove that

Un(ϕn(γ1, . . . ,γn)) = ϕn(U (γ1), . . . ,U (γn)). (3.40)

In particular, when U (t) is the unitary group of time-evolution under a Hamiltonian H ,
then UB(t) describes the time-evolution of the multiparticle system when the particles do
not interact with each other. In fact, one may define the statement “the particles do not
interact with each other” as meaning that the time-evolution of the multiparticle system is
of the type UB for a certain time-evolution U . That this definition makes sense is apparent
from the formula (3.41) below. In this manner, to a Hamiltonian H on H corresponds a
Hamiltonian HB on B. As follows from (3.5), HB satisfies the relation

HB
( ∑
σ∈Sn

xσ (1) ⊗ · · · ⊗ xσ (n)

)
=

∑
k≤n,σ∈Sn

xσ (1) ⊗ · · · ⊗ xσ (k−1) ⊗H (xσ (k))⊗ xσ (k+1) ⊗ · · · ⊗ xσ (n). (3.41)

The physical meaning of this relation is again that the energy of a non-interacting multipar-
ticle system is the sum of the energies of the individual particles (even though these cannot
be distinguished from each other).

More generally given any self-adjoint operator H on H there is a canonical extension
HB of H to the boson Fock space for the simple reason that, mathematically, every self-
adjoint operator is a Hamiltonian by the converse of Stone’s theorem, with associated time-
evolution U (t) = exp(−itH/h̄).19 The formula (3.41) still holds in that case. If you find
this argument horrifying, just repeat it without the word “Hamiltonian”. For a self-adjoint
operator H , consider the one-parameter group U (t) = exp(itA/h̄), construct from this
group a one-parameter group UB(t) on HB. Then HB is the infinitesimal generator of
this group.

The following result is simple yet fundamental.

Proposition 3.5.2 Consider a unitary operatorU from a Hilbert spaceH′ to a Hilbert
space H. It has a canonical extension W from the boson Fock space B′ of H′ to the

19 The existence of this time-evolution certainly does not imply that it makes physical sense!
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boson Fock space B of H, which sends B′0 to B0. For ξ,η ∈ H′ denote by A′(ξ ) and
A′†(η) the annihilation and creation operators of Theorem 3.4.2 relative to H′. Then
for any vectors ξ,η ∈ H′ it holds that

WA′(ξ )W−1 = A(U (ξ )) ; WA′†(η)W−1 = A†(U (η)). (3.42)

This equality holds as an equality of operators on B0.

Proof To construct W we proceed just as in the case where H = H′. To prove the rest we
lighten notation and we assume without real loss of generality that H = H′. ThenW = UB.
To prove that, say, UBA†(η) = A†(U (η))UB we compute, using (3.40) in the third line:

A†(U (η))UB(ϕn(γ1, . . . ,γn)) = A†(U (η))ϕn(U (γ1), . . . ,U (γn))

= ϕn+1(U (η),U (γ1), . . . ,U (γn))

= UBϕn+1(η,γ1, . . . ,γn)

= UBA
†(η)ϕn(γ1, · · · ,γn).

3.6 Boson Fock Space and Collections of Harmonic Oscillators

Hopefully the ideas expressed in this section will gradually become clearer, but right now the
reader may find them rather murky. We have no choice though. As explained toward the end
of the section, Nature apparently uses these ideas. The plan is to meditate about the formulas
(3.36) and (3.37). These support the physicists’ view that, when H is infinite-dimensional
then the boson Fock space B represents in some sense an infinite collection of harmonic
oscillators. This representation is closely related to the traditional way quantum fields are
constructed, although for a mathematician the direct construction of the boson Fock space
is likely to be much clearer. A remarkable property is that the choice of any orthogonal
basis of H induces such a representation as an infinite collection of harmonic oscillators.
It is a bit like the fact that on Rn the probability with a density proportional to exp(−‖x‖2)
is a product probability with respect to any choice of an orthogonal basis. The reader may
review Section 2.18 now.

Let us start with a one-dimensional Hilbert space H. As explained at the end of
Section 3.4, its boson Fock space, equipped with its corresponding creation and annihilation
operators can be naturally thought of as the state space of a harmonic oscillator.20 Picking
a basis (ek)k≥1 in a standard Hilbert space makes it appear as a sum of one-dimensional
Hilbert spaces, and each of them corresponds to an independent harmonic oscillator. In
some canonical sense, an infinite number of independent harmonic oscillators live in the
boson Fock space of a standard Hilbert space. Elementary physics textbooks, which do not
want to mention tensor products and other high mathematics often attempt to explain boson
Fock space using risqué metaphors21 such as “replacing each point of space by a harmonic

20 This requires choosing a value of the frequency ω, and we will see later how to do it.
21 Trying to make sense of these was certainly the hardest obstacle for this author to get started, although one

may argue that this again falls under the heading “cultural differences”.



3.6 Boson Fock Space and Collections of Harmonic Oscillators 87

oscillator”. In the same questionable style, one could say that “constructing the boson Fock
space amounts to replacing each dimension by a harmonic oscillator”.

To be more specific, assume that there exists a Hamiltonian H on a standard Hilbert
space H such that (ek) are eigenvectors of H with H (ek) = h̄ωkek for certain numbers ωk
(to make this close to the situation of the harmonic oscillator). As we have explained at the
end of Section 3.5, the Hamiltonian H gives rise to a Hamiltonian HB on B, and (3.41)
shows that

HB|n1,n2, . . . ,nk, . . .〉 = h̄
(∑

k

nkωk

)
|n1,n2, . . . ,nk, . . .〉, (3.43)

i.e. |n1, . . . ,nk, . . .〉 is an eigenvector of eigenvalue h̄
∑

k nkωk , in accordance with the idea
that the energy of a non-interacting multiparticle system is the sum of the energies of the
individual particles.

Comparing with (3.36) and (3.37) gives

HB =
∑
k

h̄ωka
†
kak . (3.44)

Thus HB =
∑

k Hk where Hk = h̄ωka
†
kak , where [ak,a

†
k ] = 1. Comparing with (3.6)

we find it plausible to interpret Hk + h̄ωk1/2 as the Hamiltonian of a harmonic oscilla-
tor. Adding or removing a constant term i.e. a multiple of the identity operator22 in the
Hamiltonian is irrelevant to the evolution of the system, so that one could say that within
a constant term the Hamiltonian (3.44) is the sum of the Hamiltonians of independent
harmonic oscillators,

HB =
∑
k

h̄ωk

(
a

†
kak +

1

2
1
)

. (3.45)

A slight problem is the infinite sum in (3.45), so the constant term (h̄/2)
∑

k ωk1 is (often)
infinite. But, as we already explained, it is only in our idealization that the sum is infinite,
so that this infinite constant term is no disaster. Even a very large constant term has no
influence: in the lab we can measure only differences in energy between two situations.23

The stupendous fact is that this constant term, which corresponds to the energy of the
vacuum (no particle present), is apparently present in Nature, as is shown by the Casimir
effect,24 a simple case of which we will investigate in Chapter 7.25

The formula (3.44) involves the choice of a basis of eigenvectors for the Hamiltonian H .
When several eigenvectors correspond to the same eigenvalue, the choice of this basis is by
no means unique. Still, the Hamiltonian HB depends only on H and not on the choice of
the basis of eigenvectors for H , as we will verify now. To see this let us consider another

22 Such a quantity is called a c-number in physics, where c stands for classical, as opposed to q-number, which
is operator-like.

23 This term is however a huge problem when one tries to reconcile Quantum Field Theory with General
Relativity, where what matters is the actual value of the energy-momentum density, not the differences. This
is the “cosmological constant problem”, and it is huge indeed: the energy density of the vacuum as predicted
by Quantum Field Theory is larger than the measured value by 120 orders of magnitude, easily the worse
prediction ever made by physics.

24 However, refer to Jaffe’s article [44] for a different view.
25 The existence of this effect seems to indicate that the correct Hamiltonian is not (3.44) but (3.45).
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orthogonal basis of eigenvectors (f�) with ek =
∑

� c
�
kf�. To simplify notation we assume

that all the ωk are equal. The operator U such that U (fk) = ek is unitary, thus U−1 =
U† is unitary. In particular g� := U†(f�) =

∑
k(c�k)∗fk is an orthogonal basis, so that∑

k c
�
k(c�

′
k )∗ = δ�

′
� . Thus

∑
k

a
†
kak =

∑
k

A†(ek)A(ek) =
∑
k

A†
(∑

�

c�kf�

)
A
(∑

�′
c�
′
k f�′

)
=
∑
k

∑
�,�′

c�kc
�′∗
k A†(f�)A(f�′ ) =

∑
�

A†(f�)A(f�). (3.46)

Exercise 3.6.1 Still assuming that H has a basis of eigenvectors, carry out the case
where ωk is not independent of k. Hint: How do you relate two different bases of
eigenvectors?

3.7 Explicit Formulas: Position Space

In this section we start to manipulate the boson Fock space in a simple setting, learning how
to write basic formulas. We recall the maps A and A† of Definition 3.4.1.

We have shown in Section 3.5 how a self-adjoint operator (and in particular a Hamilto-
nian) on H can be canonically extended to B. Here we explain how the physicists write the
formula for such an extension in the typical but crucial case, where H is L2(R), modeling
the position of a single particle. Here and at so many other places we will use the concept
of an operator-valued distribution. This is simply a linear map that associates an operator
to each test function (putting again under the rug some rather technical regularity properties
that this map should satisfy, about which the reader may learn on page 707). We are going to
define the maps a and a†, which are operator-valued distributions, taking their values in the
operators on B0. Denoting as usual distributions as functions, we will write the quantities
a(x) and a†(x) (where x is a point of R) even though the quantities a(x) and a†(x) do not
make sense by themselves, but only when they are integrated against a function f ∈ S. The
result of such an integration is an operator. The defining formulas are then∫

dxf (x)∗a(x) := A(f ) ;
∫

dxf (x)a†(x) := A†(f ). (3.47)

The reason for the term f (x)∗ is that the map f �→ A(f ) is anti-linear rather than linear.
Pretending that we can use (3.47) for the “function” f = δy we obtain the identity a(y) =
A(δy). Again, this is formal because δy �∈ S. Furthermore A(f ) is defined only for f ∈ H
and certainly δy �∈ H. So, all of this is a matter of notation and has little intrinsic content.
Similarly we may pretend that a†(x) = A†(δx).

Now, using (3.33) in the first equality,

[A(f ),A†(g)] = (f,g)1 = 1
∫

dxf (x)∗g(x) = 1
∫∫

dxdyf (x)∗g(y)δ(x − y). (3.48)
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Comparing with the formal expression (obtained by using (3.47) in the left-hand side below)

[A(f ),A†(g)] =
∫∫

dxdyf (x)∗g(y)[a(x),a†(y)],

one is lead to write26

[a(x),a†(y)] = δ(x − y)1. (3.49)

This looks very impressive, but is simply a formal way to express the relation
[A(f ),A†(g)] = (f,g)1.

Exercise 3.7.1 Consider a function ξ ∈ S2. Prove that it makes sense to define
the operator S := ∫∫

dxdyξ (x,y)a†(x)a(y) as follows. When applied to a func-
tion f ∈ Hn,s (that is, to a square-integrable function f on Rn which is symmet-
ric in its arguments) then S(f ) is n times the symmetrized version of the function∫

dyξ (x1,y)f (y,x2, . . . ,xn)

In general one cannot multiply distributions, so it is not clear what products such as a(x)2

or a†(x)a(x) mean. Our next task is to show that the product a†(x)a(x) can be defined in a
sensible way, as an operator-valued distribution. (The importance of this specific quantity
will become clear only as we write some of the many formulas where it occurs.) To guess
what this definition should be, we make a formal calculation where we have x as a fixed
parameter. Consider an element f of Hn,s , which is simply a square-integrable function f
on Rn, symmetric in its arguments. Then, since a(x) = A(δx), from (3.24) we get that the
function g := a(x)(f ) is given by

g(x1, . . . ,xn−1) = √nf (x1, . . . ,xn−1,x). (3.50)

Since a†(x) = A†(δx), (3.25) implies that the function a†(x)a(x)(f ) = a†(x)(g) is given
by

a†(x)(g)(x1, . . . ,xn) = 1√
n

∑
k≤n

δx(xk)g(x1, . . . ,x̂k, . . . ,xn)

=
∑
k≤n

δx(xk)f (x1, . . . ,x̂k, . . . ,xn,x). (3.51)

Since f is symmetric in its arguments, and since δx(xk) = 0 unless x = xk we have27

δx(xk)f (x1, . . . ,x̂k, . . . ,xn,x) = δx(xk)f (x1, . . . ,xn)

and the previous formula yields

a†(x)a(x)(f )(x1, . . . ,xn) =
(∑
k≤n

δx(xk)
)
f (x1, . . . ,xn). (3.52)

26 One has to be aware of the dangers of writing distributions as functions. It makes no sense whatsoever to set
y = x in the formula (3.49). The quantity δ(0) does not make sense, and as we are going to see soon, the
operator a(x)a†(x) cannot be meaningfully defined, so that the bracket [a(x),a†(x)] does not make sense
either.

27 More rigorously, for a test function g, δx (a)g(x) = δ(x − a)g(x) = g(a)δ(x − a) = g(a)δx (a).
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Since forψ ∈ S it holds that
∫

dxδx(xk)ψ(x) = ψ(xk), it makes sense to define the operator
D := ∫

dxψ(x)a†(x)a(x) by

D(f )(x1, . . . ,xn) =
∑
k≤n

ψ(xk)f (x1, . . . ,xn). (3.53)

Using this formula for a test functionψ defines a†(x)a(x) as an operator-valued distribution,
but the formula makes sense on far weaker conditions on ψ , as we will extensively use.

Exercise 3.7.2 Proceeding as in the proof of (3.53), show that for a smooth function
V (x,y) it makes sense to define the Hamiltonian

HV :=
∫∫

dxdyV (x,y)a†(x)a†(y)a(x)a(y) (3.54)

by

HV (f )(x1, . . . ,xn) =
∑
k �=�

V (xk,x�)f (x1, . . . ,xn)

whenever f ∈ Hn,s .

Exercise 3.7.3 For a smooth function V (x,y), how do you define
∫∫

dxdyV (x,y)
a†(x)a(y)?

Consider now a symmetric function f of n variables which is of the type

f (x1, . . . ,xn) =
∑
σ∈Sn

fσ (1)(x1) · · · fσ (n)(xn), (3.55)

where f1, . . . ,fn ∈ H. Consider a self-adjoint operatorH on H, and its canonical extension
HB to the boson Fock space. Then (3.41) shows that

HB(f )(x1, . . . ,xn) =
∑
k≤n

∑
σ∈Sn

gσ,k(x1, . . . ,xn), (3.56)

where

gσ,k(x1, . . . ,xn) = fσ (1)(x1) · · · fσ (k−1)(xk−1)H (fσ (k))(xk)fσ (k+1)(xk+1) · · · fσ (n)(xn).

In the case where H is the operator “multiplication by a function ψ”, then H (fσ (k))(xk) =
ψ(xk)fσ (k)(xk) and (3.56) implies that HB(f )(x1, . . . ,xn) is given by the right-hand side of
(3.53). The linear span of the functions of the type (3.55) is a very large space (in particular it
is dense in Hn,s), so at the heuristic level we obtain the following important formula (which
we will use many times). If H is the operator “multiplication by the function ψ” then HB
is given by the formal but correct expression28

HB =
∫

dxψ(x)a†(x)a(x). (3.57)

28 To go beyond the heuristic level we would have to explain how (3.57) defines a self-adjoint operator.
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Let us recall that as explained on page 31 the operator on H given by multiplication of
a function by the indicator of C (i.e. the function which equals 1 on C and zero elsewhere)
“measures whether the particle belongs to C”. As a particular case of (3.57), for a set C, the
operator

∫
C

dxa†(x)a(x) on B then “counts the number of particles in C”. As a supplemen-
tary check of this property, consider the case where f is obtained by symmetrization of a
product f1 × . . . × fn where f1, . . . ,fk are zero on the complement of C and fk+1, . . . ,fn

are zero on C. Then f is an eigenvector of this operator with eigenvalue k.
In particular

N :=
∫

dxa†(x)a(x),

is the “number operator” which counts the total number of particles. Using (3.53) for the
function ψ(x) ≡ 1 we obtain that the space Hn,s is an eigenspace of this operator, with
eigenvalue n. Of course, a state has a well-defined number of particles only if it belongs to
one of the spaces Hn,s .

Assuming now that f = f (x1,x2, . . . ,xn) is smooth and symmetric, from (3.50) we get

d2

dx2 a(x)(f )(x1, . . . ,xn−1) = √n ∂2

∂x2 f (x1, . . . ,xn−1,x),

and proceeding as in (3.53) we may write(∫
dxa†(x)

d2

dx2 a(x)

)
(f )(x1, . . . ,xn) =

∑
k≤n

∂2

∂x2
k

f (x1, . . . ,xn).

For a particle of mass m in a potential V in one dimension, recall from (2.79) that the
Hamiltonian is given by

H (f ) = − h̄2

2m

d2f

dx2 + Vf .

The previous considerations lead to the formal expression

HB =
∫

dxa†(x)

(
− h̄2

2m

d2

dx2
+ V (x)

)
a(x) (3.58)

for the extension of this Hamiltonian to the multiparticle system.

Exercise 3.7.4 Try to make sense of the following Hamiltonian (which is often found
in textbooks)

H =
∫

dxa†(x)

(
− h̄2

2m

d2

dx2

)
a(x)+ 1

2

∫∫
dxdya†(x)a†(y)V (x,y)a(x)a(y).

What is the meaning of these two terms?29 Hint: Use (3.58) and Exercise 3.7.2.

29 The last integrand is written exactly in this form because it also makes sense if V is an operator, not just a
scalar.
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Having succeeded to give a meaning (in the distributional sense) to the product a†(x)a(x)
we should not jump to the conclusion that we are going to be as lucky each time we try to
multiply distributions. In our forthcoming formal computations we will meet many expres-
sions which are ill-defined. One of them is the product a(x)a†(x). This is to be expected in
view of the formula

a(x)a†(y) = a†(x)a(y)+ δ(x − y),

since by taking y = x one obtains the infinite term δ(0), and if one tries as above a formal
computation to guess a possible meaning of a(x)a†(x) (even in the distributional sense) the
same obstacle arises.

Another quantity that creates problems is a†(x)2. From our definition of creation oper-
ators, it is obvious that A†(f )2(e∅)(x1,x2) = √2f (x1)f (x2), so that formally, using this
relation for f = δx we obtain a†(x)2(e∅)(x1,x2) = √2δx(x1)δx(x2). It is not obvious how
to make sense of this even as a distribution since even an integral of such quantities does not
look at all like a function in L2(R2) because it takes non-zero values only on the diagonal
of R2.

3.8 Explicit Formulas: Momentum Space

In the previous section we have worked in position state space in order to present the simplest
possible formulas. It is however in momentum state space that similar formulas will be
actually used in the sequel. The adaptation of the formalism is completely straightforward,
but, even though it will not be used for a while, it is probably better explained now while
the previous material is fresh in the reader’s mind.

Let us consider now the Hilbert space H′ = L2(R3,d3p/(2πh̄)3).30 We denote by B′
the boson Fock space of H′. We denote B and B† the corresponding maps as in Definition
3.4.1. We may then consider the “operators” b(p) and b†(p) which are the operator-valued
distributions given for ξ ∈ S3(= S(R3), the space of test functions on R3) by

B(ξ ) =
∫

d3p

(2πh̄)3 ξ (p)∗b(p) ; B†(ξ ) =
∫

d3p

(2πh̄)3 ξ (p)b†(p). (3.59)

These are the same formulas as in (3.47), but where now the underlying space is R3 with the
measure d3p/(2πh̄)3 rather than R with the measure dx. The “operators” b(p) and b†(p)
satisfy the commutation relations

[b(p),b†(p′)] = (2πh̄)3δ(3)(p − p′)1. (3.60)

This is the version of (3.49) which is appropriate here since in momentum space delta
functions come with a factor (2πh̄)3.31 The operators b(p),b†(p) also satisfy

[b(p),b(p′)] = [b†(p),b†(p′)] = 0. (3.61)

30 The reason for the notation H′ will be apparent later: we keep the name H for a more important space.
31 To ensure that

∫ d3p

(2πh̄)3
(2πh̄)3δ(3)(p − p′)ξ (p) = ξ (p′).
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Exercise 3.8.1 Check (3.60) in complete detail.

Exercise 3.8.2 Recalling that |0〉 represents the vacuum in Dirac’s notation, what is
the meaning of b†(p)|0〉 and b†(p)b†(p′)|0〉?
Exercise 3.8.3 Convince yourself that (heuristically) “b(p) is of dimension [l3/2]”.

Finally, let us note the following version of (3.57). Consider a real-valued function ψ on
R3 and the operatorH “multiplication by the function ψ(p)” on H′. Then its extension HB′
to B′ is formally given by the formula

HB′ =
∫

d3p

(2πh̄)3ψ(p)b†(p)b(p). (3.62)

3.9 Universe in a Box

We have already faced some of the analytical difficulties and complications inherent to a
model of a particle on the entire real line. This type of complication will become much more
serious later on. On the other hand, as we mentioned in Section 2.4, replacing the whole
space by a finite set would be technically much simpler, but raises other tricky issues. In
this section we describe a compromise between these two extreme attitudes, which we will
use numerous times in the sequel, starting with the next section.

When we model an experiment in our lab, what is the relevance of the values the wave
function takes at places further away than 1010000 light-years (assuming that such places
exist)? Probably very little, so we may realistically use a finite “box” rather thanR3 to model
physical space. For this we consider a (very large) numberL and the boxB = [−L/2,L/2]3

which is thus supposed to represent the whole physical space. We should think ofL as much
larger than any distance we can reach. We denote by L2

B the corresponding L2 space. This
is now our position state space, and as traditional its elements are called wave functions. As
L is extremely large, it seems reasonable to assume that the wave functions of anything of
interest to us will be indistinguishable from zero long before the boundary ofB is reached.32

Our choice of a basis for L2
B is dictated by mathematical convenience and the behavior of

this basis on the boundary of B is unimportant.
Consider the set K of elements k ∈ R3 such that Lk/2πh̄ ∈ Z3, i.e. all the coordinates

of k are of the type 2πnh̄/L for n ∈ Z.33 Consider for k ∈ K the functions

fk(x) = 1

L3/2 exp(ix · k/h̄). (3.63)

They form an orthonormal basis of L2
B , and fk is an eigenvector for each of the three

momenta operators −ih̄∂/∂xj . Any function f has an expansion along this basis,

f =
∑
k∈K

(fk,f )fk, (3.64)

32 Of course we choose the origin of the box close to our location.
33 In physics, k is the traditional notation for the wave vector. This is just an unfortunate coincidence, wave

vectors are not considered in this text.
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and we should think of the family of numbers (fk,f ) for k ∈ K as the representation of
f in momentum state space. Indeed applying the momentum operator −ih̄∂/∂xj simply
amounts to multiplying the coefficient (fk,f ) by kj . As a consequence

Momentum state space becomes a set of functions on a discrete set.

This is a significant technical simplification. Now,

(fk,f ) = 1

L3/2

∫
B

d3y exp(−ik · y/h̄)f (y) = 1

L3/2
f̂B (k), (3.65)

where fB denotes the function on R3 which is equal to f on B and zero otherwise and f̂B
denotes the Fourier transform of fB . Thus (3.64) becomes

f (x) = 1

L3

∑
k∈K

exp(ix · k/h̄)f̂B (k). (3.66)

We may think of B as divided into small boxes Bk of side 2πh̄/L centered on the elements
k of K. The integral of the function p �→ exp(ix · p/h̄)f̂B (p) on such a little box Bk

is about (2πh̄/L)3 times its value at k, so that letting L → ∞ in (3.66) one recovers
the inverse Fourier transform formula (1.31).34 Also, using (3.64) at x = 0 gives f (0) =∑

k∈K(fk,f ) i.e.

δ(3)(x) = 1

L3

∑
k∈K

exp(−ix · k/h̄) = 1

L3/2

∑
k∈K

fk(x), (3.67)

a discrete version of (1.19).

Exercise 3.9.1 If fn is an orthonormal basis of L2(R) many physics textbooks state
the formula ∑

n≥1

fn(x)∗fn(y) = δ(x − y). (3.68)

Try to make sense of this by integrating both sides against a test function. How does
this formula relate to (3.67)?

3.10 Quantum Fields: Quantizing Spaces of Functions

A Quantum Field is simply an operator-valued distribution35 defined on space-time.
In this section we construct our first quantum field (although, technically, the creation

and annihilation operators a†(x) and a(x) of Section 3.7 are already quantum fields).
Let us considerL > 0 and the intervalB = [−L/2,L/2], of lengthL.36 Our basic object

is a function u: B → R with u(−L/2) = u(L/2), a condition which is called a periodic

34 It is possible to make the argument completely rigorous.
35 An operator-valued distribution is a linear map from the space of test functions to a given space of operators.

Intuitively, the value of this map is not defined at every point but only when smeared by a test function.
36 We are putting here in practice the method of the previous section. Our real interest is functions defined on the

whole real line, but we replace the whole line by a very large box to ensure that momentum space becomes
discrete.
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boundary condition. This function also depends on t ∈ R, so we denote it u(t,x).37 It models
the y-displacement of a homogeneous elastic string located in the strip B × R, so that at
time t the string occupies the points (x,u(t,x)) for−L/2 ≤ x ≤ L/2. Here “homogeneous”
means that the mass density and the elasticity of the string do not depend on the point of
the string. An elastic string is subject to the following equation of motion

∂2u

∂t2
= α2 ∂

2u

∂x2 , (3.69)

for some constant α. The physics of this equation is easy to understand. An elastic string
likes to be in a straight line. When it is bent, elasticity creates a force proportional to ∂2u/∂x2

at the point x and Newton’s law of motion implies that the acceleration of this point is given
by (3.69). We will consider the following more general equation of motion

∂2u

∂t2
= α2 ∂

2u

∂x2 − βu, (3.70)

where β ≥ 0. In addition to the elasticity of the string which tends to make it straight, each
point (x,u(t,x)) is submitted to a force of intensity proportional to |u(t,x)| which tends to
pull it back to the point (x,0). One can picture many very thin elastic bands, each joining a
point (x,0) to a point (x,u(t,x)) doing this pulling back.

The string obeying the equation of motion (3.70) is a mechanical system, far more com-
plicated but essentially of the same nature as the simple free massive point we have already
studied. Our purpose is to quantize this system. Quantization is not a mathematical proce-
dure, because Quantum Mechanics is not a consequence of Classical Mechanics. In quan-
tizing a system one always has to make assumptions, and these are justified only by the fact
that the resulting model is successful. Later, in Chapter 6 we will learn systematic methods
of describing mechanical systems and quantizing them. As we have yet to develop these
tools, we will make some educated guesses.

Differential equations such as (3.70) can be solved using the Fourier transform in a
discrete form. We denote by K the set of points k ∈ R such that Lk/2πh̄ ∈ Z, so the
elements k of K are of the type k = 2πnh̄/L for n ∈ Z. For k ∈ K we consider the
functions

fk(x) = 1√
L

exp(ixk/h̄).

The restriction k ∈ K exactly says that fk satisfies the periodic boundary condition. These
functions form an orthonormal basis of L2

B := L2(B,dx), and we can expand

u(t,x) =
∑
k∈K

uk(t)fk(x). (3.71)

The important feature is that

f ′′k (x) = −k2/h̄2fk(x),

37 It is the value of u(t,x) which is of interest now and which we try to quantize. One should think of x and t as
labels, not variables.
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so that (with some handwaving) the equation (3.70) is equivalent to the fact that for each k
we have

ük(t) := d2uk(t)

dt2
= −ω2

kuk(t) := −(α2k2/h̄2 + β)uk(t). (3.72)

Assuming for simplicity β > 0, we have ω2
k > 0 for each k and (3.72) is the equation of

motion of a classical harmonic oscillator of angular frequency ωk .38 Thus the number uk(t)
describes the position at time t of a classical harmonic oscillator of angular frequency ωk .
The idea we follow is very simple: we replace this number by the operator which quantizes
the position at time t of a harmonic oscillator with the same frequency.39

Unfortunately we are going to get the wrong result if we proceed exactly in this direction.
The function u is real-valued, and one should use real-valued functions to expand it. Such
functions are given e.g. by g0 = f0 = 1/

√
L and

gk(x) =
{ √

2/L cos(kx/h̄) if k > 0√
2/L sin(kx/h̄) if k < 0.

(3.73)

We can then expand u(t,x) =∑
k∈K vk(t)gk(x), and now the functions vk(t) are real-valued.

Since g′′k = −k2/h̄2gk , we see as before that the function vk(t) satisfies v̈k(t) = −ω2
kvk(t).

We learned that a quantum system is governed by a Hamiltonian, which in turn produces
a time-evolution of the operators in the Heisenberg picture. For the time being however
we will forget all these sophisticated considerations and we use a very simple-minded
quantization procedure. We replace each of the numbers vk(t) by the operator quantizing
at time t the position of a harmonic oscillator of angular frequency ωk . Let us recall the
formula (2.107) for this operator:

X(t) =
√

h̄

2ωkm

(
a† exp(itωk)+ a exp(−itωk)

)
, (3.74)

where the operator a satisfies [a,a†] = 1. In the case of (2.107) the number m was the mass
of the harmonic oscillator but in our case nothing tells us how to choose it. It is apparent
however that the choice of m is simply a normalization condition (provided the choice is
independent of k). Since at this stage we have no clue how to choose m, we put this issue
aside and we set γ = √h̄/2m, a normalization constant.

Let us then for each k ∈ K consider operators c(k) with [c(k),c†(k)] = 1, such that these
operators commute for different values of k: [c(k),c(k′)] = 0, etc. The short-hand way to
describe this situation is the sentence

The operators c(k) satisfy the relation [c(k),c†(k)] = 1,
all the other commutators being zero.

We start to think as physicists here, not telling what the state space is. This attitude is based
on the assumption that in some sense, the choice of the state space does not matter, but only

38 When β = 0, for k = 0, the equation is ü0(t) = 0. This simply expresses that the center of mass of the string
may follow a uniform motion, and one should add the constraint u0 = 0. Besides this point, there is not much
to change to the analysis.

39 We start to make sense of the physicists’ metaphor of “attaching a harmonic oscillator to each point of space”,
although here “space” means the set K which we use to describe momentum (rather than position).
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the commutation relations between the operators matter.40 In Exercise 3.10.2 we provide
an actual construction of such operators.

We then replace the function vk(t) by the operator

γ√
ωk

(c(t,k)+ c†(t,k)), (3.75)

where c(t,k) = c(k) exp(−itωk) and c†(t,k) = c†(k) exp(itωk). This provides a time-
dependent operator which is a candidate for quantization of the function u(t,x):

ϕ(t,x) =
∑
k∈K

γ√
ωk

(c(t,k)+ c†(t,k))gk(x). (3.76)

Exercise 3.10.1 Convince yourself that we would have gotten a wrong result if we
had not reduced to real-valued functions. Hint: We would not get a self-adjoint field.41

The formula (3.76) is potentially our first quantum field. Unfortunately it is not clear
what this infinite sum might mean. As the next exercise explores, it is actually not possible
to define a bona fide operator by the previous formula.

Exercise 3.10.2 To explore the meaning of (3.76) we need a concrete realization of the
operators c(k). For this we consider a standard (infinite-dimensional and separable)
Hilbert space H and a basis (ek)k∈K. We then take c(k) = A(ek) and c†(k) = A†(ek),
which are operators on B. We recall the element e∅ of B, which is about the simplest
non-zero element of the space.
(a) Prove that if a sequence (αk)k∈K satisfies

∑
k∈K |αk|2 = ∞ then it is not possible

to define sensibly the value of the operator∑
k∈K

αk(c(k)+ c†(k)) (3.77)

on the vector e∅.
(b) Prove on the other hand that if

∑
k∈K |αk|2 <∞ then the operator (3.77) may be

defined with a dense domain. Hint: Prove that this operator is well-defined on each
vector of the type c†(i1) · · · c†(in)(e∅).

The way to make sense of the formula (3.76) is as an operator-valued distribution. Let us
here define a test function as an infinitely differentiable function ξ such that each derivative
ξ (n) satisfies the boundary condition ξ (n)(−L/2) = ξ (n)(L/2). Given a test function ξ the
sequence (

∫
B

dxgk(x)ξ (x))k decreases fast (as is seen by integration by parts), and we may
then define the integral

∫
B

dxϕ(t,x)ξ (x) in the obvious manner, as being the operator∫
B

dxϕ(t,x)ξ (x) =
∑
k∈K

γ√
ωk

( ∫
B

dxξ (x)gk(x)
)

(c(t,k)+ c†(t,k)). (3.78)

40 However, as we shall eventually see, in the case we are considering here with an infinity of operators, the
situation is trickier.

41 In Quantum Mechanics, self-adjoint operators correspond to real numbers.
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The quantum field (3.76) is of considerable importance. It is the version in “1 + 1 dimen-
sions” (that is, when physical space is one-dimensional) of one of the most important quan-
tum fields, to be studied in great detail in Chapter 5. It will be more profitable to study
it after we learn more, but we can already understand though that nothing can be difficult,
since we are basically studying independent harmonic oscillators, and whatever formula we
prove will ultimately reduce to proving something about a single harmonic oscillator.

It is appropriate to think of the (ill-defined) operator ϕ(t,x) as measuring the position of
the string at the point x of space and at time t .

The purpose of the forthcoming exercise is to show that the operator-valued distribution
ϕ(t,x) satisfies the differential equation (3.70). A complete proof of a similar result is given
later in Proposition 6.1.3.

Exercise 3.10.3 The operator-valued distribution ∂2ϕ(t,x)/∂x2 is defined by∫
B

dx
∂2ϕ(t,x)

∂x2 ξ (x) =
∫
B

dxϕ(t,x)ξ ′′(x).

Defining the derivative of ϕ(t,x) with respect to t in the obvious manner, prove that
the operator-valued distribution ∂2ϕ/∂t2−α2∂2ϕ/∂x2+βϕ is zero by computing its
value against a test function ξ .

There is however one unpleasant task ahead of us, which will not get any easier if we
delay it, so we confront it now over the next page or so. It is to manipulate the formula
(3.76) to express the quantum field using the functions fk rather than gk . For this we use
that for k > 0 we have gk = (fk + f−k)/

√
2 whereas gk = i(f−k − fk)/

√
2 for k < 0.

Fixing the value of k > 0 we consider the contributions of the values k and −k to the sum
(3.76), which, since ωk = ω−k , is

γ√
2ωk

(
fk(x)

(
c(t,k)+ c†(t,k)+ ic(t, − k)+ ic†(t, − k)

)
+ f−k(x)

(
c(t,k)+ c†(t,k)− ic(t, − k)− ic†(t, − k)

))
. (3.79)

Let us then define

a(k) := 1√
2

(c(k)+ ic(−k)) ; a(−k) := 1√
2

(c(k)− ic(−k)), (3.80)

and a(t,k) := a(k) exp(−iωkt), a(t, − k) := a(−k) exp(−iωkt), so that the quantity (3.79)
equals

γ√
ωk

(
fk(x)

(
a(t,k)+ a†(t, − k)

)+ f−k(x)
(
a(t, − k)+ a†(t,k)

))
.

Writing down what this means we get

γ√
ωk

∑
�∈{−k,k}

a(t,�)f�(x)+ a†(t,�)f−�(x).
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It is straightforward to check that

[a(k),a†(k)] = [a(−k),a†(−k)] = 1, (3.81)

with all the other commutators zero.

Exercise 3.10.4 Check explicitly that [a(k),a†(−k)] = 0.

Setting a(0) = c(0), the formula (3.76) then becomes

ϕ(t,x) = 1√
L

∑
k∈K

γ√
ωk

(
exp(i(−tωk + xk/h̄))a(k)+ exp(i(tωk − xk/h̄))a†(k)

)
, (3.82)

where the operators a(k) satisfy the relations (3.81), with all the other commutators being
zero. This formula (or, rather, more advanced versions of it) is going to stay with us a
long time, although we will understand it only gradually. Let us try to remember that the
mysterious factor 1/

√
ωk arises from (3.74) concerning a single position operator.

Looking at (3.82) we notice the operators

exp(−itωk)a(k) ; exp(itωk)a†(k),

which of course remind us of (2.104) and (2.105), and which express that a(t,k) and a†(t,k)
are the time-evolved operators of a(k) and a†(k) under the Hamiltonian h̄ωka†(k)a(k). Since
there is such a contribution for each value of k we expect that the Hamiltonian∑

k

h̄ωka
†(k)a(k) (3.83)

will be relevant, and that in some sense the operator ϕ(t,x) is the Heisenberg time-evolution
of the operator ϕ(0,x) under this Hamiltonian.42

We will pursue these matters in due time, but for now we start with simpler considerations
which will already bring forward the thorny issues plaguing the topic. The formula (3.83)
attaches to each point of K a harmonic oscillator. As L → ∞, the points of K become
closer to each other, and we would like to give a meaning to the procedure “attach to each
point p of R the position operator of a harmonic oscillator of angular frequency ω(p)”. We
assume ω(p) is a smooth function of p with ω(p) ≥ α > 0.43 We define the operator-
valued distributions a(p) and a†(p) as in Section 3.8, but in dimension 1 rather than 3, and
the commutation relations are

[a(p),a†(p′)] = 2πh̄δ(p − p′)1.

We expect the continuous limit of the formula (3.83) to be44

H = h̄

∫
dp

2πh̄
ω(p)a†(p)a(p), (3.84)

42 Not accounting for an unimportant constant term, (3.83) is the Hamiltonian
∑

k h̄ωk(a†(k)a(k)+ (1/2)1)
obtained “by attaching non-interacting harmonic oscillators to each point of space”. The occurrence of this
Hamiltonian is completely expected. It represents the sum of the energies of independent harmonic
oscillators, and such oscillators occur in (3.72). In his textbook [93], Zee uses for a quantum field the
metaphor of a mattress with quantized springs attached.

43 We are not really interested in generality, but no other property of ω matters.
44 It would be possible to derive the correct formulas by analyzing how one should go from the discrete case to

the continuum limit, but as this requires a bit of work, we will guess them.
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which, as we have explained, is a well-defined operator on the boson Fock space of L2.
Presumably, we then have a continuous version

H =
∫

dp

2πh̄

1

2m

(
�(p)2 + ω(p)2m2�(p)2) (3.85)

of the formula (2.101), where �(p) and �(p) respectively give “the position and the
momentum of the harmonic oscillator located at p”. We may guess from (2.100) that the
operator-valued distribution �(p)“giving the position of the harmonic oscillator at p” is
given by the formula (keeping again from now on the explicit value of m):

�(p) =
√

h̄

2mω(p)
(a(p)+ a†(p)). (3.86)

The formula (3.86) is to be taken in the sense of distributions. It means that for a test function
ξ ∈ S one has

�(ξ ) =
√

h̄

2m

(
A
( ξ∗√

ω

)
+ A†

( ξ√
ω

))
, (3.87)

where ξ/
√
ω is the test function45 given by ξ/

√
ω(p) = ξ (p)/

√
ω(p). As in (3.86) we may

write an operator-valued distribution “expressing the momentum of the harmonic oscillator
at p”:

�(p) = i

√
ω(p)mh̄

2
(a†(p)− a(p)), (3.88)

which now means that for a test function ξ one has

�(ξ ) = i

√
mh̄

2
(A†(ξ

√
ω)− A(ξ∗

√
ω)).

Plugging (3.86) and (3.88) into (3.85), performing the straightforward calculation (taking
into account that a and a† do not commute) we get

H = h̄

2

∫
dp

2πh̄
ω(p)

(
a†(p)a(p)+ a(p)a†(p)

)
. (3.89)

The first problem is that the “straightforward calculation” involved considering �(p)2 and
the undefined terms a†(p)2 and a(p)2. By a kind of miracle these ill-defined quantities
cancel algebraically. The second problem is that (3.89) contains the undefined term
a(p)a†(p). For this term we brazenly use that since [a(p),a†(p)] = 2πh̄δ(p − p′)1,
we have a(p)a†(p) = a†(p)a(p)+ 2πh̄δ(0)1 = a†(p)a(p)+ constant1, so that within an
irrelevant multiple of the identity (3.89) coincides with (3.84).

The situation is unpleasant but not dramatic. The problems connected to the continuous
limit are in a sense an artifact of our continuous model and one should not worry too
much about them. “Putting the universe in a box”, that is replacing physical space by a
finite rectangular box as we did at the beginning of the present section removes most of

45 This is a consequence of our hypotheses on the function ω(p).
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these problems. We may argue that it is reasonable to view formal computations done
in the continuous limit as simply a convenient way to encode computations done in the
more reliable discrete approximation. Therefore these computations should be trusted unless
proved otherwise. There will be many of them.

Now, what about the value of m? We better leave this question for a future time when we
have figured some rationale for the normalization of this quantum field.

Key ideas to remember:

• If H is the state space appropriate to describe a single particle, a certain subspace
of the n-fold tensor product H ⊗ · · · ⊗ H is the appropriate state space to describe
a system of n indistinguishable particles. For bosons, this is the subspace Hn,s of
symmetric tensors.

• The boson Fock space, the direct sum of the Hn,s is the appropriate state space to
describe a system of any number of the same type of bosons.

• The fundamental structure of the boson Fock space is the construction for ξ ∈ H of
the creation operator A†(ξ ) and the annihilation operator A(ξ ) which are both
unbounded operators on the Fock space. They satisfy the relation [A(ξ ),A†(η)] =
(ξ,η)1.

• Putting the universe in a box often makes our formalism less prickly.
• Quantum Fields are operator-valued distributions.



4

The Lorentz Group and the Poincaré Group

It is an extremely well-established experimental fact that the speed of light c is the same
for all “inertial observers” (those who do not undergo accelerations). This is what has led
to the definition (1.1). The analysis of the consequences of this remarkable fact has forced
a complete revision of Newton’s ideas. Each observer uses a copy of R3 to describe the
location of points and a copy of R to describe time. Space and time are however not different
entities but are different aspects of one single entity, space-time.1 Different inertial observers
may use different coordinates to describe the points of space-time, but these coordinates
must be related in a way that preserves the speed of light. To formulate this mathematically,
the Euclidean inner product on R4 has to be replaced by another bilinear form, the Lorentz
bilinear form, and the change of coordinates between observers must preserve the Lorentz
bilinear form. These transformations form a group, the Lorentz group. To a large extent
the mathematics of Special Relativity reduce to the study of this group. In the present
chapter we introduce the Lorentz group and a related group, the Poincaré group, the group
of transformations of space-time generated by the Lorentz group and the translations.

The present chapter is essentially independent of the previous ones.

4.1 Notation and Basics

Special Relativity uses standard notation, which we introduce now. Points in R3 are denoted
in boldface to distinguish them from points in space-time. The components of a point x ∈
R4 are denoted by (x0,x1,x2,x3). The idea is that x = (x0,x1,x2,x3) describes the point
x = (x1,x2,x3) of space at time t = x0/c, and we often write x = (x0,x). Thus x0/c has
the dimension of a time, and each coordinate xν has the dimension of a length.

We consider the 4 × 4 matrix ημν , which is diagonal with η00 = 1 and ηii = −1. Here
we follow the convention that Greek indices range from 0 to 3 while Latin indices range
from 1 to 3, so that the condition ηii = −1 means η11 = η22 = η33 = −1. Let us note that

ημν = ηνμ.

1 The reader with no exposure to the delightful theory of Special Relativity may get minimal help by looking at
Appendix E, but is strongly advised to open a real textbook such as that of Taylor and Wheeler [81].
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On R4 we consider the following bilinear form, called the Lorentz bilinear form,

(x,y) = ημνx
μyν . (4.1)

This expression follows the convention that repeated indices in the same term, one of which
is a subscript and one of which is a superscript are summed, so that

(x,y) =
∑

0≤μ,ν≤3

ημνx
μyν = x0y0 − x1y1 − x2y2 − x3y3.

We do not use a special notation for the Lorentz bilinear form, since it can hardly be confused
with the Euclidean dot product which we will not use in this setting. Still, we shall denote
R4 equipped with the Lorentz bilinear form by R1,3 as a reminder that our version of the
Lorentz bilinear form uses one + sign and three − signs.2 We note that (x,y) = (y,x). The
convention that repeated indices are summed will be in force every time we deal with R1,3.
The space R1,3 will be called Minkowski space.

A Lorentz transformation L is a linear transformation on R1,3 which preserves the bilin-
ear form (4.1), that is

(L(x),L(y)) = (x,y). (4.2)

Definition 4.1.1 For a four-vector x = (x0,x) we use the notation

x2 := (x,x) ; x2 =
∑

1≤i≤3

(xi)2 ; |x| =
√

x2. (4.3)

In principle the notation x2 is ambiguous as this could also be the third component of x,
but in practice there is no problem. Thus

x2 = (x0)2 − x2.

A Lorentz transformation is necessarily injective since if x �= 0 there exists y with
(x,y) �= 0, so that (L(x),L(y)) = (x,y) �= 0 and L(x) �= 0. It is then bijective since
R1,3 is finite-dimensional. It is straightforward to check that the Lorentz transformations
form a group, denoted by O(1,3), the numbers 1 and 3 referring again to one + and the
three − signs among the numbers ημμ. As a consequence of (4.2) let us note for further
use that

(L(x),y) = (x,L−1(y)) ; (x,L(y)) = (L−1(x),y). (4.4)

Let us spend a few lines to explain the physical ideas here. The identity 4(x,y) = (x +
y,x + y) − (x − y,x − y) shows that a linear map L is a Lorentz transformation if and
only if it preserves the quantity x2 = (x,x).3 The set of x ∈ R1,3 for which (x,x) = 0
is called the light cone of the origin. We will often omit the words “of the origin” as we
consider no other light cone. The trajectory in space-time of a point moving in a straight
line at the speed of light and departing (respectively reaching) the origin at time zero in the

2 The present convention goes under various names, such as particle’s physicist’s sign convention. Relativists
mostly use three + signs and one − sign.

3 The name “Lorentz norm” here would be improper because (x,x) can be negative.



104 The Lorentz Group and the Poincaré Group

direction of the unit vector u is the set of points of the form (tc,tcu) for t ≥ 0 (respectively
t ≤ 0).4 The light cone is exactly the union of such trajectories. Thus, the basic assumption
of Special Relativity, that light travels at speed c for any inertial observer, implies that the
light cone should be the same for two such observers. The natural way to ensure this is
that the transformation L which relates the way two inertial observers refer to points of
space-time preserves the Lorentz bilinear form.

Exercise 4.1.2 Prove that if a linear transformation A of R1,3 satisfies (x,x) = 0⇒
(A(x),A(x)) = 0 then A is a multiple of a Lorentz transformation. Hint: Assuming
A �= 0, reduce to the case where A fixes e0 = (1,0,0,0). This exercise will be easier
is you study up to Section 4.3 first.

The matrix of a linear transformation L on R1,3 will be denoted by (Lμν). The rule is
that μ, the index on the left, represents the row and ν, the index on the right, represents the
column. Thus (thinking of x = (xν) as a column vector),

L(x)μ = Lμνx
ν
(
=

∑
0≤ν≤3

Lμνx
ν
)

. (4.5)

With our present row and column convention, the rule for matrix multiplication is then

(LM)μν = LμρM
ρ
ν . (4.6)

When dealing with matrices that do not represent Lorentz transformations, the index on the
left still represents the row and the index on the right still represents the column, but both
indices are lower indices. The matrix multiplication rule then takes the form

(AB)i,j =
∑
k

Ai,kBk,j . (4.7)

The map L is a Lorentz transformation if and only if

ημνL
μ
λx

λLνλ′y
λ′ = (L(x),L(y)) = (x,y) = ηλλ′x

λyλ
′
, (4.8)

for all x,y ∈ R1,3, or, equivalently,5

ημνL
μ
λL

ν
λ′ = ηλλ′ . (4.9)

Writing all indices as lower indices as in the case (4.7) this means that

LT�L = �, (4.10)

where � is the matrix (ημν) and where LT is the transpose of L.6 Taking determinants
proves that (detL)2 = 1, and hence the important fact that detL = ±1. Since � = �−1,
taking the inverse of (4.10) and replacing L by L−1 proves that LT ∈ O(1,3).

4 This simply means that at time t = (tc)/c the position of the point is tcu, at distance |tc| from the origin, in the
direction of the unit vector u when t > 0 and in the opposite direction when t is negative.

5 It is an automatic part of the formalism that λ and λ′ are fixed indices in (4.9) but are summed in (4.8). To

prove the equivalence, multiply (4.9) by xλyλ
′

and sum over λ and λ′. In the reverse direction, choose x,y in
the canonical basis.

6 We abuse notation by not distinguishing between L and its matrix.
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The map L �→ detL is a group homomorphism from O(1,3) to {−1,1}. A second less
obvious such homomorphism is given by L �→ signL0

0. To prove this we have to show that
given two Lorentz transformations L and M the quantity

(LM)0
0 = L0

νM
ν
0 = L0

0M
0
0 + L0

iM
i
0

has the same sign as L0
0M

0
0. It suffices for this to prove that

|L0
iM

i
0| < |L0

0M
0
0|. (4.11)

Using (4.9) for λ = λ′ = 0 yields in particular

(L0
0)2 = 1+

∑
1≤i≤3

(Li0)2. (4.12)

We observe for further use that |L0
0| ≥ 1. Now, (4.12) used for M implies (M0

0)2 =∑
1≤i≤3(Mi

0)2 + 1 whereas the same relation used for LT implies

(L0
0)2 =

∑
1≤i≤3

(L0
i)

2 + 1. (4.13)

Thus (4.11) follows, since, using the Cauchy-Schwarz inequality, we have

(L0
iM

i
0)2 ≤

∑
i≤3

(L0
i)

2
∑
i≤3

(Mi
0)2 = ((L0

0)2 − 1)((M0
0)2 − 1) < (L0

0M
0
0)2.

The transformations such that L0
0 > 0 are by far the most important since they preserve

the direction in which time flows. They are called orthochronous7 transformations. The
two homomorphisms from O(1,3) into {−1,1} show that O(1,3) is made up of four pieces
(determined by the four possible choices for the sign of L0

0 and of detL). We will denote

SO↑(1,3) = {L ∈ O(1,3) ; L0
0 > 0 , detL = 1}

the most important of these pieces. It will soon be apparent that SO↑(1,3) is connected. The
proper terminology is to call SO↑(1,3) “the restricted Lorentz group”, although we will
abuse this terminology and often call it “the Lorentz group”. There is little risk of confusion
since we rarely use the group O(1,3) itself. From this point on let us agree that when we
say “Lorentz transformation”, unless otherwise specified, we always mean an element of
SO↑(1,3), an orthochronous transformation of determinant one. There are two important
elements of O(1,3)\SO↑(1,3), the parity transformation P : (x0,x)→ (x0,−x), and time
reversal (x0,x)→ (−x0,x). We will not study time reversal, but the parity transformation
will be of considerable importance.

Lemma 4.1.3 A Lorentz transformation8 sends the set V̄+ = {x2 = (x,x) ≥ 0,
x0 ≥ 0} to itself.

7 From the Greek ortho=proper, and chrono=time.
8 That is, in our terminology, an element of SO↑(1,3). Time reversal, which is not orthochronous, does not

satisfy the conclusion of the lemma.
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Proof Consider L ∈ SO↑(1,3) and x ∈ V̄+. Then L(x)2 = x2 ≥ 0 and

L(x)0 = L0
μx

μ = L0
0x

0 + L0
ix
i,

where L0
0 > 0, x0 ≥ 0, |L0

ix
i | ≤ L0

0x
0 using the Cauchy-Schwarz inequality, (4.13), and∑

i≤3(xi)2 ≤ (x0)2. Thus L(x)0 ≥ 0.

There is some fundamental physics going on in this lemma. Suppose I am located at the
origin and I flip a coin at time zero, and that you are located at x and try to record at time
x0/c the result of this coin flipping. This may be done as follows if x2 > 0: I send you
the appropriate message using a light ray starting from the origin at time zero. It reaches
you at time |x|/c. Since x2 > 0 it holds that |x|/c ≤ x0/c, so that you have received the
message before you have to record the result of the coin flipping. In more general terms
what happens at x at time x0/c may be influenced by what happens at the origin at time
zero: there is a causality relation, and it must hold for all observers, as the previous lemma
states.9 The situation is very different when x2 < 0. You are too far away for me to inform
you in due time of the coin flipping result. Indeed, when we know more about the Lorentz
group is will be easy to show (in Exercise 4.3.2) that when x2 < 0 there exists a Lorentz
transformation L for which L(x)0 < 0. In physical terms, for some observers the recording
event takes place before the coin is flipped!10

Definition 4.1.4 Two points x,y of R1,3 are causally separated if (x − y)2 < 0.

The previous discussion has led us to the following important statement, to be
remembered.

If two points x,y ∈ R1,3 are causally separated what happens at x
cannot influence what happens at y. (4.14)

The next page or so is devoted to playing with a very nice notational formalism, which
finds its roots in the theory of General Relativity, where it is universally used to manage
tensorial calculus. Not every author uses this formalism in the present setting (this is a
kind of overkill). Whether I use it or not, this will conflict with some of the textbooks
the reader might open, so I follow my own taste. The formalism will not be used much in
the sequel, besides some notation such as (4.17). It is not necessary to master it, except for
readers wishing to study Section D.12, Section E.2 or Appendix G, where we perform some
computations on tensors that exemplify the remarkable power of this formalism.

We define ημν := ημν and observe that

ημνηλν

(
=

∑
0≤ν≤3

ημνηλν

)
= δ

μ
λ , (4.15)

9 The set V̄+ is called the causal future of the origin.
10 Let us now enjoy getting really confused together. In Quantum Field Theory, (at least in the flowery

description of physicists) “virtual particles” may travel faster than light. A virtual electron may be created at
the origin at time zero and be annihilated at time x0/c and location x where x2 < 0. How can we make sense
that for some observers the annihilation takes place before the creation? Elementary, my dear Watson: these
observers see a virtual anti-electron created first and then annihilated later.
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where δμλ is the Kronecker symbol. We can use the ηνμ to raise and the ηνμ to lower indices,
as follows:

xν := ηνμx
μ. (4.16)

This simply amounts to changing the sign of the indices μ as they are raised or lowered
when 1 ≤ μ ≤ 3, e.g. x0 = x0 and x1 = −x1. Nonetheless this notation is very convenient.
Thus we can define

η
μ
λ := ημνηνλ.

The summation in the right-hand side can be viewed either as lowering the index λ in
ημλ or as raising the index μ in ημλ. Then (4.15) simply means that ημλ = δ

μ
λ . With the

convention of raising and lowering indices, (4.1) takes the elegant form

(x,y) = xμy
μ = xμyμ. (4.17)

The end of this section is for fun and will be used only in Sections D.12 and E.2. The indices
in a matrix coefficient Lμν can be raised or lowered as any other index, but then one should
respect the difference between the left and the right index.11 For example we can write (4.5)
as L(x)μ = Lμνx

ν . To see this we simply write

L(x)μ = ημνL(x)ν = ημνL
ν
λx

λ = Lμλx
λ.

Exercise 4.1.5 Prove that Lμνxν = L ν
μ xν .

The matrix multiplication formula (4.6) can be written in several different forms such as
(LM)μν = L

ρ
μ Mρν , as is seen by writing

(LM)μν = ημλ(LM)λν = ημλL
λ
τM

τ
ν = LμτM

τ
ν = L ρ

μ ηρτM
τ
ν = L ρ

μ Mρν .

Moreover (4.9) can be written as LνλLνλ′ = ηλλ′ or even (raising λ in the previous equality
and recalling that ηλ

λ′ = δλ
λ′ ) in the more appealing form

L λ
ν L

ν
λ′ = δλλ′ . (4.18)

Exercise 4.1.6 Make sure you understand how to derive the previous equation.

Denoting by M the transformation such that Mλ
ν = L λ

ν , this implies Mλ
νL

ν
λ′ = δλ

λ′ so
that M = L−1. That is, to go from L to L−1 one simply exchanges right and left indices.
Furthermore, Mλ

ν = L λ
ν = ηνaL

a
bη

bλ, and viewing the right-hand side as a product of
three 4× 4 matrices gives detM = detL. Therefore since M = L−1 we obtain again that
(detL)2 = 1.

4.2 Rotations

The linear transformations of Rn which preserve the Euclidean norm (the length) of a
vector form a group, the orthogonal group O(n). A transformation preserves the length of

11 This is precisely why we state the rule that “the left index represents the row and the right index represents the
column”. Raising or lowering indices does not affect it.
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a vector if and only if its matrix M in an orthonormal basis satisfies MTM = MMT = 1,
the identity matrix. Consequently detM = ±1. The subgroup SO(n) of transformations of
determinant 1 is called the special orthogonal group.

Exercise 4.2.1 If you are not familiar with the previous results, prove them by copying
arguments of the previous section.

The group SO(2) is the familiar group of matrices of the form,

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
,

where θ is called the angle of the rotation. The group SO(3) will be fundamental. It is
simply called the group of rotations. Given the matrix M of a rotation,

det(M − 1) = detM det(1−M−1) = det(1−MT ) = det(1−M) = − det(M − 1),

using in the last equality that the dimension of these matrices is odd. Thus det(M − 1) = 0
and there are invariant vectors under a rotation, which constitute the axis of the rotation.
The plane perpendicular to the axis of rotation is invariant under the rotation. Rotations are
studied in more detail in Appendix D.

Given T ∈ O(3) we may define an operator T ′ on R1,3 by

T ′: (x0,x) �→ (x0,T (x)). (4.19)

It is obvious that T ′ is a Lorentz transformation, and that det T ′ = det T . Moreover, T ′

leaves the vector e0 := (1,0,0,0) invariant. Conversely, if a Lorentz transformation S leaves
e0 invariant, it maps the set {(0,x);x ∈ R3} to itself, because this is exactly the set of vectors
x for which (e0,x) = x0 = 0. Thus one may define a linear map T on R3 by S(0,x) =
(0,T (x)). It is clear that T is an isometry, so that if det S = 1, T is a rotation. For this reason
we will call a Lorentz transformation a rotation if it fixes e0 and has determinant 1.

4.3 Pure Boosts

In this section we try to completely clarify the nature of some basic Lorentz transformations
called pure boosts.

A rotation does not mix space and time coordinates, but a general Lorentz transforma-
tion does, and pure boosts are the simplest type of transformations mixing space and time
coordinates. As we will see a general Lorentz transformation can then entirely be described
by applying first a rotation and then a pure boost. The crucial point of mixing time and
space coordinates is that in (4.1) the signs are not the same for the time coordinate and
the space coordinates. To understand the consequences of this, let us first study the linear
transformations V of R2 which preserve the bilinear form B(x,y) := x1y1 − x2y2, i.e.
B(V (x),V (y)) = B(x,y). The condition B(V (e1),V (e1)) = 1 implies that V (e1) = (a,b)
where a2 − b2 = 1. The condition B(V (e1),V (e2)) = 0 implies that V (e2) = (λb,λa)
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for some λ ∈ R. The condition B(V (e2),V (e2)) = −1 implies λ2 = 1. If one moreover
requires that detV = 1, the matrix of V then has to be of the type(

a b

b a

)
.

We will consider only the case a > 0. Then we can set a = cosh s,b = sinh s, and the
previous matrix becomes

Ms =
(

cosh s sinh s
sinh s cosh s

)
. (4.20)

This surely reminds one of a rotation matrix. The point of the parameterization is the remark-
able formula Ms+t = MsMt .

Given s ∈ R we can then define the boost Bs as the transformation which operates by the
matrix (4.20) on the coordinates (x0,x3) while leaving the coordinates (x1,x2) unchanged:

Bs := (x0,x1,x2,x3) �→ (x0 cosh s + x3 sinh s,x1,x2,x0 sinh s + x3 cosh s). (4.21)

It is called a (pure) boost along the x3 axis. It is straightforward that Bs ∈ SO↑(1,3), and
Bs(e0) = (cosh s,0,0, sinh s).

Observe that when r := (cosh s,0,0, sinh s), (4.21) can be written as

Bs((x0,x)) = (x0r0 + r · x,x0r + r0 x‖ + x⊥), (4.22)

where for x ∈ R3 we denote by x‖ and x⊥ its components parallel and perpendicular to r .
This formula motivates the following.

Definition 4.3.1 Given r = (r0,r) ∈ R1,3 with r2 := rμr
μ = (r0)2 − r2 = 1 and

r0 > 0 we define the pure boost Br by (4.22).

Thus for r = (cosh s,0,0, sinh s) we have Br = Bs and in particular when r = e0 the
pure boost Br is the identity. Otherwise, this is simply the transformation which acts as
identity on the space {(0,x);x · r = 0}, while (as will become apparent from (4.23)) acting
by a transformation of the type (4.20) on the two-dimensional space generated by e0 and r .

Exercise 4.3.2 Prove that if x2 < 0 there is a pure boost B such that B(x)0 = 0 and
a pure boost such that B(x)0 < 0.

To understand the physical meaning of a pure boost, consider an observer (called Alice)
using a reference frame such that when Alice measures the position of any space-time point
by x, I measure the position of the same point by Br (x). In particular we both use the same
origin 0 of space-time. Imagine a clock being located at the origin Alice uses for space, and
marking the time Alice uses.12 Then when Alice’s clock marks time t mine marks time13

r0t . Moreover Alice’s clock is then located at the point of coordinates ctr in my reference

12 Thus, this clock is stationary for Alice.
13 This is the phenomenon of time-contraction, which is briefly discussed in Appendix E.
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frame. That is, in my reference frame, Alice’s clock moves away at speed c|r|/r0 in the
direction of r .14

Lemma 4.3.3 (a) We have Br (e0) = r .
(b) If S is a rotation, then

BS(r) = SBrS
−1. (4.23)

(c) Br ∈ SO↑(1,3).

Proof Taking x0 = 1 and x = 0 in (4.22) yields Br (e0) = (r0,r) = r . To check formula
(4.23) we write it as BS(r)S = SBr . It should then be obvious from (4.22), since when S

is a rotation of R3, S(x‖) and S(x⊥) are the components of S(x) which are parallel and
perpendicular to S(r). Finally consider r ∈ R1,3 with r2 = 1 and r0 > 0. Then we
can find a rotation S for which q := S−1(r) is such that q is parallel to the third axis.
Then Bq ∈ SO↑(1,3) since it is of the type (4.21) and therefore Br = BS(q) ∈ SO↑(1,3)
by (4.23).

The content of (4.23) is that “the geometry of a boost is the same as the geometry of a
boost of the type Bs”.

Observing that

r0x‖ + x⊥ = (r0 − 1)x‖ + x = (r0)2 − 1

1+ r0
x‖ + x = r2

1+ r0
x‖ + x,

and that x‖ = (r · x)r/r2 we obtain from (4.22) the following formula: the transformation
B = Br is given by

B((x0,x)) = (x0r0 + r · x,x0r + (r · x)r

1+ r0 + x), (4.24)

or, equivalently,

B0
0 = r0 ; B0

j = B
j

0 = rj ; Bi
j = δij +

rirj

1+ r0 . (4.25)

Exercise 4.3.4 Consider r = (r0,r) ∈ R1,3 with r2 = rμr
μ = 1 and r0 > 0. Let

s > 0 with r0 = cosh s, so that |r| = sinh s. Thus there exists a rotation R which
transforms Bs(e0) = (cosh s,0,0, sinh s) into r . Prove that the operator

RBsR−1 (4.26)

is the same for each rotation R which transforms Bs(e0) = (cosh s,0,0, sinh s) into r .
Hint: Prove first that if R is a rotation which fixes the third axis it commutes with Bs .
This provides an alternate definition of Br := RBsR−1 for any such R. Prove (4.23)
from this definition.

14 Generally speaking, any two inertial observers can choose their respective coordinate systems in such a way
that the change between these coordinate systems is represented by a pure boost.
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Let us collect two simple facts for further use. You are not expected to understand right
now the relevance of these facts. We denote by P the parity operator

P (r0,r) = (r0, − r) (4.27)

1. First,

B−1
r = BPr . (4.28)

When r is along the third axis, this results from the fact that (Bs)−1 = B−s . The general
case follows by writing r = S(r ′) where S is a rotation, where r ′ is along the third axis, and
using (4.23).

2. Consider a Lorentz transformationA ∈ SO↑(1,3), and let r = A(e0). ThenB−1
r A(e0) =

B−1
r (r) = e0. That is, B−1

r A fixes e0, so that it is a rotation because it is of determinant 1.
Consequently, A = BrR where R is a rotation. This is a kind of polar decomposition. It
makes it obvious that one can move continuously from the identity to A (because this is the
case both for Br and R), so that SO↑(1,3) is connected. Matters are tricky however. The
product of two pure boostsBr ,Bq is not in general a pure boost (unless r and q are parallel).

The vast majority of textbooks use Lie algebras to study the Lorentz group (and for
many other purposes). While we choose a different presentation, it is nonetheless highly
recommended to learn at least the idea of this fundamental approach, if only to understand
the literature. We present some elements of this theory in Appendix D, and we suggest that
the reader starts the study of this appendix now.

4.4 The Mass Shell and Its Invariant Measure

In basic Quantum Mechanics we have used “position space” and “momentum space”, and
similarly Minkowski space comes in two versions, a “position space” version, the points x of
which represent a location in space-time, x = (x0,x1,x2,x3), x0 = ct , and are measured in
units of length, and a “momentum space” version, the points p = (p0,p1,p2,p3) of which
represent the “four-momentum”, also called the “energy-momentum” of a point particle
where the coordinates are in units of momentum.15 For x in “position space” and p in
“momentum space” the quantity (x,p)/h̄ is dimensionless.

We will accept the basic fact that a particle of four-momentum p = (p0,p) has energy
E = cp0 and momentum p.16 We will also accept the fundamental relation

p2 = pνp
ν = m2c2, (4.29)

where m is the rest mass of the particle. The words “rest mass” do not refer to any new
concept. When m > 0, the rest mass of an object is the usual mass as we experience it at
small velocity in non-relativistic situations.17 We will often simply say “mass” rather than

15 We will not attempt to use notation that would distinguish between these two versions of R1,3.
16 Thus, p gives us both the energy and the momentum of the particle, hence the name energy-momentum.
17 The situation is different when m = 0. As we will see soon, an object of mass zero is never at rest.
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“rest mass”.18 Equivalently, the energy E and the momentum p of a particle of mass m are
connected by the relation

E2

c2 − p2 = m2c2, (4.30)

or, equivalently, E2 = c2p2 +m2c4. The case p = 0 should be familiar to the reader. The
case m = 0 is Einstein’s equation E = c|p| for photons.

For m ≥ 0 we define the set

Xm := {p ∈ R1,3 ; p2 = m2c2 , p0 ≥ 0},
which is called the “mass shell” in physics. This is the set of points of the type p = (ωp,p)
where

ωp :=
√
m2c2 + p2. (4.31)

The reason for the name is that the hyperboloid p2 = m2c2 somewhat looks like a shell.
The mass shell is to Minkowski space what a sphere is to Euclidean space.

Let us first assume that m > 0. Then Xm consists of the possible values of a four-vector
p when it represents the four-momentum of a particle of mass m, and it is the orbit of the
point19 p∗ = (mc,0,0,0) under the action of SO↑(1,3). Indeed, if L ∈ SO↑(1,3), then
p = L(p∗) satisfies p2 = (p∗)2 = m2c2 because L ∈ O(1,3) and satisfies p0 > 0 because
L0

0 > 0 sinceL ∈ SO↑(1,3). Conversely, as we will use many times, given p ∈ Xm there is
a unique pure boost B such that B(p∗) = p, namely, recalling the notation of Section 4.3,
B = Bp/(mc). When m = 0 the situation is slightly different, since (0,0,0,0) ∈ X0 is
invariant under the action of SO↑(1,3). One may check that X0 \ {(0,0,0,0)} is the orbit
under SO↑(1,3) of the point p∗ = (1,0,0,1), so that it represents all the possible values
of the four-momentum of a massless particle. For any observer the four-momentum of the
particle belongs to X0 \ {(0,0,0,0)} i.e. (p0)2 = |p|2 �= 0 so its momentum is not zero: a
massless particle is never observed at rest.

Exercise 4.4.1 Check the previous claim.

It is fundamentally important that on Xm there exists a measure that is invariant under
the action of the Lorentz group (as stated precisely in (4.37)). This measure is to Minkowski
space what the uniform measure on the sphere is to Euclidean space. This measure will be
central in much of the further constructions. It is defined only up to a multiplicative factor.
An explicit formula for an invariant measure can be found by considering for ε > 0 the set

Xm,ε = {p ; m2c2 < p2 < m2c2 + ε ; p0 ≥ 0}. (4.32)

This set is invariant under the action of SO↑(1,3) as follows from Lemma 4.1.3. The four-
dimensional volume measure d4p/(2πh̄)4 onR1,3 is also invariant under this action because
Lorentz transformations have determinant 1. Thus the restriction dλm,ε of this measure to

18 The reason for the name “rest mass” is to prevent any confusion with the quantity m′ of (E.4).
19 Here the ∗ is just a notation and has nothing to do with complex conjugation, as p is not a number but a

four-vector.
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Xm,ε is Lorentz invariant. One can then obtain a Lorentz invariant measure λm on Xm by
taking a limit as ε→ 0 of ϕ(ε)dλm,ε where the normalization factor ϕ(ε) is chosen to make
things converge. To apply this procedure we consider a smooth function f and compute the
integral ∫

Xm,ε

d4p

(2πh̄)4
f (p) =

∫
m2c2<p2<m2c2+ε

d4p

(2πh̄)4
f (p).

For this, we integrate in p0 first. Given p, the range of p0 is√
m2c2 + p2 < p0 <

√
m2c2 + p2 + ε,

i.e. hp(m2c2) < p0 < hp(m2c2+ε) where hp(x) :=
√
x + p2. Recalling the quantityωp =

hp(m2c2) of (4.31) and using the approximation hp(m2c2 + ε) � hp(m2c2)+ εh′p(m2c2),

at the first-order in ε the range of p0 is the interval (ωp,ωp + ε/2ωp). Therefore∫
Xm,ε

d4p

(2πh̄)4 f (p) � ε

4πh̄

∫
d3p

(2πh̄)3ωp
f ((ωp,p)). (4.33)

Here we have kept a factor (2πh̄)−3 with d3p by consistency with our previous choices.
Integrals over the mass shell are ubiquitous, so it helps to simplify notation. Given the value
of m and given p we write

p = (ωp,p). (4.34)

This notation will be of constant use and should be learned now. We will write (4.33) as

lim
ε→0+

2πh̄

ε

∫
Xm,ε

d4p

(2πh̄)4 f (p) =
∫

d3p

(2πh̄)32ωp
f (p), (4.35)

it being understood that f (p) is a function of p through the relation (4.34).
Thus we have shown that the measure∫

Xm

dλm(p)f (p) :=
∫

d3p

(2πh̄)32ωp
f (p) (4.36)

is a Lorentz invariant measure on Xm because it is a limit of Lorentz invariant measures.
Again, this choice is determined only up to a multiplicative constant, and in particular the
factor 2 in the denominator does not have any intrinsic value.

Exercise 4.4.2 How would you describe λm in the region where |p| is much smaller
than mc?

For notational purposes it is convenient to think of dλm not as a measure on Xm, but as
a measure on the whole of R1,3, which gives mass zero to the complement of Xm. For this
reason we will always write

∫
dλmf rather than

∫
Xm

dλmf . The measure dλm is Lorentz

invariant, in the sense that for any Lorentz transformation L ∈ SO↑(1,3) one has∫
dλm(p)f (L(p)) =

∫
dλm(p)f (p). (4.37)
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It is not invariant under the full Lorentz group, as it is not invariant under the map (p0,p) �→
(−p0,p). To obtain invariance under the full Lorentz group we would need to add a copy
of dλm on the set

{p ; p2 = m2c2 ; p0 < 0}. (4.38)

In physics textbooks it is usually argued that a Lorentz invariant measure is given by the
formula ∫

d4p

(2πh̄)4

(
(2πh̄)δ(p2 −m2c2)

)
f (p).

This is seen by the change of variable p = L(p′) since d4p is invariant under this change
of variables because Lorentz transformations have determinant 1 and since L(p)2 = p2.
Actually you may not always find this exact formula, because authors use a system of units
in which h̄ = 1 = c, and may use a different normalization for the π factor. The previous
measure is invariant under the full Lorentz group, so that it will also have a part on the set
(4.38), and to obtain a measure on Xm we consider instead∫

p0≥0

d4p

(2πh̄)4

(
(2πh̄)δ(p2 −m2c2)

)
f (p). (4.39)

To compute the above expression, one integrates in p0 first. This brings in the function
δ(ϕ(p0)) where ϕ(x) = x2 − p2 −m2c2. Now, one has the useful formula

δ(ϕ(x)) =
∑

{y ; ϕ(y)=0}

1

|ϕ′(y)|δy(x), (4.40)

where in the right-hand side we have as usual δy(x) = δ(x−y). This formula holds whenever
the set {y ; ϕ(y) = 0} is finite and ϕ′(y) �= 0 at each point of this set. This formula is
actually the definition of the left-hand side. This definition is obviously consistent with the
idea that the delta function is the limit of the true functions (2ε)−11[−ε,ε].20 In the present
case, ϕ−1(0) = {ωp,−ωp} and ϕ′(x) = 2x. Here the restriction to the set p0 ≥ 0 eliminates
the contribution of −ωp, yielding again the formula (4.36).

Despite the fact that the factor 2 in the denominator of (4.36) has no intrinsic significance
and is an artifact of the method of derivation, the majority of textbooks religiously carry
this factor 2, giving the impression that it is canonical and important. This is simply not true.
Despite this, as it goes nowhere to try to write notes where the formulas differ from those
of the literature, I will use the standard formula (4.36) in the sequel.21

We conclude this section with some heuristic considerations which may help our intu-
ition. If they do not help your intuition or you find them confusing, please ignore them,
there is nothing of central importance here. Let us recall that, in the words of physicists, the
Dirac delta function is the function which is equal to zero outside the origin, and which is
infinity at the origin, in such a way that its integral is 1.

20 The quantity δ(ϕ(x)) is not defined for any smooth function ϕ. In particular, the expression δ(x2) makes no
sense.

21 You probably wonder why I make so much fuss about this factor 2. This will be explained when we discuss
(6.62) on page 166.
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Definition 4.4.3 (Heuristic!) Given a point p ∈ Xm we heuristically consider the
“function” δm,p on Xm which is zero outside p, infinity at p, in such a way that its
integral with respect to dλm is equal to one.

The reason for the “m” in the notation δm,p is to emphasize the fact that this is a function
on Xm. Thus, for any ξ ∈ S4, the space of Schwartz functions22 on R1,3, we have∫

dλm(p′)δm,p(p′)ξ (p′) = ξ (p), (4.41)

which is a rigorous definition of δm,p as a “distribution on Xm”.

Exercise 4.4.4 Consider the canonical unitary map

J : H′ = L2(R3,(2πh̄)−3d3p)→ H = L2(Xm,dλm)

given by J (f )(p) = √
2ωpf (p) for p = (ωp,p). Pretending that δ(3)

p ∈ H and
δm,p ∈ H′, convince yourself of the formula

δm,p = (2πh̄)3
√

2ωpJ (δ(3)
p ). (4.42)

Hint: All there is to it is that
√

2ωp

√
2ωp = 2ωp!

Exercise 4.4.5 If you know a bit of measure theory, convince yourself that heuris-
tically: “The function δm,p is the density with respect to dλm of the Dirac measure
δp”.

4.5 More about Unitary Representations

Before continuing, we need to learn more about representation theory.23 In the present
section we investigate some basic properties of unitary representations at a very elementary
level.

Consider a unitary representation U of a group G on a Hilbert space H and a unitary
operator W on H. Then one can construct a new representation UW by the formula

UW (a) = W−1U (a)W . (4.43)

This construction however is not very interesting because in some sense UW is the “same
representation” as U , as they differ only by a “change of basis” in H. More generally, the
following concept crystallizes the idea that two unitary representations are “the same”.

Definition 4.5.1 Two unitary representations U,U ′ of a group G in Hilbert spaces H
and H′ respectively are called unitarily equivalent if there is a unitary map W from
H to H′ such that

∀a ∈ G ; U (a) = W−1U ′(a)W . (4.44)

22 We denote by S4 both the space of Schwartz functions on R4 and on R1,3 since the Lorentz bilinear norm is
irrelevant to the definition of this space.

23 A standard reference is Serre’s book [74].
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The relation (4.44) can be equivalently written as

WU (a) = U ′(a)W .

H U (a)−−−−→ H⏐⏐"W ⏐⏐"W
H′ U ′(a)−−−−→ H′

For this reason the operator W is called an intertwining operator between the two rep-
resentations. Thus, an intertwining operator between two representations witnesses that
they are unitarily equivalent. It may happen that two unitary representations are unitarily
equivalent in a really non-trivial manner. For example, the two representations of R on
L2(R) given by (2.53) and (2.54) are unitarily equivalent since (2.55) shows that the Fourier
transform is an intertwining map between them.

Exercise 4.5.2 Assuming H and H′ to be finite-dimensional, prove that the unitary
representationsU andU ′ are unitarily equivalent if and only if there exists an orthonor-
mal basis of H and an orthonormal basis of H′ such that in these respective bases the
matrices of U (a) and U ′(a) are identical for each a ∈ G.

Definition 4.5.3 Given a (not necessarily unitary) representation U of the group G,
a subspace24 G of H is called invariant if U (a)G ⊂ G for each a ∈ G.

Let us denote by V (a) the restriction of U (a) to G. It should be obvious that V defines
a representation of G on G. Moreover if U is unitary, this is also the case for V as indeed
V (a) is norm-preserving and invertible.

A simple but fundamental property of unitary representations is that if G is an invariant
subspace of H then its orthogonal complement

G⊥ := {y ∈ H ; ∀x ∈ G , (y,x) = 0}
is also invariant. This follows immediately from the equalities25

(U (a)(y),x) = (y,U (a)†(x)) = (y,U (a)−1(x)) = (y,U (a−1)(x)).

Consequently, if a unitary representation admits a non-trivial invariant subspace G then
it is built out of two simpler representations, namely its restrictions to G and to G⊥. This
leads to the following.

Definition 4.5.4 A representation is called irreducible if it admits no non-trivial
invariant subspace.

This definition also holds for representations that are not necessarily unitary, and we
will need some of these. (Note however that when a representation is not unitary, it need

24 Throughout the book, concerning Hilbert spaces, the word “subspace” is used as a short-hand for “closed
linear subspace”.

25 Since we left Minkowski’s space, it should be obvious that (·,·) denotes the inner product, not the Lorentz
bilinear form.
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not be true that the orthogonal complement of an invariant subspace is also invariant.) An
irreducible representation cannot be readily understood in terms of simpler pieces.

Let us now recall a simple fact about Hilbert spaces, the proof of which can be found in
many elementary textbooks.

Lemma 4.5.5 A closed subspace H0 of a Hilbert space H coincides with H if and
only if H⊥0 = {0}, i.e. if zero is the only element of H which is orthogonal to each
element of H0. In particular, given a subset C of H, its closed linear span, that is the
smallest closed linear subspace which containsC, coincides with H if and only if zero
is the only element of H which is orthogonal to each element of C.

The following result is almost obvious, but nonetheless of constant use.

Lemma 4.5.6 A representationU is irreducible if and only if whenever x is a non-zero
vector, the closed linear span of all the U (a)(x) for a ∈ G is all of H, or, equivalently,
if and only if zero is the only vector y which satisfies (y,U (a)(x)) = 0 for all a ∈ G.

Proof Given x ∈ H the closed linear span of all the U (a)(x) for a ∈ G is an invariant
subspace. Thus if U is irreducible, when x is not zero, this span is H. Conversely, an
invariant subspace that contains a non-zero vector x also contains the closed linear span
of all the U (a)(x) for a ∈ G. The last equivalence follows from Lemma 4.5.5.

The following simple result is also very useful.

Lemma 4.5.7 (Schur’s lemma) Consider an irreducible representationU on a finite-
dimensional space. Then an operator V which commutes with all the operators U (a)
is a multiple of identity.

Proof Since we are working with a complex finite-dimensional Hilbert space, V has an
eigenvalue. The corresponding eigenspace G is invariant under all the operators U (a),
because VU (a)(x) = U (a)V (x) = λU (a)(x) when V (x) = λx. Since G is not zero it must
be equal to H so that V is a multiple of the identity.

To say that a representation takes place in a finite-dimensional space we will simply say
that it is a finite-dimensional representation

Corollary 4.5.8 The only irreducible finite-dimensional representations26 of a com-
mutative group are one-dimensional.

Proof Given b ∈ G, the operator U (b) commutes with every operator U (a) because
U (b)U (a) = U (ba) = U (ab) = U (a)U (b) so it is a multiple of the identity. Every one-
dimensional subspace is then an invariant subspace so that if the representation is irreducible
it has to be of dimension 1.

The following exercise presents a sort of converse to Schur’s lemma, which does not
require the representation to be finite-dimensional.

26 Of course we assume that the representation is not trivial, it is not of dimension zero.
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Exercise 4.5.9 Prove that if the only bounded operators V on H which commute with
all operators U (a) of a unitary representation U are multiples of the identity, then the
representation U is irreducible.

For a mathematician a fundamental problem is to classify all the unitary representations
of a given group, up to unitary equivalence. There is a vast literature on this subject, with
some very accessible texts, such as that of Hall [39], and in Appendix D we present in a
self-contained manner some results which are used in most physics textbooks.

4.6 Group Actions and Representations

We first put forward a general principle to construct representations. Let us say that a group
G acts on a space X if there is a map (a,x) �→ a · x from G × X to X with the following
properties:

1 · x = x ; a · (b · x) = (ab) · x (4.45)

for all a,b in G, all x in X, and where 1 denotes the unit of G. Then the map Ta : x �→ a · x
is a transformation of X and the map a �→ Ta is a group homomorphism, T1 is the identity
and TaTb = Tab. A fundamental fact is that for any set Y , G then acts naturally on the set
F(X,Y ) of functions from X to Y . The action U (a)(f ) of a on the function f is given by
the formula

U (a)(f )(x) = f (a−1 · x). (4.46)

The reason for the all important term a−1 rather than a is the following computation:

U (a)[U (b)(f )](x) = U (b)(f )(a−1 · x) = f (b−1 · (a−1 · x))

= f ((b−1a−1) · x) = f ((ab)−1 · x)

= U (ab)(f )(x), (4.47)

so that we have the essential formula

U (a)U (b) = U (ab). (4.48)

Exercise 4.6.1 Assume that G also acts on Y and define now U (a)(f )(x) = a ·
f (a−1 · x). Prove that (4.48) still holds true.27

In practice we will consider cases where there is a topology, both on X and G, and the
action will always be continuous. A case of special interest is when there is a measure dμ
on X which is invariant under the action of G, that is every measurable set A has the same
measure as its image by Ta for each a. Then the restriction of U (a) to L2(X,dμ) is unitary,
so that U defines a unitary representation of G in L2(X,dμ):

27 Writing a · f for U (a)(f ) one may motivate this formula by (a · f )(a · x) = a · f (x). The transform of f
applied to the transform of x is the transform of f (x).
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(U (a)(f ),U (a)(g)) =
∫
X

dμ(x)f (a−1 · x)∗g(a−1 · x)

=
∫
X

dμ(x)f (x)∗g(x) = (f,g).

As a prime example of this situation, the Lorentz group acts on the mass shell Xm on
which the invariant measure dλm lives. Thus we obtain a unitary representation U of the
Lorentz group on the space H = L2(Xm,dλm) by the formula

U (L)(ξ )(p) = ξ (L−1(p)). (4.49)

Physicists use a very different language to describe this representation and more com-
plicated ones. We illustrate this vivid difference by transcribing such a description from a
physics textbook (taking into account different normalization and notation). Even if you
studied Dirac’s formalism in Section 2.8, it may feel to you like an alien language, but we
will learn more about it in Section 4.10. Here it goes:

Consider ket vectors |p〉 normalized by

〈p′|p〉 = (2πh̄)3δ(3)(p′ − p), (4.50)

and let us define the Lorentz-normalized kets |p〉 by

|p〉 = √
2ωp|p〉, (4.51)

where ωp =
√
m2c2 + p2. Then the new normalization equation is

〈p′|p〉 = 2ωp(2πh̄)3δ(3)(p − p′), (4.52)

and the completeness relation based on the Lorentz invariant measure becomes

1 =
∫

d3p

(2πh̄)32ωp
|p〉〈p|. (4.53)

With these Lorentz-normalized states, we can define a unitary representation of the Lorentz
group simply:

Theorem. If we define U (L) by U (L)|p〉 = |L(p)〉, then U is a unitary representation of
the Lorentz group.

Proof To prove that U is unitary, we use the completeness relation

U (L)U (L)† = U (L)1U (L)†

=
∫

d3p

(2πh̄)32ωp
U (L)|p〉〈p|U (L)†

=
∫

d3p

(2πh̄)32ωp
|L(p)〉〈L(p)| = 1,

using the result of Exercise 2.5.20, (4.53) and Lorentz invariance in the last line.



120 The Lorentz Group and the Poincaré Group

The transcription ends here.28 One can only admire the conciseness and power of Dirac’s
formalism, which physicists consider as self-evident. At the intuitive level the situation is
clear: the state |p〉 represents the ideal case of a function ξ which takes non-zero values
only at the point p of Xm. We will study this idea in more detail in Section 4.10.

If you are faced on your own with the task of deciphering the meaning of the previous
transcription, it may immediately occur to you that the state space has to be L2(Xm,dλm),
for what else could it be? Otherwise you may try to apply the rule of “integrating against a
test function” to make sense of Dirac’s formalism.29 Here the test function is ξ ∈ S4 and
since p ∈ Xm it is natural to define

|ξ 〉 :=
∫

dλm(p)ξ (p)|p〉,

so that, making a change of variable in the last equality,

U (L)|ξ 〉 =
∫

dλm(p)ξ (p)U (L)|p〉 =
∫

dλm(p)ξ (p)|L(p)〉 =
∫

dλm(p)ξ (L−1(p))|p〉,

i.e.U (L)|ξ 〉 = |U (L)(ξ )〉whereU (L)(ξ ) is as in (4.49). At this point it is even more obvious
that the state space is indeedL2(Xm,dλm), on which we have been operating by the formula
(4.49), and that for ξ ∈ S4 the element |ξ 〉 is simply ξ seen as an element of L2(Xm,dλm).
As a further check of this property, for another test function η,

〈η|ξ 〉 =
∫

dλm(p′)dλm(p)η(p′)∗ξ (p)〈p′|p〉.

Going back to the definition of dλm(p′) and using (4.52) one reaches the expected formula
〈η|ξ 〉 = ∫

dλm(p)η(p)∗ξ (p).

4.7 Quantum Mechanics, Special Relativity and the Poincaré Group

Quantum Mechanics in its standard formulation is not compatible with Special Relativity
and it is very difficult to reconcile these two theories. Early attempts in this direction go
under the name of “Relativistic Quantum Mechanics”. This theory, which is the subject of
numerous textbooks, runs into severe inconsistencies and we will not try to describe it.30

Modern physics postulates that the laws of physics should be invariant under space-
time translations, and under Lorentz transformations, because these represent symmetries
of space-time. They should then be invariant under the action of the group generated by
these transformations, the Poincaré Group (also called the extended Lorentz group by some

28 Not the least remarkable feature of the preceding text is that it occurs on page 7 of a textbook whose title
contains the words “for mathematicians”. I could say that I felt sad not to qualify as a mathematician, but I
already had trouble on page 4 of the same book.

29 Everything is easy if you have already guessed the meaning of the states |p〉 and |p〉, which will be explored
in detail in Section 4.10. Here, however, you pretend that you have not guessed it.

30 Quantum Field Theory is at present the most successful attempt at reconciling these two theories, even though
it suffers from many problems of its own.
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authors). Thus the Poincaré group P is the group of transformations of R1,3 of the type
x �→ a + A(x) where31 (a,A) ∈ R1,3 × SO↑(1,3). Performing first the transformation
x �→ b + B(x) and then the transformation x �→ a + A(x) gives the transformation
x �→ a + A(b)+ AB(x). Thus, the composition law of the Poincaré group is given by

(a,A)(b,B) = (a + A(b),AB). (4.54)

The group constructed this way from R1,3 and SO↑(1,3) is called their semidirect product
and denoted R1,3 � SO↑(1,3).

Exercise 4.7.1 Prove the formula (a,A)−1 = (−A−1(a),A−1).

Exercise 4.7.2 Convince yourself that you have known semidirect products since high
school! Two geometrical objects in the Euclidean plane are “congruent” if one can be
transformed into the other by an element of R2 � SO(2), the semidirect product of
the group of translations and the group of rotations.

It seems necessary to elaborate a bit on the fundamental idea that the laws of physics
should be invariant under the action of the Poincaré group. This idea is the keystone of
Special Relativity and of our approach to Quantum Field Theory. Either at the classical
or the quantum level, we describe a physical object by a point of a “state space” which
describes its state. For example, at the classical level, we describe the electromagnetic
field by a function from R1,3 → R4: at each point of space-time we give the value of the
electrostatic potential and of the three components of the magnetic field. Different observers
use different coordinate systems on the state space. Mathematically this means that there is
a group homomorphism from the Poincaré group to a group of transformations of the state
space, reflecting this change of coordinates, and these transformations must preserve all the
laws of physics. For example the electromagnetic field satisfies the Maxwell equations32

and it was known even before the invention of Special Relativity that these equations are
invariant under Lorentz transformations.33 An equation cannot be physically correct unless
it displays the proper invariance. This gives us a fundamental method to discover fruitful
equations/objects: look for the simplest possible objects with the correct invariance prop-
erties. It is quite an awesome fact that many of our most fascinating discoveries will occur
simply by following this path.34

Non-relativistic Quantum Mechanics is not a part of Quantum Field Theory. Large parts
of Quantum Mechanics have to be abandoned when trying to make this theory consistent
with Special Relativity, but we will accept that the basic tenet remains true: The correct
description of the state of a physical system is a non-zero vector in a complex Hilbert space.

31 Please observe the change of notation here. A Lorentz transformation will be very often denoted by one of the
letters A,B,C, simply because visually the symbols (a,A) look better to me than the symbols (a,L).

32 These are a highlight of nineteenth-century physics.
33 A brief account of the Maxwell equations is given in Section E.2.
34 Nature however does not always use the simplest possible structures. For example, the Klein-Gordon field, to

be discussed later, is much simpler than the electromagnetic field, but is not observed.
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Reflecting the fact/belief that the Poincaré group is a group of symmetries of Nature, we
will assume that35

Every quantum system comes equipped with a projective representation
of the Poincaré group. (4.55)

This representation will always play an essential part in the study of the system.36 Moreover,
elementary systems, i.e. systems which cannot be broken into smaller subpieces, should
correspond to “minimal” representations, i.e. irreducible ones. Elementary particles are such
elementary systems.

To each elementary particle one may associate an irreducible representation
of the Poincaré group. (4.56)

Here, elementary particle means “elementary at the level of the properties under study”.37

Let us study the idea some more. The state space of our model will describe multipar-
ticle systems,38 but will contain subspaces that correspond to single-particle states. The
restriction of the action of the Poincaré group to such a subspace will be an irreducible
representation of this group.39

In Chapter 9 we shall describe in detail the most important representations of the Poincaré
group. In the next section we study the simplest non-trivial representation of that kind. It is
fundamental for the sequel, not because it corresponds to the most important particles, but
because it is at the basis of the toy models for interaction that we shall study.

4.8 A Fundamental Representation of the Poincaré Group

The Poincaré group P is a group of transformations of R1,3 and these transformations
preserve the volume measure. Therefore we obtain a unitary representation of P on
L2(R1,3,d4x) by the formula (4.46):

V (a,A)(f )(x) = f (A−1(x − a)), (4.57)

where we abuse notation by writing V (a,A) rather than V ((a,A)), and where we have used
that A−1(x − a) is the result of the action of (a,A)−1 on the point x, as is shown by the
formula of Exercise 4.7.1. Let us note in particular that V (a,1) represents the action on
L2(R1,3,d4x) of translating space-time by a.

35 What we mean here is that the representation is such that the action of time-translations describes the
evolution of the system with time. This assumption is not valid for quantum systems studied in non-relativistic
Quantum Mechanics.

36 The physical meaning of this representation is that it describes “changes of coordinates” in the state space by
which different observers relate their descriptions of the system under study.

37 Two bound quarks might be considered as forming an elementary particle for certain purposes, but this will
hardly ever be the case for two unbound nucleons.

38 It does not seem possible, as is attempted by “Relativistic Quantum Mechanics” to build a coherent theory of
1-particle systems. It does not make much sense either, as high-energy physics witnesses creation and
annihilation of particles.

39 This fundamental idea is due to Eugene Wigner. Then (4.56) begs for a converse. Given an irreducible
representation of the Poincaré group, may one construct a consistent model in which this representation is
associated to an elementary particle? This question is the object of Chapter 10.
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As it turns out, this representation is far from being irreducible. This will become appar-
ent after we use the Fourier transform. In Minkowski’s space R1,3 we define the Fourier
transform40 as

f̂ (p) =
∫

d4x exp(i(x,p)/h̄)f (x) =
∫

d4x exp(i(x0p0 − x · p)/h̄)f (x). (4.58)

Thus the ordinary sign convention is reversed for the time coordinate x0. The inverse Fourier
transform is given by

ξ̌ (x) =
∫

d4p

(2πh̄)4 exp(−i(x,p)/h̄)ξ (p). (4.59)

Lemma 4.8.1 For f ∈ L2(R1,3,d4x) we have

̂V (a,A)(f )(p) = exp(i(a,p)/h̄)f̂ (A−1(p)). (4.60)

Proof This is of course straightforward. By continuity in the L2 norm we assume that f is
a test function. This ensures that all the integrals we write make sense. The left-hand side is∫

d4x exp(i(x,p)/h̄)f (A−1(x − a)).

Making the change of variables x = a+A(y), and since the measure d4x onR1,3 is invariant
under this transformation, this is

exp(i(a,p)/h̄)
∫

d4y exp(i(A(y),p)/h̄)f (y),

which is the right-hand side of (4.60) since (A(y),p) = (y,A−1(p)).

Since the Fourier transform is a unitary operator, V is unitarily equivalent to the repre-
sentation V̂ on L2(R1,3,d4p/(2πh̄)4) given by the formula

V̂ (a,A)(ϕ)(p) = exp(i(a,p)/h̄)ϕ(A−1(p)).

This representation is not irreducible because the sets Xm,ε of (4.32) are invariant under the
action of SO↑(1,3) so that the subspaceL2(Xm,ε,d4p/(2πh̄)4) ofL2 consisting of functions
supported by Xm,ε is an invariant subspace of the representation.

We may however use (4.60) to guess the following formula.

Theorem 4.8.2 Consider m ≥ 0. Then the operators U (a,A) defined for (a,A) ∈ P
and ϕ ∈ L2(Xm,dλm) by

U (a,A)(ϕ)(p) = exp(i(a,p)/h̄)ϕ(A−1(p)) (4.61)

form a unitary representation of P in L2(Xm,dλm).

We again abuse notation by writing U (a,A) rather than U ((a,A)). This representation
has a chance to be irreducible because the action of SO↑(1,3) on Xm is transitive: Given
p1 and p2 in Xm one may find A ∈ SO↑(1,3) with A(p1) = p2.

40 The two versions of Minkowski space are involved here. The Fourier transform sends L2(R1,3,d4x) to
L2(R1,3,d4p/(2πh̄)4).
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Proof The operator U (a,A) is unitary since the exponential has modulus 1 and dλm is
invariant under the transformation p �→ A−1(p). To prove the representation property, we
compute U (a,A)U (b,B)(ψ) for a given function ψ . For this we apply (4.61) to the function

ϕ(p) := U (b,B)(ψ)(p) = exp(i(b,p)/h̄)ψ(B−1(p)),

and we obtain

exp(i(a,p)/h̄) exp(i(b,A−1(p))/h̄)ψ(B−1(A−1(p))). (4.62)

Now, since A ∈ SO↑(1,3), for any x,y ∈ R1,3 we have (A(x),A(y)) = (x,y) and thus
(b,A−1(p)) = (A(b),p). Moreover B−1(A−1(p)) = (AB)−1(p). Therefore the quantity
(4.62) equals

exp(i(a + A(b),p)/h̄)ψ((AB)−1(p)) = U ((a,A)(b,B))(ψ)(p).

The following exercise prepares you for a key point of the proof of the next result. You
should skip it if you know too little measure theory.

Exercise 4.8.3 (a) Consider two measurable functions ϕ,ψ ≥ 0 on R. Prove that if
for each t ∈ R one has

∫
dxϕ(x)ψ(x + t) = 0 then either ϕ = 0 a.e. or ψ = 0 a.e.

Hint: Prove that
∫

dtdxϕ(x)ψ(x + t) = ∫
dxϕ(x)

∫
dtψ(t).

(b) There is probability dR (called a Haar measure41) on the group of rotations SO(3)
with the property that given any measurable function θ on S and any T ∈ SO(3) one
has

∫
dRθ (RT ) = ∫

dRθ (R) (left-invariance). Prove that given a function ϕ on the
sphere S and any x ∈ S one has

∫
dRϕ(Rx) = ∫

dμ(y)ϕ(y), where dμ is the uniform
measure on S.
(c) Given two measurable functions ϕ,ψ ≥ 0 on S, prove that if

∫
dμϕ(x)ψ(R(x))= 0

for each rotation R, then either ϕ = 0 a.e. or ψ = 0 a.e. Hint: Prove that∫
dR

∫
dμ(x)ϕ(x)ψ(R(x)) =

∫
dμ(x)ϕ(x)

∫
dμ(x)ψ(x).

Proposition 4.8.4 The representation of Theorem 4.8.2 is irreducible.

Proof To avoid measure-theoretic technicalities we give only a sketch of the proof. Con-
sider a non-zero function ϕ in L2(Xm,dλm). We want to show that the closed linear span
of all the functions U (a,A)(ϕ) is L2(Xm,dλm). Consider a function ψ which is orthogonal
to each of these functions. The goal is to prove that ψ is zero almost everywhere (a.e.),
which completes the proof according to Lemma 4.5.5. Thus, for each a ∈ R1,3 and each
A ∈ SO↑(1,3) it holds that∫

dλm(p)ψ(p)∗ exp(i(a,p)/h̄)ϕ(A−1(p)) = 0. (4.63)

Any Schwartz function ξ ∈ S4 is the Fourier transform of another Schwartz function f

(namely, its inverse Fourier transform), i.e. ξ (p) = ∫
d4a exp(i(a,p))f (a) and thus

41 Numerous books present the construction of the Haar measure.
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dλm(p)ξ (p)ψ(p)∗ϕ(A−1(p))

=
∫

d4af (a)
∫

dλm(p)ψ(p)∗ exp(i(a,p)/h̄)ϕ(A−1(p)) = 0.

Since the Schwartz functions ξ are dense in L2(Xm,dλm), for each A the function p �→
ψ(p)∗ϕ(A−1(p)) has to be zero almost everywhere for dλm, i.e. (replacing A by A−1)∫

dλm(p)|ψ(p)||ϕ(A(p))| = 0. (4.64)

From this we have to deduce thatψ = 0 a.e. The situation is pretty similar to that of Exercise
4.8.3 (c), but SO↑(1,3) is not compact. Still there exists a left-invariant measure (a Haar
measure) dA on SO↑(1,3), and one can show as in the exercise that for a certain constant C,
any ϕ ∈ L1(Xm,dλm) and any p ∈ Xm one has

∫
dAϕ(A(p)) = C

∫
dλm(p′)ϕ(p′). Then

by exchanging the order of integration one obtains∫
dA

∫
dλm(p)|ψ(p)||ϕ(A(p))| = C

∫
dλm(p)|ϕ(p)|

∫
dλm(p)|ψ(p)|,

so that under (4.64) the left-hand side is zero and then ψ = 0 a.e.

Exercise 4.8.5 Given α > 0 prove that the formula

U (a,A)(ϕ)(p) = exp(αi(a,p))ϕ(A−1(p))

defines a unitary representation of P in L2(Xm,dλm). Do we obtain new represen-
tations this way? Hint: For β > 0 the representations corresponding to (α,m) and
(αβ,mβ) are unitarily equivalent.

It is essential for the sequel to understand well the representation of Theorem 4.8.2, as it
is the basis of our toy models.

4.9 Particles and Representations

Consider a particle that corresponds (in the sense of (4.56)) the representation of Theorem
4.8.2. What are its properties? In this section we make the case that, not surprisingly, this
particle has massm. The key here is the formula (4.57): V (a,1) corresponds to a space-time
translation by a. Since U (a,A) is in a sense the restriction of (a representation unitarily
equivalent to) V (a,A) to an invariant subspace,42

We interpret U (a,1) as a space-time translation by a. (4.65)

42 One can view (in a sense) U (a,A) as operating on the space of functions on R1,3 whose Fourier transform is
supported by Xm. These functions can be characterized by a certain differential equation, or “wave equation”,
the Klein-Gordon equation which will play an important role later. This approach is very popular in physics.
My problem here is that it is not clear what is the norm which makes the representation unitary. I never ran
into a single textbook describing such a norm, or even mentioning the need for it, and I am unable to explain
what is the mental picture physicists form at this point. More generally more complicated representations of
the Poincaré group can be defined on more complicated spaces of functions satisfying certain wave equations.
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Let us stress right away the shift from non-relativistic Quantum Mechanics. There, we
specify the Hamiltonian, which in turn determines the time-evolution of the system. Here we
specify the representation U (a,1) which in particular entirely describes the time-evolution
of the system, and should be thought of as replacing the equations of evolution. Nonetheless
the relation between the Hamiltonian and the time-evolution remains the same through
Stone’s theorem (as is recalled below).

Our goal is to use (4.65) to compute the Hamiltonian and the momentum operators. For
this we recall that given a function h on Xm we may define the operator “multiplication by
h” on L2(Xm,dλm). It is simply the operator given by T (f ) = f h when this makes sense,
i.e. f h ∈ L2(Xm,dλm). When h is real-valued, the corresponding operator is self-adjoint
and the corresponding observable is simply “the value of h”.43 The four operators we are
trying to compute will be of this type. The following exercise is an almost obvious variation
of Exercise 2.14.3. Its result will be used several times.

Exercise 4.9.1 Consider a real-valued function h on Xm. Define U (t) as the operator
“multiplication by the function exp(ith/h̄)”. These operators form a one-parameter
unitary group. Prove that the infinitesimal generator A of this group (in the sense of
(2.56)) is the operator “multiplication by the function h”.

Let us recall the definition (2.72) of the momentum operator. IfUi(s) is the one-parameter
group of transformations of the state space which describes the operation “translation of
physical space by s along the ith direction” then Ui(s) = exp(−isPi/h̄) where Pi is the
momentum operator in the same direction. Thus if we denote by U (a,A) the action of the
Poincaré group on the state space, the momentum operator P1 in the direction of the first
coordinate satisfies

exp(−isP1/h̄) = U (a(s),1), (4.66)

where a(s) = (0,s,0,0). In the case of the representation of Theorem 4.8.2, U (a,1)
is the operator “multiplication by exp(i(a,p)/h̄)”. Since (a(s),p) = −sp1, U (a(s),1) is
the operator “multiplication by exp(−isp1/h̄)”. Using (4.66) we obtain that exp(−isP1)
is the operator “multiplication by exp(−isp1/h̄)”, from which Exercise 4.9.1 shows
that P1, the momentum operator in the direction of the first coordinate, is the operator
“multiplication by p1”. This makes physical sense because this operator is precisely the
self-adjoint operator corresponding to the observable p1. It should be that way in order that
in our representation the quantity p has indeed, as the name intended, the signification of
the momentum of the particle.

Let us now compute the Hamiltonian H . Setting b(t) = (ct,0,0,0) then U (b(t),1) rep-
resents translation of space-time by t along the time coordinate. The tricky point is that
this represents time-evolution by −t . To understand this, let us recall from the beginning of
Section 2.10 that space-time translation by a means that the object at space-time position
x has been moved to position x + a. If my twentieth birthday, which was supposed to take

43 To make sense of this, recall that in position state space, position is given by the “multiplication by x
operator”, as we learned in Section 2.5, whereas (2.23) teaches us that in momentum state space, momentum
is given by the “multiplication by p operator”.
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place now, has been moved to next year, I am now only 19 years old: I became one year
younger. Now, by the convention (2.75), time-evolution by time−t is given by exp(itH/h̄),
so that as in (4.66) we have

exp(itH/h̄) = U (b(t),1).

Since (b(t),p) = ctp0, U (b(t),1) is the operator “multiplication by exp(ictp0/h̄)”, so that
exp(itH/h̄) is the operator “multiplication by exp(ictp0/h̄)” and therefore the Hamiltonian
H is just “multiplication by the function cp0”. 44 This operator corresponds to the observ-
able cp0. Things again make physical sense: As always the Hamiltonian should correspond
to the energy of the system, and cp0 is precisely the energy of the particle. To make sure
that the important facts above are remembered, let us state them again.

Proposition 4.9.2 The Hamiltonian for a particle described by the representation of
Theorem 4.8.2 is the operator “multiplication by the function cp0” and the momentum
operator in the direction of ej is the operator “multiplication by the function pj”.

The operator H 2/c2−P2 = H 2/c2−∑1≤i≤3 P
2
i is then the operator “multiplication by

the function (p0)2 − p2 = p2” i.e. multiplication by m2c2 since p2 = m2c2 for p ∈ Xm.
We have obtained the identity

H 2

c2
− P2 = m2c21.

This expresses a relation between energy and momentum which is a “quantized version” of
the relation E2/c2 − p2 = m2c2 of (4.30).45 We have thus argued that our mathematical
object corresponds to a particle of mass m.46 When m > 0 we will say that the particle is
massive whereas when m = 0 it is massless.

We will later study more complicated representations which are fundamentally important
in physics. These representations will describe particles which as here have mass m ≥ 0.
These particles will also have another characteristic, “spin”. These include the most impor-
tant particles with which the universe is built. These representations will however not be
used in the simple toy models that we consider, so if your goal is simply to understand these
and the dreaded infinities that plague them, you may safely skip the entire Part II of the book.

It turns out that the representation of Theorem 4.8.2 corresponds to the case where the
spin is zero, so that the corresponding particle will be described as “spinless”.47

In Section 4.11, we will argue as physicists that the only representation of the Poincaré
group associated to a massive spinless particle is the representation of Theorem 4.8.2. The
considerations of Section 4.10 are not really needed to understand these arguments.

44 Signs match nicely, which is of course the purpose of the convention that exp(itH/h̄) represents
time-evolution by time −t .

45 The expression “quantized version” means that each of the classical quantities E, p2 has been replaced by a
self-adjoint operator measuring it.

46 Mathematical objects and physical objects belong to different realms. At some point we have to argue that a
certain mathematical model is appropriate to describe a certain physical object, and like here this step takes
place outside mathematics.

47 You need to study Part II to understand the technical meaning of this expression, but you will do fine just by
knowing that this means that the corresponding representation is that of Theorem 4.8.2.
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4.10 The States |p〉 and |p〉
Many of our later results will be stated in physics language. This section attempts to go
beyond intuition and to give mathematical precision to the idea of the “states” |p〉 of Section
4.6 which are ubiquitous in this language. I see no other way to do this than to enter into
the following considerations. As with everything having to do with Dirac formalism, this
has the potential to be lethally confusing for a mathematician, so you should not hesitate
to skip the present section if it is not your cup of tea, and you will do just fine by staying
at the intuitive level as the physicists do. There is nothing deep going on here, only formal
manipulations checking that the formalism is self-consistent. It is advised to review Section
2.8 at this point.

Let us first review the meaning of the elements |p〉. They are defined only in the distribu-
tional sense. If τ ∈ S3 := S(R3) is a Schwartz function, and |τ 〉 denotes the state obtained
by seeing τ as an element of the state space H′ = L2(R3,d3p/(2πh̄)3), then∫

d3p

(2πh̄)3
τ (p)|p〉 = |τ 〉. (4.67)

Given another Schwartz function μ and |μ〉 the corresponding state, applying 〈μ| to the
above relation (4.67) we then have∫

d3p

(2πh̄)3 τ (p)〈μ|p〉 = 〈μ|τ 〉 =
∫

d3p

(2πh̄)3μ(p)∗τ (p), (4.68)

which leads to the heuristic formula μ(p)∗ = 〈μ|p〉 i.e. 〈p|μ〉 = μ(p), and thus also to the
interpretation “|p〉 = (2πh̄)3δ

(3)
p seen as an element of H′”.

Suppose now that we want to use H = L2(Xm,dλm) as a state space. We can then define
states |p〉 in the distributional sense: for each ξ ∈ S4 we have∫

dλm(p)ξ (p)|p〉 = |ξ 〉, (4.69)

where |ξ 〉 is the state obtained by considering ξ as an element of H, and just as before we
obtain the heuristic formula 〈p|ξ 〉 = ξ (p). Let us also note for further use that∫

dλm(p)|p〉〈p| = 1. (4.70)

Indeed, since 〈p|ξ 〉 = ξ (p), for any ξ ∈ S4 we have( ∫
dλm(p)|p〉〈p|

)
|ξ 〉 =

∫
dλm(p)|p〉ξ (p) = |ξ 〉,

using (4.69) in the last equality, and S4 is dense in H.
To relate the states |p〉 and |p〉, consider the canonical isometry J from H′ to H given

by J (τ )(p) = √
2ωpτ (p) where p = (ωp,p). We apply J to both sides of (4.67) to obtain∫

d3p

(2πh̄)32ωp
(
√

2ωpτ (p))(J (
√

2ωp|p〉) = J |τ 〉. (4.71)
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The function ξ := J (τ ) is given by ξ (p) = √
2ωpτ (p) where p = (ωp,p), and J |τ 〉 = |ξ 〉,

so that (4.71) reads ∫
dλm(p)ξ (p)J (

√
2ωp|p〉) = |ξ 〉,

and comparing with (4.69) we conclude (heuristically) that |p〉 = J (
√

2ωp|p〉), which a
physicist writes |p〉 = √

2ωp|p〉 as in (4.51) since for her the spaces H′ and H are identical,
being the unspecified “state space”.

Proposition 4.10.1 The states |p〉 are Lorentz invariant. That is, U (A)|p〉 = |A(p)〉
where U is the representation of the Lorentz group defined in (4.49).

Proof Such a statement makes sense only when integrated against a function ξ ∈ S4, that
is we have to prove the equality∫

dλm(p)ξ (p)U (A)|p〉 =
∫

dλm(p)ξ (p)|A(p)〉. (4.72)

When ξ ∈ S4, |ξ 〉 is just the function ξ seen as an element of H, and we define accordingly
U (A)|ξ 〉 = |U (A)(ξ )〉. Then48∫

dλm(p)ξ (p)U (A)|p〉 = U (A)
∫

dλm(p)ξ (p))|p〉 = U (A)|ξ 〉 = |U (A)(ξ )〉.

On the other hand, by change of variable, we have
∫

dλm(p)ξ (p)|A(p)〉 = ∫
dλm(p)ξ

(A−1(p))|p〉 = ∫
dλm(p)U (A)(ξ )(p)|p〉 = |U (A)(ξ )〉. The equality (4.72) is proved.

As recalled above, using the state space H′ = L2(R3,(2πh̄)−3d3p) we can heuristically
think of |p〉 as the state which corresponds to the function (2πh̄)3δ

(3)
p if we pretend that this

function belongs to H′.

Exercise 4.10.2 Convince yourself in a similar manner that |p〉 corresponds to the
delta function δm,p seen as an element of L2(Xm,dλm). Hint: Integrate against a test
function.

Exercise 4.10.3 Make sense of the formula

〈p′|p〉 = δm,p(p′) = δm,p′ (p).

4.11 The Physicists’ Way

In the present section we explain how a physicist might describe the action of the Poincaré
group on a massive spinless particle, and how this relates to the previous mathematical con-
siderations. Here “spinless” means by definition that the state of the particle is completely
described by its momentum p, or equivalently by its four-momentum p = (ωp,p). Our
arguments are heuristic and do not constitute a mathematical proof. On the other hand, they

48 This manipulation really defines U (A)|p〉.
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go far beyond just rediscovering the formula (4.61): they argue that there is no other possible
action of the Poincaré group on the state space than the action given by (4.61).

In this section we argue as physicists. We entirely forget about the considerations of
the previous section (which concern only mathematicians). We consider as self-evident
the existence of states of given four-momentum.49 A state |α〉 of four-momentum p is by
definition such that

∀a ∈ R1,3 , U (a,1)|α〉 = exp(i(a,p)/h̄)|α〉. (4.73)

The hypothesis that the particle is spinless, i.e. that the state of the particle is entirely
described by its four-momentum means that given p the space of solutions of the previous
equation is of dimension 1. In particular two states (i.e. unit vectors) satisfying this relation
differ only by a phase.

We start with a general fact, valid with any unitary representation of the Poincaré group
on any state space.

Lemma 4.11.1 Consider a state |α〉 of four-momentum p. Then U (0,A)|α〉 has four-
momentum A(p).

Proof For a ∈ R1,3 and A ∈ SO↑(1,3) we have the relation

(a,A) = (a,1)(0,A) = (0,A)(A−1(a),1)

so that since U is a representation

U (a,A) = U (a,1)U (0,A) = U (0,A)U (A−1(a),1). (4.74)

Using the second equality of (4.74) in the first line and (4.73) in the second line, we obtain

U (a,1)U (0,A)|α〉 = U (0,A)U (A−1(a),1)|α〉
= exp(i(A−1(a),p)/h̄)U (0,A)|α〉
= exp(i(a,A(p))/h̄)U (0,A)|α〉, (4.75)

which proves the claim by (4.73).

Let us go back to the study of the massive spinless particle. When the particle is at
rest, it has four-momentum50 p∗ := (mc,0,0,0) = mce0. Recalling that a state of given
momentum is unique only up to a phase, let us fix once for all a state |p∗〉 of momentum
p∗ (in the sense of (4.73)). Let us recall that A ∈ SO↑(1,3) is a rotation if and only if
A(e0) = e0, or, equivalently, if and only if A(p∗) = p∗. Thus if R is a rotation, Lemma
4.11.1 implies that U (0,R)|p∗〉 has four-momentum p∗, so that this state differs from |p∗〉
only by a phase, i.e. U (0,R)|p∗〉 = ϕ(R)|p∗〉. The map ϕ: SO(3)→ C satisfies ϕ(1) = 1
and ϕ(R)ϕ(R′) = ϕ(RR′). We will show later, in Lemma 8.5.2 that this implies that ϕ takes
only the value 1. Thus we have shown that

R rotation ⇒ U (0,R)|p∗〉 = |p∗〉. (4.76)

49 For a mathematician, these “states” exist only in the distributional sense, as was explored in the previous
section, but here we pretend as physicists do that they are bona fide states.

50 The ∗ is just a notation that has nothing to do with complex conjugation!
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Given A,B ∈ SO↑(1,3) with A(p∗) = B(p∗) then B−1A(p∗) = p∗, i.e. B−1A is a
rotation, so that U (0,B−1A)|p∗〉 = |p∗〉 and since U (0,B−1A) = U (0,B−1)U (0,A) this
means that U (0,A)|p∗〉 = U (0,B)|p∗〉. Given a four-momentum p we may then define the
state |p〉 as being U (0,A)|p∗〉 where A is any element of SO↑(1,3) for which A(p∗) = p.
This notation makes sense because according to Lemma 4.11.1, the state |A(p∗)〉 has four-
momentum A(p∗) = p.

Now we investigate how U (0,A) operates on |p〉. Consider B ∈ SO↑(1,3) with p =
B(p∗) so |p〉 = U (0,B)|p∗〉 and

U (0,A)|p〉 = U (0,A)U (0,B)|p∗〉 = U (0,AB)|p∗〉 = |AB(p∗)〉 = |A(p)〉.
SinceU (a,A) = U (a,1)U (0,A) and since |A(p)〉 has four-momentumA(p) we have finally
obtained that

U (a,A)|p〉 = exp(i(a,A(p))/h̄)|A(p)〉. (4.77)

The previous formula describes the action of U (a,A) on a “continuous basis” and hence
on every state. The analysis at the end of Section 4.6 should convince us that (4.77) is
nothing else than the formula (4.61), but the next exercise argues again that this is the case.

Exercise 4.11.2 Given a Schwartz function ξ ∈ S4, consider as in the previous section
the state |ξ 〉 := ∫

dλm(p)ξ (p)|p〉. Arguing at the level of rigor of a physicist, deduce
from (4.77) that U (a,A)|ξ 〉 = |η〉 where η(p) = exp(i(a,p)/h̄)ξ (A−1(p)).

Key ideas to remember:

• “Space” and “time” are not separate realities and each depends on the observer. Only
space-time is defined independently of the observer.

• To reflect that the speed of light does not depend on the inertial observer we provide
space-time with the Lorentz inner product. It is then denoted by R1,3.

• Physics appears to respect causality. When two points x,y of space-time are causally
separated, (x − y)2 < 0, what happens at one point cannot influence what happens
at the other.

• The Lorentz group consists of the linear transformations of space-time which respect
the Lorentz bilinear form.

• The four-momentum p of a particle of rest mass m satisfies p2 = m2c2. The set of
all possible such momenta is the mass shellXm, on which exists an invariant measure
dλm.

• The Poincaré group P is a fundamental group of symmetries of space-time which
leaves physics invariant.

• An action of a group on a measure space is often the road to the construction of unitary
representations of this group. This leads us to discover a fundamental irreducible
unitary representation of P which corresponds to a particle of mass m.

• The simplest mathematical structures which satisfy the correct invariance properties
are often physically relevant.
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The Massive Scalar Free Field

The massive scalar free field is an absolutely central object in Quantum Field Theory.1 It
is both canonical and natural. It is, in a sense, the simplest Lorentz invariant quantum field
which respects causality.2 In this chapter we describe this object and we prove its most
striking properties. We then reconstruct the concrete formulas used to describe it in physics
textbooks.

A vast majority of these books follow a different path to motivate the massive scalar
free field (a notable exception being Weinberg’s book [87]). Their approach is closer to
both the historical development and the physical insight which motivates the definition of
the free field. Understanding the details of this approach requires learning some Classical
Mechanics, which is not really needed for what follows here. For this reason it will be
presented separately, in, Chapter 6.

5.1 Intrinsic Definition

We recall that in Minkowski’s space R1,3 we define the Fourier transform and its inverse by
the formulas (4.58) and (4.59). Let us considerm > 0, the invariant measure dλm onXm, and
the Hilbert space H = L2(Xm,dλm). We consider the corresponding boson Fock space B
and its subspaceB0, as constructed in Section 3.4. We recall the mapsA andA† of Definition
3.4.1. If it helps you to have a concrete realization of these objects, you may think of
B0 =

⊕
n≥0 Hn,s , and where Hn,s is the space of functions in L2(Xn

m,dλ
n
m) which are sym-

metric in their arguments, the operators A and A† being given by an obvious transcription
of the formulas of Exercise 3.3.3. The space of Schwartz test functions on R1,3 is denoted
by S4.3

For f ∈ S4, its Fourier transform f̂ (given by (4.58)) also belongs to S4. We may then
see it as an element of H = L2(Xm,dλm) by restricting4 f̂ to Xm.

1 At least from a theoretical point of view. It plays a far lesser role in the description of Nature.
2 As will become apparent much later, the quanta of this field are spinless neutral massive particles. The most

important such particle is the Higgs boson. The word “scalar” reflects the fact that the quanta are spinless. It
also reflects the (related) fact that the field has a single component, in contrast to the several component fields
studied later in Chapter 10.

3 The notation S1,3 would not make real sense since the Lorentz structure is irrelevant in the definition of this
space.

4 Equivalently, we may think of dλm as a measure on R1,3, a point of view which we adopt in our notation by
writing

∫
dλm(p)ξ (p) rather than

∫
Xm

dλm(p)ξ (p).

132
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Definition 5.1.1 The massive5 scalar free quantum field is the operator-valued distri-
bution ϕ defined for f ∈ S4 by

ϕ(f ) = 1√
c

(
A(f̂ ∗)+ A†(f̂ )

)
, (5.1)

where c is the speed of light and where the right-hand side is seen as an operator from
B0 to B0.

The relevance and the meaning of this formula are not obvious now, but will become
gradually clear. The reason for the occurrence of the term f ∗ is that A is anti-linear. Equiv-
alently, it suffices to consider (5.1) for f ∈S4

R
, the space of real-valued test functions on R4.

Exercise 5.1.2 Prove that indeed if one defines ϕ(f ) = (A(f̂ ) + A†(f̂ ))/
√
c when

f is real-valued, then when f is complex-valued, ϕ(f ) is given by the formula (5.1).
Prove (formally) that for f ∈ S4 we have ϕ(f )† = ϕ(f ∗). In particular for f ∈ S4

R
,

ϕ(f ) is self-adjoint.6

The invariant measure dλm is defined intrinsically only up to a multiplicative constant,
but in (5.1) we have in mind the formula (4.36) for dλm. It may be better anyway for the time
being to think of the quantum field as being intrinsically defined only up to a multiplicative
constant. The choice of a particular multiplicative constant is largely a matter of convention.
We will explain in due time the inessential reason why we have chosen here to insert the
multiplicative factor 1/

√
c.

Let us investigate the basic properties of the quantum field (5.1), and first of all how it
behaves with respect to the action of the Poincaré group P .7 We have no less than three
different actions of the Poincaré group to consider here.

• First we define the operation V (c,C) of P on S4 by (4.57), i.e.

V (c,C)(f )(x) = f (C−1(x − c)). (5.2)

• On the other hand, there is also the action U (c,C) of P on H = L2(Xm,dλm) given
by (4.61), i.e. for a function ξ on Xm,

U (c,C)(ξ )(p) = exp(i(c,p)/h̄)ξ (C−1(p)). (5.3)

These actions cannot be confused with each other as they do not operate on the same
space. The action (5.2) operates on S4 and the action (5.3) operates on H. We recall
that by (4.60) we have

̂V (c,C)(f )(p) = exp(i(c,p)/h̄)f̂ (C−1(p)) = U (c,C)(f̂ )(p). (5.4)

• The action U (c,C) on H induces a corresponding action UB(c,C) on the Fock space
B (see Section 3.5). That is, UB(c,C) is the canonical extension to B of the unitary
operator U (c,C) on H. It sends B0 to itself.

5 This field depends on a parameter m > 0 which is implicit in the notation.
6 It is not very intuitive what the corresponding observable is, although mathematically the situation is rather

similar to (2.100).
7 Consistency with the action of the Poincaré group is probably the strongest guiding principle of our theories.



134 The Massive Scalar Free Field

We now state the fundamental invariance property of ϕ. As we shall see, this property
determines the structure of ϕ to a large extent.

Proposition 5.1.3 For each (c,C) ∈ P and each f ∈ S4 we have

UB(c,C) ◦ ϕ(f ) ◦ UB(c,C)−1 = ϕ(V (c,C)f ), (5.5)

where for legibility we denote by ◦ the composition of operators on B0.

B0
ϕ(f )−−−−→ B0

UB(c,C)−1

$⏐⏐ ⏐⏐"UB(c,C)

B0
ϕ(V (c,C)f )−−−−−−→ B0

Proof To avoid a conflict of notation in this proof we denote the speed of light by c. It
suffices to check (5.5) when f is real-valued. Using (5.1) and Proposition 3.5.2 the left-
hand side of (5.5) is

c−1/2UB(c,C) ◦ (A(f̂ )+ A†(f̂ )) ◦ UB(c,C)−1 = c−1/2(A(U (c,C)f̂ )+ A†(U (c,C)f̂ )).

Since U (c,C)f̂ = ̂V (c,C)(f ) by (5.4) this is the right-hand side of (5.5).

Pretending that ϕ is an operator-valued function so that ϕ(f ) = ∫
d4xϕ(x)f (x), then,

since d4x is invariant under the action of P ,

ϕ(V (c,C)(f )) =
∫

d4xϕ(x)f (C−1(x − c)) =
∫

d4xϕ(c + C(x))f (x),

and (5.5) takes the form

ϕ(c + C(x)) = UB(c,C) ◦ ϕ(x) ◦ UB(c,C)−1. (5.6)

An intuitive way to understand the importance of this property is to think of V (c,C)
as a change of coordinates in space-time. A point y in space-time is then described by
the point x such that y = c + C(x). As a function of this new coordinate, the field is
then ϕnew(x) := ϕ(c + C(x)). The corresponding change of coordinates in H is given by
U (c,C), in B is given by UB(c,C) and in the space of operators on B is given by the map
X �→ UB(c,C) ◦ X ◦ UB(c,C)−1. The content of (5.6) is then that when we compute the
value of the field ϕ as a function of the new coordinate x the value we obtain is given by
the new coordinates of ϕ(x), i.e. ϕnew(x) = (ϕ(x))new.8 Similar considerations will be of
central importance in Chapter 10.

Let us now substantiate the claim that the covariance9 property (5.5) largely determines
the structure of the quantum field. Let us try to guess the form of a field that would satisfy
(5.5), with no attempt at rigor. Presumably such a field has a creation and an annihilation

8 At some intuitive level, this means that the free quantum field exists independently of the system of
coordinates we use to describe it.

9 In a relativistic setting, I will use the word covariance with the informal meaning of “behaving properly with
respect to the action of Lorentz transformations”.
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part.10 Let us try first to find for x ∈ R1,3 a creation operator ϕ(x) which satisfies the
covariance property (5.6). Then, if ϕ(x) is a creation operator, it should be of the type
A†(Fx), where Fx ∈ L2(Xm,dλm), so we may think of Fx as a function of p. Let us then
investigate the consequences of (5.6). On the one hand, since ϕ(x) = A†(Fx), we have

ϕ(c + C(x)) = A†(Fc+C(x)).

On the other hand, using Proposition 3.5.2 in the second equality,

UB(c,C) ◦ ϕ(x) ◦ UB(c,C)−1 = UB(c,C) ◦ A†(Fx) ◦ UB(c,C)−1

= A†(U (c,C)Fx),

so that in order to satisfy (5.6) the function Fx must satisfy

Fc+C(x)(p) = (U (c,C)Fx)(p) = exp(i(c,p)/h̄)Fx(C−1(p)). (5.7)

Taking x = 0 and c = 0 yields F0(p) = F0(C−1(p)) so that F0 is constant. Taking
x = 0 yields Fc(p) = λ exp(i(c,p)/h̄) for some constant λ. Thus we must have ϕ(x) =
λA†(exp(i(x,p)/h̄)). This formula is rather formal, since exp(i(x,p)/h̄) is not an element
of L2(Xm,dλm). Its rigorous version is simply that ϕ(f ) = λA†(f̂ ) for f ∈ S4, as is shown
by the following formal calculation:

ϕ(f ) =
∫

d4xf (x)ϕ(x) = λ

∫
d4xf (x)A†(exp(i(x,p)/h̄)))

= λA†
( ∫

d4xf (x) exp((i(x,p)/h̄))
)
= λA†(f̂ ). (5.8)

Assuming now that ϕ is the sum of a creation and an annihilation part, and proceeding in
the same fashion as before for the annihilation part, we find that for some τ we must have

ϕ(f ) = λA(f̂ ∗)+ τA†(f̂ ). (5.9)

Thus the covariance condition (5.5) goes a long way toward determining the form of
the free field, but does not completely specify it, since (5.1) corresponds to the case λ = τ

in (5.9).
It turns out that the condition λ = τ is related to another fundamental property of the

quantum field of Definition 5.1.1, which we explore now.

Definition 5.1.4 We say that f,g ∈ S4 are causally separated if they have compact
support and if for x in the support of f and y in the support of g we have (x−y)2 < 0.

That is, each point x of the support of f is causally separated from each point y of the
support of g, and according to (4.14) what happens at x cannot influence what happens at y.
We will prove later the following second fundamental property of the field (5.1).

10 This is a very non-trivial assumption. One may wonder whether there exist entirely different structures of
interest, although the fact that the fertile imagination of physicists has not discovered them is not a good sign.
One may also wonder whether one could not use a “different version” of creation operators, and this indeed is
possible as we will see after we study fermion Fock space.
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Theorem 5.1.5 (Microcausality) If f and g in S4 are causally separated then the
massive scalar field of (5.1) satisfies

[ϕ(f ),ϕ(g)] = 0. (5.10)

Let us explain the fundamental physical idea behind this result. Pretending that ϕ is a
function this means that if x and y are causally separated the operators ϕ(x) and ϕ(y)
commute. These operators are self-adjoint, so that they correspond in principle to quantities
that can be measured. Also, as supported by (5.6), ϕ(x) “corresponds to a measurement at
the space-time point x”. The fact that no influence travels at a speed faster than light is
well established at the macroscopic scale and there is no reason to believe that it fails at the
microscopic scale. To respect causality, according to (4.14), the measurement at x cannot
influence the measurement at y, and the natural condition to ensure that is the commutation
of the operators ϕ(x) and ϕ(y) (see Exercise 2.2.1). Accordingly condition (5.10) is called
microcausality. It is believed to be essential in building theories that preserve causality.

The field (5.9) need not satisfy (5.10). It is the desire to satisfy this property that motivates
the choice λ = τ in (5.9).11

As a consequence one may say that the massive scalar free field is determined up to a
multiplicative constant by the physically transparent requirements of covariance and micro-
causality. Its definition is “intrinsic”. The same requirements, when properly generalized,
will lead us in Chapter 10 to the discovery of all the fundamental quantum fields.

As Theorem 5.1.5 belongs to an important circle of ideas we explore it in great detail.
We first define an important technical tool.

Definition 5.1.6 The tempered distribution �0 is given by

�0(f ) =
∫

dλm(p)f̂ (p) (5.11)

for any f ∈ S4.

In fact �0 also depends on m but the value of m remains implicit. This distribution is
essentially the inverse Fourier transform of dλm.12 Of course, we will pretend that �0 is a
function, �0(f ) = ∫

d4x�0(x)f (x).

Lemma 5.1.7 There exists an infinitely differentiable function J on R+ such that if
for x2 = xμx

μ < 0 we define

I (x) = J (
√
−x2), (5.12)

whenever f is a test function with compact support in the region x2 < 0 we have∫
d4x�0(x)f (x) = ∫

d4xI (x)f (x).

11 It can be shown that the field (5.9) satisfies (5.10) if and only if |λ|2 = |τ |2, and that furthermore this case
does not construct new fields compared to the case τ = λ.

12 Our arguments are self-contained and you need no previous knowledge of the Fourier transform of
distributions or measures to follow our discussion. If you already know what these are, I should add that in
our setting there are annoying issues concerning how one should define the Fourier transform of distributions
so that it coincides with the Fourier transform of functions when the distributions are actually functions, but
these hardly concern us since we nearly always pretend that distributions are functions. These issues are
examined in Section L.4, to which the reader is referred to understand why we use the word “nearly” in the
previous sentence.
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Note that in particular we have I (x) = I (−x). The statement of the lemma is partially
described by the sentence “the distribution �0 is a function in the region x2 < 0”. In some
sense we have

I (x) =
∫

dλm(p) exp(i(x,p)/h̄) =
∫

d3p

(2πh̄)32ωp
exp(i(x0ωp − x · p)/h̄). (5.13)

The problem is that this integral is not absolutely convergent and it is not obvious what it
means.13 The explicit expression we obtain below for the function J shows that it is related
to certain special functions (Bessel functions) but this is irrelevant for our purposes.

Proof The proof is a non-trivial piece of mathematical analysis. It can be skipped without
harm, as the ideas will not be used again. For ε > 0 the integral∫

dλm(p)d4xf (x) exp(i(x,p)/h̄) exp(−εωp) (5.14)

is absolutely convergent, because
∫

d4x|f (x)| <∞ and
∫

dλm(p) exp(−εωp) <∞ (since
exp(−εωp) < exp(−ε|p|)).

We set

Iε(x) =
∫

dλm(p) exp(i(x,p)/h̄) exp(−εωp). (5.15)

Since the integral (5.14) is absolutely convergent, Fubini’s theorem14 asserts that we may
compute it by integrating first either in p or in x, yielding the identity∫

d4xIε(x)f (x) =
∫

dλm(p) exp(−εωp)f̂ (p). (5.16)

As ε → 0+ the right-hand side of (5.16) converges to �0(f ) = ∫
d4x�0(x)f (x), so

the issue is to compute limε→0+ Iε(x) and to prove uniform convergence of this limit over
compact subsets of the region x2 < 0. We reformulate the definition of Iε(x):

Iε(x) =
∫

d3p

(2πh̄)32ωp
exp(−i(x0ωp − x · p)/h̄− εωp).

We assume x2 < 0. To compute Iε(x) we may assume by rotational invariance that x is in
the direction of e3 (so that x = |x|e3) and going to cylindrical coordinates, that is setting
p1 = r cos θ , p2 = r sin θ , p3 = z and setting ω := √r2 + z2 +m2c2 we obtain

Iε(x) =
∫ ∞

0
dr
∫ ∞
−∞

dz
r

2(2π )2h̄3ω
exp(−i(x0ω − |x|z)/h̄− εω).

13 It can never be stressed enough that considering any integral whatsoever which does not converge absolutely
is intrinsically a delicate endeavor, as the value given to the integral may depend on its definition. For example
an integral in two variables may be given different values depending on the order of integration chosen.
Integrals can be formally manipulated, with the result of these manipulations often reaching the correct
answer. A rigorous justification for these manipulations is a different and often harder matter. Correctness of
the result is the relevant criterion in physics, and most authors of physics textbooks show very little interest in
justifying the way they manipulate integrals, or even in defining the values of these integrals.

14 This theorem is reviewed on page 475.
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We set d := 1/(2(2π )2h̄3). Now comes the key idea: to make the change of variable z :=√
r2 +m2c2 sinh u, so that ω = √r2 +m2c2 cosh u, dz = ωdu and

Iε(x) = d

∫ ∞
0

rdr
∫ ∞
−∞

du exp
(√

r2 +m2c2
(−i(x0 cosh u− |x| sinh u)/h̄− ε cosh u

))
.

(5.17)

Consider b > 0 with b2 = −x2 = |x|2 − (x0)2. Define the parameter τ by x0 = b sinh τ
and |x| = b cosh τ , so that x0 cosh u − |x| sinh u = b sinh(τ − u). Making the change of
variable u→ u+ τ yields

Iε(x) = d

∫ ∞
0

rdr
∫ ∞
−∞

du exp
(√

r2 +m2c2
(−(ib sinh u)/h̄− ε cosh(u+ τ )

))
. (5.18)

Let us set α := b
√
r2 +m2c2/h̄ and fε,r (u) := exp(−ε√r2 +m2c2 cosh(u+ τ )), so that

Iε(x) = d

∫ ∞
0

rdr
∫ ∞
−∞

dufε,r (u) exp(−iα sinh u). (5.19)

The important feature of this integral is the oscillatory nature of the exponential term. To
bring it forward we will use that by integration by parts, for a nice function f (u),∫ ∞

−∞
duf (u) exp(iα sinh u) = 1

iα

∫ ∞
−∞

duT (f )(u) exp(−iα sinh u), (5.20)

where

T (f )(u) = d

du

f (u)

cosh u
.

Using this formula three times we obtain

Iε(x) = Jε(b) := d

∫ ∞
0

rdr

(iα)3

∫ ∞
−∞

duT 3(fε,r )(u) exp(−iα sinh(u)).

Using (a) of Exercise 5.1.8, the integral

J (b) := J0(b) = d

∫ ∞
0

rdr

(iα)3

∫ ∞
−∞

duT 3(1)(u) exp(−iα sinh(u)) (5.21)

is well defined because the factor α−3 ensures the convergence in r of the outer integral.
Using (b) of Exercise 5.1.8 and dominated convergence we obtain that Jε(b) → J0(b) as
ε→ 0. This convergence is obviously uniform over the regions b ≥ b0 > 0 as desired.

Finally we have to show that J (b) is an infinitely differentiable function of b. For this
we again use (5.20) to prove that differentiating in b in the integrand of this right-hand side
still gives an integrable function.

Exercise 5.1.8 (a) Prove that
∫∞
−∞ du |T 3(1)(u)| <∞.

(b) Prove that gε(r) := ∫∞
−∞ du |T 3(1−fε,r )(u)| is bounded and converges pointwise

to zero as ε→ 0.
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Exercise 5.1.9 Extend the result of Lemma 5.1.7 to the regions x2 > 0,x0 > 0 and
x2 > 0,x0 < 0. Hint: Integrate now in spherical coordinates.15

Proof of Theorem 5.1.5 It suffices to consider the case where f and g are real-valued. Let
us pay a lot of attention to the following calculation, which will occur many times. It follows
from the definition of ϕ that

c[ϕ(f ),ϕ(g)] = [A(f̂ )+ A†(f̂ ),A(ĝ)+ A†(ĝ)],

and then from (3.33) and (3.34) that

c[ϕ(f ),ϕ(g)] = (
(f̂ ,ĝ)− (ĝ,f̂ )

)
1. (5.22)

Now,

(f̂ ,ĝ) =
∫

dλm(p)f̂ (p)∗ĝ(p) (5.23)

whereas, making the change of variable y = x + a in the second line,

f̂ (p)∗ĝ(p) =
∫∫

d4xd4y exp(i(y − x,p)/h̄)f (x)g(y)

=
∫∫

d4xd4a exp(i(a,p)/h̄)f (x)g(x + a)

= ĥ(p), (5.24)

where h(a) = ∫
d4xf (x)g(a + x). Going back to (5.23) this means that (f̂ ,ĝ) =∫

d4x�0(x)h(x). Now, the hypothesis that the supports of f and g are causally separated
implies that h has compact support, which is contained in the set {x2 < 0}, so that as
proved in Lemma 5.1.7 the previous integral is

∫
d4xI (x)h(x). Finally, exchanging f and

g changes h(x) into h(−x) as is obvious from the definition of h. Moreover I (x) = I (−x)
because I (x) depends only on x2. Thus exchanging f and g does not change the value of
(f̂ ,ĝ), i.e. (f̂ ,ĝ) = (ĝ,f̂ ) and this finishes the proof.

Combining (5.23) and the first line of (5.24) we obtain

(f̂ ,ĝ) =
∫∫∫

d4xd4ydλm(p) exp(i(y − x,p)/h̄)f (x)g(y)

=
∫∫

d4xd4y�0(y − x)f (x)g(y). (5.25)

(The reader who finds this manipulation scary might learn in Appendix M how it could be
done more rigorously.) If we pretend that distributions are functions, we may write (5.22) as

c[ϕ(x),ϕ(y)] = (�0(y − x)−�0(x − y))1. (5.26)

This is a more precise statement than (5.10). Still, the proof of Theorem 5.1.5 is needed
to really address the fine points concerning distributions. In the sequel we will be rather

15 This is very clever. If I were you, I would not even try. But you may enjoy studying the solution.



140 The Massive Scalar Free Field

informal, and we will simply say that Theorem 5.1.5 follows from (5.26) and the fact that
I (x) = I (−x) when x2 < 0.

It is possible to formulate the previous results differently, as in e.g. Dimock’s textbook
[23], without ever mentioning distributions. This is the purpose of the next exercise.

Exercise 5.1.10 (a) Prove that for f,g ∈ S4
R

we have

c[ϕ(f ),ϕ(g)] = (f,Eg) =
∫

d4xf (x)Eg(x)

where

Eg(x) =
∫ ∫

d4ydλm(p)
(
(exp(i(y − x,p)/h̄)− exp(i(x − y),p)/h̄)

)
g(y).

(b) Prove that Eg(x) = 0 if {x} and the support of g are causally separated. Hint: This
is really challenging. You may study Dimock’s textbook [23, page 125] for help.

5.2 Explicit Formulas

In this section we justify formulas for the free massive scalar field as a physicist might
write them. Unfortunately the way this is usually done does not respect the most important
property (5.5) of the field, and we refer the reader to Section 5.4 for this matter.

The basic idea is to “express ϕ in terms of the ‘operators’ b(p) and b†(p) of Section
3.8”. The problem is that ϕ(x) as defined by (5.1) operates on the boson Fock space B of
H = L2(Xm,dλm) whereas the operators of Section 3.8 operate on the boson Fock space
B′ of H′ = L2(R3,dp3/(2πh̄)3). So either one has to transport ϕ to a unitarily equivalent
version operating on B′ or one has to transport the operators of Section 3.8 to a unitarily
equivalent version operating on B. We chose the second solution, which is preferable in the
long run.

Our purpose is to now define operators which will turn out to be the “transported ver-
sion” of the operators of Section 3.8 on the boson Fock space of H. Given a function
ξ ∈ H′ = L2(R3,dp3/(2πh̄)3) we define the function Jξ ∈ H = L2(Xm,dλm) by
Jξ (p) = √

2ωpξ (p) where as usual

p = (ωp,p) ; ω2
p = c2m2 + p2, (5.27)

and we observe that J is an isometry. We then define two operator-valued distributions a(p)
and a†(p) as follows: for each test function ξ ∈ S3,

A(Jξ ) =
∫

d3p

(2πh̄)3 ξ (p)∗a(p) ; A†(Jξ ) =
∫

d3p

(2πh̄)3 ξ (p)a†(p). (5.28)

These are distributions on R3 valued into the operators on B0. Since J is an isometry,

[A(Jξ ),A†(Jη)] = (Jξ,Jη)1 =
∫

dλm(p)(Jξ (p))∗Jη(p)1 =
∫

d3p

(2πh̄)3 ξ (p)∗η(p)1,
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and just as in Section 3.8, we obtain the commutation relations [a(p),a†(p′)] = (2πh̄)3δ(3)

(p − p′)1 and [a(p),a(p′)] = [a†(p),a†(p′)] = 0 corresponding to (3.60) and (3.61).
Next we relate these operators to the operators b(p) and b†(p) of (3.59).

Lemma 5.2.1 Consider the canonical extension W of J from B′ to B. Then

a(p) = Wb(p)W−1 ; a†(p) = Wb†(p)W−1. (5.29)

Proof From the first part of (3.59) and the first part of (3.42) we deduce that∫
d3p

(2πh̄)3 ξ (p)∗Wb(p)W−1 = WB(ξ )W−1 = A(Jξ )

and we compare with (5.28).

Going back to the problem of an explicit expression for ϕ we use the first relation in
(5.28) for the function ξ ∈ S3 given by ξ (p) = f̂ ∗(p)/

√
2ωp so that Jξ = f̂ ∗; and we use

similarly the second relation of (5.28) for the function ξ ∈ S3 such that Jξ = f̂ to obtain

ϕ(f ) =
∫

d3p

(2πh̄)3
√

2cωp

(
f̂ ∗(p)∗a(p)+ f̂ (p)a†(p)

)
,

and replacing f̂ and f̂ ∗ by their values this is16∫
d4xf (x)

∫
d3p

(2πh̄)3
√

2cωp

(e−i(x,p)/h̄a(p)+ ei(x,p)/h̄a†(p)).

Now, since ϕ(f ) = ∫
d4xf (x)ϕ(x) we have discovered the fundamental formula:

ϕ(x) =
∫

d3p

(2πh̄)3
√

2cωp

(e−i(x,p)/h̄a(p)+ ei(x,p)/h̄a†(p)). (5.30)

Observe that the only dependence on m is through ωp.
There is a mathematically far more elegant way to write this formula, see (5.42). Mathe-

matical elegance would dictate to use the formula (5.42) throughout the book, but it makes
little sense to write a text which would be hard to connect to the existing literature.

Pretending from (5.30) that the operator ϕ(x) is well defined, many introductory text-
books state that the quantum field (5.30) “creates and destroys particles at the space-time
point x” see e.g. Peskin and Schroeder’s book [64, page 24]. This statement should be taken
on an intuitive rather than a technical level. In relativistic Quantum Mechanics the very
existence of an “exact” position operator is questionable, as explained in Appendix F. It
does not make sense to think of a particle (such as a particle created by the field ϕ(x)) as
having a very precise location.

At a later stage we will need “a discrete version” of the previous formulas and now is
a good time to examine it. We follow the procedure of Section 3.9 of “putting the spatial
universe in a box”, i.e. replacing physical space R3 by the box [−L/2,L/2]3. Each point

16 The reason for which we write here e−i(x,p)/h̄ rather than our usual exp(−i(x,p)/h̄) is that this is much
closer to the notation used in physics textbooks.
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k ∈ K replaces in momentum space a small box of side 2πh̄/L, and of volume L−3 for the
natural measure d3p/(2πh̄)3, and the discrete version of (5.30) is

ϕ(x) = 1

L3

∑
k∈K

1√
2cωk

(
exp(i(−x0ωk + x · k)/h̄)a(k)+ exp(i(x0ωk − x · k)/h̄)a†(k)

)
,

(5.31)

where ωk =
√

k2 + c2m2 and where (3.60) is replaced by

[a(k),a†(k′)] = L3δk′
k 1. (5.32)

Calling now a what is a/L3/2 in (5.31) this formula can also be written as

ϕ(x) = 1

L3/2

∑
k∈K

1√
2cωk

(
exp(i(−x0ωk + x · k)/h̄)a(k)+ exp(i(x0ωk − x · k)/h̄)a†(k)

)
,

(5.33)

where (5.32) is replaced by

[a(k),a†(k′)] = δk′
k 1. (5.34)

Exercise 5.2.2 Prove that L3/2
√

2cωp has dimension [l5/2m1/2t−1] so that in a sense

ϕ has dimension [l−5/2m−1/2t], (5.35)

not such an intuitive result. Convince yourself that “the dimension of ϕ” in the con-
tinuous case is the same.

The meaning of the infinite summation in (5.31) is problematic, but matters are much
better when one integrates again a “test function” i.e. an infinitely differentiable function,17

because the Fourier coefficients of such a function converge rapidly to zero. That is, even
the discrete formula (5.31) should be understood in the sense of distributions.

5.3 Time-evolution

The unitary representationU (a,A) of (5.3) of the Poincaré group onH specifies the action of
time-translations, so it specifies a time-evolution. The corresponding Hamiltonian is simply
“multiplication by the function cp0” as we learned in Proposition 4.9.2. The canonical
extension UB(a,A) of U (a,A) to B defines a unitary representation of the Poincaré group
on B, so it specifies a time-evolution that is governed by a Hamiltonian HB. The relevance
of the following formula will become apparent only gradually.

Proposition 5.3.1 The time-evolution in the boson Fock space B is governed by the
Hamiltonian formally given by the formula

HB =
∫

d3p

(2πh̄)3 cωpa
†(p)a(p). (5.36)

17 With all its derivatives satisfying the periodic boundary conditions.
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Proof One transports the formula (3.62) from B′ to B by multiplying to the left by W and
to the right by W−1 and uses (5.29).

Pretending that ϕ is a function, consider the special case

ϕ(d + x) = UB(d,1) ◦ ϕ(x) ◦ UB(d,1)−1 (5.37)

of (5.6), and specialize further to the case d = (ct,0,0,0). Then, as explained on page 126,
U (d,1)−1 is the time-evolution exp(−itH/h̄) during a time t and consequently UB(d,1)−1

is the time-evolution exp(−itHB/h̄) during the same time t . The right-hand side of (5.37)
is then the time-evolution of ϕ(x) in the Heisenberg picture. We will make this idea precise
in Theorem 6.11.1.

5.4 Lorentz Invariant Formulas

There are many different ways to write the formula (5.30) depending on the way the oper-
ators a(p) and a†(p) are defined, i.e. which factors are put inside the definition of these
operators, and which factors are left in the integral. Besides the unimportant numerical
factors, there are really two different philosophies in normalizing the operators a(p). The
first one leads to formula (5.30). We have chosen this approach to stay consistent with
Folland’s book [31] and many other textbooks. A drawback of this formula is that it does
not display properly the invariance with respect to Lorentz transformations, namely (5.6)
fails even when c = 0.

The second philosophy is to bring Lorentz invariance forward, and to write instead

√
cϕ(x) =

∫
d3p

(2πh̄)32ωp

(
e−i(x,p)/h̄

√
2ωpa(p)+ ei(x,p)/h̄

√
2ωpa

†(p)
)
. (5.38)

The purpose of the present section is to show that the previous formula makes it obvious
that ϕ is Lorentz invariant, see (5.42). It brings forward the operators

a(p) := √
2ωpa(p) ; a†(p) := √

2ωpa
†(p). (5.39)

These operators should be thought of as a normalization of the operators a(p) and a†(p)
respecting Lorentz invariance.18

Exercise 5.4.1 Manipulate the definitions to show that for each function ξ ∈ S4 we
have ∫

dλm(p)ξ (p)∗a(p) = A(ξ ), (5.40)

where in the right-hand side ξ is seen as an element of L2(Xm,dλm).

Next we explore the Lorentz invariance properties of the operators a(p). This simple
material is better left as an exercise.

18 For this reason, we will meet these operators again in Section 13.11.
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Exercise 5.4.2 (a) Let us recall the actionUB(c,C) of the Poincaré group on the boson
Fock space B of L2(Xm,dλm). Prove the following formula:

UB(c,C) ◦ a(p) ◦ UB(c,C)−1 = exp(−i(c,C(p))/h̄)a(C(p)). (5.41)

(b) To make sure you understand the formula (5.41), define

W (c,C)(a(p)) = exp(−i(c,C(p))/h̄)a(C(p))

and check directly that

W (b,B)W (c,C)(a(p)) = W ((b,B)(c,C))(a(p)).

(c) In which way is the formula (5.41) different from the formula (4.61)?
(d) Show that (5.38) can be written as

√
cϕ(x) =

∫
dλm(p)

(
exp(−i(x,p)/h̄)a(p)+ exp(i(x,p)/h̄)a†(p)

)
. (5.42)

(e) Explain why the property (5.6) simply follows from the previous formula.

We explore next how the operators a(p) themselves transform under Lorentz transforma-
tions. The following exercise confirms that for invariance properties, it is a(p) = √

2ωpa(p)
rather than a(p) which transforms nicely.

Exercise 5.4.3 To each p ∈ R3 we can associate p = (ωp,p) ∈ Xm. Given C ∈
SO↑(1,3) let us define Ĉ(p) by C(p) = (ω,Ĉ(p)) for a certain ω (which is of course
ω
Ĉ(p)). Prove the formula

UB(c,C) ◦ a(p) ◦ UB(c,C)−1 = exp(−i(c,C(p))/h̄)

√
ω
Ĉ(p)

ωp
a(Ĉ(p)), (5.43)

and compare it with (5.41).

The next exercise is tailored to mathematical intuition, and makes implicit use of the idea
of “distribution on Xm”. You should not be worried if your way to think about these objects
is different from this abstraction.

Exercise 5.4.4 Convince yourself that heuristically (5.40) means a(p) = A(δm,p)
where δm,p is the “function” of L2(Xm,dλm) of Definition 4.4.3.

Key ideas to remember:

• The quantum free field depends on a parameter m ≥ 0. It is an operator-valued
distribution on space-time. It is valued on the set of unbounded operators on the boson
Fock space of a particle of mass m.

• The quantum free field behaves remarkably under the action of the Poincaré group.
• It respects causality through the microcausality condition.
• To a large extent it is determined by the previous two properties.
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Quantization

The purpose of this chapter is to make the free quantum field appear as a quantization
of the Klein-Gordon field, the classical field1 that satisfies the fundamental Klein-Gordon
equation.2

We will pursue this goal with increasingly sophisticated approaches, but in its simpler
version the quantization procedure was already performed in Section 3.10. The differential
equation (3.70) of that section is simply the version of the Klein-Gordon equation “in 1+1
dimensions”, when physical space is one-dimensional, and it is a simple matter to extend
the procedure to the case of “1+3 dimensions”.

In order to go beyond the naive procedure of Section 3.10, one must develop rationales
for the quantization procedure. For this one has to discuss two issues:

• How does one describe classically a mechanical system?
• What is the natural way to quantize such a system?

These vast questions have been the objects of considerable work. To the first one, we will
give very limited answers, through the shortest possible introduction to Lagrangian and
Hamiltonian Mechanics. The second question, how to quantize a classical system, is in gen-
eral genuinely difficult: Quantum Mechanics is not a consequence of Classical Mechanics.
We will explore in considerable detail several routes one may follow to quantize the Klein-
Gordon field. Each of these encompasses a different aspect of the wisdom developed by
generations of physicists. This may of course feel overwhelming3 to the reader with no
previous exposure to Classical or Quantum Mechanics.4 Arguments of this type will not
be used in the sequel and may be skipped. It is, however, important to go over the short

1 “Classical” here means “non-quantum”. This field is a creature of Classical Mechanics. It is not observed in
Nature.

2 The Klein-Gordon equation was first proposed as a relativistically correct wave equation for a single particle
but, for a variety of reasons, cannot be considered as such. The procedure of quantizing the Klein-Gordon field
is sometimes called “second quantization” in older textbooks, despite the fact that the Klein-Gordon equation
is not a quantization of anything. The name “second quantization” is also sometimes applied to the procedure
of going from a state space to its boson Fock space. The unfortunate and confusing name “second
quantization” is a remainder of a period at the birth of the theory where the wave function itself was thought of
as a field that could be quantized. This non-sense can still be found in rather recent textbooks.

3 The reason we treat the subject in such detail is that different physics textbooks give different arguments which
may be hard at first to relate to each other.

4 A further source of difficulty might be that many of the arguments are entirely heuristic and far from rigorous
mathematics.
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Section 6.10. We show there that, given a classical system there may exist a very large
number of non-unitarily equivalent corresponding quantum systems.

Having made the free quantum field appear as the quantization of the Klein-Gordon
field, we examine in the last section how to relate the Hamiltonians at the classical and
quantum level.

6.1 The Klein-Gordon Equation

Lorentz invariance being a crucial property we adopt the notation used in Chapter 4. We
denote (xν) = (x0,x1,x2,x3) the generic point of Minkowski space R1,3 and we introduce
the notation

∂ν = ∂

∂xν
. (6.1)

We have argued that a differential equation can be of physical interest only if it is “Lorentz
invariant”. To find such equations let us try to invent a linear differential operator � for a
function u on R1,3 which would be “Lorentz invariant” in the sense that it commutes with
all the operators V (c,C) of (5.2) i.e.5

V (c,C)�(u) = �(V (c,C)(u)). (6.2)

Two immediate choices which come to mind are �(u) = u and

�(u) = ημν∂μ∂νu,

where, as in Chapter 4, ημν is such that η00 = 1 and η11 = η22 = η33 = −1, and where, as
is usual in relativistic notation, there is a summation over repeated indices.

Exercise 6.1.1 Check that these operators are Lorentz invariant.

Out of these two operators we form the equation

m2c2u+ h̄2ημν∂μ∂νu = 0, (6.3)

known as the Klein-Gordon equation.6 As for the coefficientsm2c2 and h̄2 let us say simply
that they are constrained by dimensional considerations.

Exercise 6.1.2 Perform dimensional analysis to prove that the two terms in (6.3) have
the same dimension.7

It should be obvious that if u is a solution of the Klein-Gordon equation and if (c,C) ∈ P
then the function x �→ V (c,C)u(x) = u(C−1(x − c)) is also a solution of this equation. In
a sense the Klein-Gordon equation is the simplest Lorentz invariant differential equation,

5 It would be more appropriate to call such an operator “Poincaré invariant”, but translation invariance is already
a basic idea of Classical Mechanics and the word “Lorentz invariant” focuses on the new feature.

6 One way to discover this equation is to start with the relativistic relation E2 = (mc2)2 + (pc)2 between energy
and momentum. Using the standard ansatz E→ ih̄∂/∂t = cih̄∂/∂0 and p→−ih̄∇ yields the Klein-Gordon
equation.

7 A more clever way to reach this conclusion is that m2c2 is a momentum squared, and if you know that h̄ has
the dimension of a length times a momentum, it is plain that the second term has the dimension of a
momentum squared too.
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and as such is very important: All the quantum fields we will write satisfy this equation in
the sense of distributions.8

The Klein-Gordon equation can be written in an even prettier form if one uses our con-
vention to raise and lower indices using the matrix ημν , defining

∂ν = ημν∂μ, (6.4)

which simply amounts to putting a minus sign if ν = 1,2,3. It then takes the form9

m2c2u+ h̄2∂ν∂νu = 0. (6.5)

Much of the rest of this chapter is devoted to arguing, following several different routes,
that the quantum field (5.30) is “a quantization of the Klein-Gordon field”.10 The first step
in this direction is that the quantum field itself satisfies the Klein-Gordon equation.

Proposition 6.1.3 The quantum field (5.1) satisfies the Klein-Gordon
equation as an operator-valued distribution.

Proof This sounds very impressive, but it is a very weak statement. Recalling the definition
(1.10) of the derivative of a distribution, the statement means that for each f ∈ S4

R
we have

ϕ(g) = 0 where g = h̄2ημν∂μ∂νf + m2c2f . Now, using (1.33) (or more accurately, the
version of this result for the Fourier transform as defined in (4.58)),

ĝ(p) = (−ημνpμpν +m2c2)f̂ (p) = (m2c2 − p2)f̂ (p)

is identically zero on Xm = {p2 = m2c2}. Thus it is zero as an element of L2(Xm,dλm)
and A(ĝ) = A†(ĝ) = 0 so that ϕ(g) = 0 by (5.1).

A general principle is at work here. A tempered distribution satisfies the Klein-Gordon
equation if and only if its Fourier transform vanishes outside the set {p2 = m2c2} (which
is the union of Xm and its symmetric set with respect to the origin).

6.2 Naive Quantization of the Klein-Gordon Field

In this section we “quantize the solutions of the Klein-Gordon equation” from the most
naive point of view. We are interested here in real-valued solutions (since a complex-valued
solution can be considered as consisting of two independent real-valued solutions). Let us
start with some general observations concerning the solutions of the Klein-Gordon equation.
This is a second-order differential equation, and we expect from the elementary theory of

8 It bears repeating that despite the fundamental importance of the Klein-Gordon equation, Nature has used it
sparingly. A classical field obeying this equation has not been observed.

9 The operator ∂μ∂μ is sometimes called the d’Alembertian and is then denoted by �,

� = ∂2
0 −

∑
1≤k≤3

∂2
k =

∂2

c2(∂t)2
−

∑
1≤k≤3

∂2

(∂xk)2

and the Klein-Gordon equation is then written h̄2�u+m2c2u = 0.
10 The precise meaning of the term “Klein-Gordon field” will be explained in the next section.
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such equations that if for a given value of x0 we know both functions x �→ u(x0,x) and
x �→ ∂0u(x0,x) then u is completely determined.11 A nice solution is one for which at any
time x0 these two functions are small (e.g. Schwartz functions) in the spatial variables. We
intend first to look at such functions.

In our presentation we replace the space R3 of spatial coordinates by a torus, i.e. we
replace the spatial universe by the finite box B = [−L/2,L/2]3 of Section 3.9, using
periodic boundary conditions, simply because this makes the manipulations somewhat less
formal than if we stay in the continuous setting. We recall the functions fk(x) of (3.63):

fk(x) = 1

L3/2 exp(ix · k/h̄). (3.63)

From (3.65) we obtain the Fourier expansion of the function x �→ u(x0,x):

u(x) =
∑
k∈K

uk(x0)fk(x) = 1

L3/2

∑
k∈K

uk(x0) exp(ix · k/h̄). (6.6)

The function fk is an eigenvector of the Laplacian, of eigenvalue −k2/h̄2, i.e.∑
1≤ν≤3

∂2fk

(∂xν)2 = −
k2

h̄2 fk . (6.7)

Consequently we expect that, denoting by ′ differentiation with respect to x0,

m2c2u(x)+ h̄2∂ν∂νu(x) =
∑
k∈K

(
h̄2u′′k(x0)+ (m2c2 + k2)uk(x0)

)
fk(x), (6.8)

so that u will satisfy the Klein-Gordon equation if and only if for each k we have

h̄2u′′k(x0)+ (m2c2 + k2)uk(x0) = 0. (6.9)

Defining vk(t) := uk(ct) this amounts to saying that for each k we have

v′′k + ω̃2
kvk = 0, (6.10)

where we have defined

ω̃k := c

h̄

√
c2m2 + k2. (6.11)

The purpose of the tilde is to distinguish this angular frequency from the momentum
ωk =

√
c2m2 + k2. The reader should keep in mind the equality h̄ω̃k = cωk .

At this stage it is obvious that we are just following the same steps as in Section 3.10.
(The reader will pay attention to the fact that the number ωk of Section 3.10 corresponds to
ω̃k and not to ωk .) To get the correct result we have to use real-valued functions. For this
we fix a set K′ ⊂ K \ {0} such that for k ∈ K \ {0} exactly one of the points k, − k belongs
to K′. We define g0(x) = L−3/2 and

gk(x) =
{√

2/L3/2 cos(k · x/h̄) if k ∈ K′,√
2/L3/2 sin(k · x/h̄) if − k ∈ K′. (6.12)

11 Here we consider this equation as describing the time-evolution of a function on R3. If “position” and
“velocity” are known at a given time, the entire trajectory is determined.
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The fruitful expansion is then

u(x0,x) =
∑
k∈K′

wk(x0)gk(x). (6.13)

Since gk is also an eigenvector of the Laplacian with the same eigenvalue as fk , the functions
vk(t) := wk(ct) are now real-valued and satisfy the equation (6.10). Our naive quantization
method replaces the real number vk(t) which expresses the position of a harmonic oscillator
at time t by the operator representing the position at time t of a harmonic oscillator with the
same frequency.

Let us recall once again the formula (2.107) which gives at time t the operator X(t)
quantizing the position of a harmonic oscillator of angular frequency ω and “mass” m:

X(t) =
√

h̄

2ωm
(a† exp(itω)+ a exp(−itω)), (6.14)

where [a,a†] = 1. It is apparent here that we must take ω = ω̃k and that the choice of
m is simply a normalization condition (provided this choice is independent of k). Also, let
us stress the quantities of (6.14) have the dimension [l] because this operator represents a
position, and for this m must have the dimension of a mass. We do not know the dimension
of the Klein-Gordon operator yet, but it may well be different (and it will be different). Thus
for our choice of m we are not limited to quantities that have the dimension of a mass.

Exercise 6.2.1 Would we get a more general result by replacing t in the right-hand
side of (6.14) by t − t0?

We pluck out of thin air the choice

m = h̄2,

for which we will find a better motivation when we use a similar but more elaborate method
later. Let us also observe that since x0 = ct we have

exp(it ω̃k) = exp(ix0ω̃k/c) = exp(ix0ωk/h̄). (6.15)

Thus quantization will replace the real numbers vk(t) = wk(x0) by the operators

1√
2h̄ω̃k

(c(x0,k)+ c†(x0,k)) (6.16)

where c(x0,k) = exp(−ix0ωk/h̄)c(k) (etc.) and the operators c(k),c†(k) satisfy

[c(k),c†(k)] = 1, (6.17)

with all the other commutators zero.
We have succeeded in quantizing the Klein-Gordon field, but we would like to express

the result using the functions fk rather than gk , and we turn to this now. This can be done
in a completely elementary manner exactly as in Section 3.10, but instead we reproduce
a brilliant abstract argument given by Folland [31]. The functions gk can be written as
gk =

∑
� αk,�f� for a certain (infinite) orthogonal matrix αk,�. Since the function gk is

real-valued, we also have gk =
∑

� α
∗
k,�f

∗
� . Consider now a Hilbert space H and for e ∈ H

the corresponding operators A(e) and A†(e) on the boson Fock space of H. Consider an
orthogonal sequence (ek) of H. We can make the choice
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c(k) = A(ek) ; c†(k) = A†(ek),

since these operators satisfy appropriate commutation relations. Replacing the numbers
wk(x0) by the operators (6.16) leads us to quantize the function u(x) by ϕ(x) given by∑

k∈K

1√
2cωk

(
exp(−ix0ωk/h̄)

∑
�∈K

αk,�f�A(ek)+ exp(ix0ωk/h̄)
∑
�∈K

α∗k,�f
∗
� A

†(ek)

)
.

Now the coefficients αk,� are not zero only when ωk = ω�, so that

exp(−ix0ωk/h̄)αk,� = exp(−ix0ω�/h̄)αk,�

and the previous quantity is∑
�∈K

1√
2cω�

(
exp(−ix0ω�/h̄)f�A(e′�)+ exp(ix0ω�/h̄)f ∗� A

†(e′�)
)
,

where e′� =
∑

k α
∗
k,�ek is a new orthogonal sequence in H (since the adjoint of the orthog-

onal matrix (αk,�) is orthogonal). In other words, the quantization ϕ(x) of u(x) is given by
the formula

1

L3/2

∑
k∈K

1√
2cωk

(
exp(i(−x0ωk + x · k)/h̄)a(k)+ exp(i(x0ωk − x · k)/h̄)a†(k)

)
,

(6.18)

where the operators a(k) satisfy

[a(k),a†(k)] = 1, (6.19)

with all the other commutators equal to zero. Taking into account the normalization (6.19),
this is exactly the formula (5.33).

6.3 Road Map

There was of course quite a lot of guesswork in the derivation of the formula (6.18). In
particular the method provides no support for the fact that we have chosen m = h̄2 rather
than, say, m depending on ωk . Our goal now is to build a more solid framework leading
to the same result with less guesswork. For this we will have to learn some elements of
Classical Mechanics.

Probably the single most important idea of Classical Mechanics is that the future behavior
of a mechanical system is entirely determined by the positions and the velocities of its differ-
ent parts at a given time (the so-called initial conditions). This determination occurs through
a system of differential equations, known as the equations of motion. How, then, does one
produce these equations of motion and how does one study them? Classical Mechanics has
built a remarkable body of work around this question.

In the next two sections we will briefly introduce Lagrangian and Hamiltonian Mechan-
ics. Both use one single function (called respectively the Lagrangian and the Hamiltonian)
to generate the equations of motion. Hamiltonian mechanics is a powerful reformulation
of Lagrangian Mechanics, and has largely superseded it in Classical Mechanics. For our
purposes however the situation is far less clear. Lagrangian Mechanics smoothly blends
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with Special Relativity to produce Lorentz invariant formulas. This is much less the case
for Hamiltonian Mechanics where time does play a very special role.

Our quantization procedures will not use Lagrangians. We still discuss Lagrangian
Mechanics for two reasons: first, it is closely connected to Hamiltonian Mechanics. Second,
and even more importantly, the standard route (which we will not travel) followed in many
Quantum Field Theory textbooks is to systematically investigate simple Lagrangians to
discover many quantum fields.

The structure of Hamiltonian Mechanics is almost unbelievably simple:

• The state of the system is described by a single point in a space called the phase
space.12

• The time-evolution of the system is governed by the Hamiltonian, which is a function
on the phase space, through Hamilton’s equation of motion, which are very simple
first-order differential equations.

For a system with n degrees of freedom in the simplest cases the state space is Rn×Rn,
and the Hamiltonian function is thus a real-valued function on this space. In Section 6.6 we
describe a simple procedure, called canonical quantization, to construct a Quantum Hamil-
tonian from this classical Hamiltonian function. This procedure is by no means universally
valid, but it dates from the origins of Quantum Mechanics and has been very successful in
simple cases. In Section 6.7 we make a big jump: We pretend we can use this method to
quantize the solutions of the Klein-Gordon equation. In the end, this procedure is really the
same as the procedure in Section 6.2, but instead of being based on our amateurish guesses
(which could easily have gone wrong had we not known the correct answer beforehand), it is
now backed by a systematic procedure with lots of successes to its credit and the formidable
authority of the great physicists of the past.13

6.4 Lagrangian Mechanics

In discussing Classical Mechanics we will adopt the traditional notation to denote time
derivatives by a dot, so that

ẋ(t) := dx(t)

dt
; ẍ(t) := d2x(t)

dt2
.

First, consider a system consisting of a single time-dependent point x(t) inRn. In this case
the Lagrangian is a real-valued function L = L(x,v) on Rn×Rn (which has the dimension
of an energy). The reason for the choice of notation is that x represents a position and v

represents a velocity. Lagrangian Mechanics, asserts that the motion x(t) between times t0
and t1 is stationary14 for the action

12 In a sense, phase space in Hamiltonian mechanics corresponds to the state space of Quantum Mechanics.
13 However great, the physicists of the past did err at times. It is quite remarkable that some of these mistakes

find their ways in elementary physics textbooks a full two generations after they took place, greatly
contributing to the difficulty of self-education.

14 The meaning of this word is explained below.
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S :=
∫ t1

t0

dtL(x(t),ẋ(t)). (6.20)

This is known as Hamilton’s principle of least action because the actual motion often
minimizes S. Since L has the dimension of an energy, S has the dimension of energy times
time i.e. of an action.15

Saying that S is stationary means (leaving technicalities aside here and later) that if we
consider a family of motions x(t,ε) for t0 ≤ t ≤ t1 and ε ∈ R, with

∀t0 ≤ t ≤ t1 , x(t,0) = x(t) ; ∀ε , x(t0,ε) = x(t0) , x(t1,ε) = x(t1), (6.21)

then the derivative at ε = 0 of the function

S(ε) =
∫ t1

t0

dtL
(
x(t,ε),

dx(t,ε)

dt

)
(6.22)

is zero.
Assuming x(t,ε) to be nice, let w(t) be the derivative of ε �→ x(t,ε) at ε = 0. One gets

S′(0) =
∫ t1

t0

dt
∑
k≤n

(
wk(t)

∂L

∂xk
(x(t),ẋ(t))+ ẇk(t)

∂L

∂vk
(x(t),ẋ(t))

)
,

where we have used that the derivative at ε = 0 of ẋk(t,ε) is ẇk(t). Observing that w(t0) =
w(t1) = 0 from the second part of (6.21) one may integrate by parts to get

S′(0) =
∫ t1

t0

dt
∑
k≤n

wk(t)
( ∂L
∂xk

(x(t),ẋ(t))− d

dt

∂L

∂vk
(x(t),ẋ(t))

)
.

Saying that this is zero whatever the choice of the wk with wk(t0) = wk(t1) = 0 yields the
Euler-Lagrange equations

∂L

∂xk
(x(t),ẋ(t)) = d

dt

∂L

∂vk
(x(t),ẋ(t)), (6.23)

which are the equations of motion we are looking for. Writing ∇xL for the gradient of the
function x �→ L(x,v) and ∇vL for the gradient of the function v �→ L(x,v), the Lagrange
equations can be written in condensed form

∇xL = d

dt
∇vL. (6.24)

In the previous argument to obtain the Lagrange equations it suffices to consider varia-
tions of the type x(t,ε) = x(t)+εw(t), where w(t0) = w(t1) = 0. The way this argument is
written in the calculus of variations and in physics textbooks is to consider an “infinitesimal
variation” δx of the motion (so here δx = εw(t) for infinitesimally small ε), and, observing
that the variation δ(ẋ) of ẋ is the time-derivative δ̇x of the variation δx of x, to write the
first-order corresponding change in the action as

15 This result motivates the definition of dimension of an action on page 10.
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δS =
∫ t1

t0

dt
∑
k≤n

(
δxk

∂L

∂xk
+ ˙δxk ∂L

∂vk

)
and then to integrate by parts as above. The argument is informal but sound.16

Let us observe that if we multiply the Lagrangian by a constant factor this does not change
the Euler-Lagrange equations of motion. However it will turn out from other considerations
that this unspecified “multiplicative constant” in the Lagrangian is in fact unique if one
wants to get the correct expression of the energy of the system. This will become apparent
in the next section.

The rule of the game is that one has to pick the right Lagrangian function to get the correct
equations of motion. There is no magic in this process, although one might wonder why the
method is so successful.17 To get a feeling for what happens, consider the Lagrangian

L(x,v) = m

2
v · v − V (x), (6.25)

where · denotes the dot product in Rn and V is a “potential function”. Then ∇vL = mv, so
that (6.24) becomes

mẍ = −∇xV , (6.26)

which is Newton’s law of motion for a particle of mass m submitted to the force −∇xV
created by the potential V .

Exercise 6.4.1 Consider the case n = 1, V (x) = mω2x2/2. This is the classical
harmonic oscillator. Show that the solution of the Lagrange equations giving the actual
motion is not always a minimum of the action. Hint: Try t0 = 0, t1 = 2π/ω, x(t0) =
x(t1) = 1.

The previous considerations are adapted to the study of the motion of a time-dependent
point x(t) = (xk(t))k≤n ∈ Rn, representing a system with n degrees of freedom, one for
each component. We now make a mind-boggling shift, as our goal is to study a classical
field,18 that is a time-dependent function u(t,·) on R3.

The value u(t,x) of the field at each point x should be thought of as an independent
degree of freedom. This is a “continuous version” of the previous case in a rather natural
way, but a headache is created by the clash of notations. The variable, which was called x
before is now called u, and the “index”, which refers to the corresponding degree of freedom
of the variable, and which was called k before, is now called x.

16 If you do not understand now the point of this comment, you will when meeting unsound arguments!
17 The process of picking the right Lagrangian is helped by Noether’s theorem, a fundamental link between the

Lagrangian and quantities conserved during the evolution of the system. Knowing what quantities are
conserved often allows one to guess the right Lagrangian. The approach of mechanics through Lagrangians is
put forward in particular in the classical treatise of Landau and Lifshitz.

18 The study of classical fields is an important part of Classical Mechanics. The most important classical field is
the electromagnetic field. The discovery of the “concept of fields” is a triumph of nineteenth century physics,
whose crowning achievement is the work of J. Maxwell.



154 Quantization

We want to find interesting equations of motion for the field using an appropriate
Lagrangian. If we mimic the previous situation, we expect this Lagrangian to depend on
two functions u : x �→ u(x) and v : x �→ v(x). A fruitful class of Lagrangians will be
obtained using a Lagrangian density L, which here is a function on R × R × R3, by the
formula

L(u,v) =
∫

d3x L(u,v,∂xu), (6.27)

where of course ∂xu denotes the gradient of the function u, and where on the right-hand
side we write u for u(x), v for v(x), etc.19 There is actually no mathematical reason why
the Lagrangian density should not also depend on higher derivatives of the functions u and
v, but the present situation covers all the cases of interest to us.20 Assume now that u(t,x)
is a time-dependent function of x, i.e. a function on R4. The action between times t0 and t1
is then given by

S =
∫ t1

t0

dtL(u,∂tu) =
∫ t1

t0

dt
∫

d3x L(u,∂tu,∂xu),

where in the expression L(u,∂tu), u and ∂tu are seen as time-dependent functions of x, and
where in the last integral u stands for u(t,x), etc.

In the case t0 = −∞,t1 = ∞ this becomes

S =
∫∫

dtd3x L(u,∂tu,∂xu).

There is a pleasant feature here: Time plays the same role as spatial coordinates, and
this setting will naturally lead to Lorentz invariant equations.21 Consider a function u on
Minkowski space R1,3. Recalling the notation ∂ν of (6.1) we are interested in functions u
which are stationary for the quantity

S = 1

c

∫
d4xL(u,∂νu), (6.28)

where L(u,∂νu) is shorthand for L(u,∂0u,∂1u,∂2u,∂3u). The purpose of the factor 1/c is to
keep the correct dimension since dx0 = cdt . Here L is a function L(u,v0,v1,v2,v3) on R5.
The traditional notation22 is to denote by ∂L/∂(∂νu) the partial derivative of L with respect
to vν :

∂L
∂(∂νu)

:= ∂L
∂vν

.

19 You may wonder why suddenly we allow the Lagrangian density to depend on the gradient of u. This is
completely natural in view of the fact that the interesting equations of motion for a classical field are often
differential equations and that we want the Lagrangian to lead us to these.

20 Higher derivatives actually often lead to problematic physical theories. So do “non-local” terms such as
products of values of u at different points.

21 Despite the fact that Lagrangian mechanics was invented much before Special Relativity, the two theories
blend very well.

22 I cannot change this questionable notation which is almost universally used. However weird it might feel at
the beginning, it is just fine once one gets used to it.
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This amounts to thinking of u and ∂νu as independent variables, which is certainly not the
case.23 For an infinitesimal variation δu of u, to first-order the variation of S is therefore
given by

cδS =
∫

d4x
(
δu
∂L
∂u
+ ∂ν(δu)

∂L
∂(∂νu)

)
, (6.29)

where as usual there is a summation over the repeated indices ν, and where we have used
that ∂ν(δu) = δ(∂νu). Integrating the last term by parts (assuming that everything vanishes
fast enough at infinity) and using that the resulting integral must vanish for any choice of
δu we obtain the following form of the Euler-Lagrange equations:

∂L
∂u
= ∂ν

∂L
∂(∂νu)

. (6.30)

In order to obtain a Lorentz invariant theory one should look for Lagrangian densities
which are “Lorentz invariant” in some sense. Informally, the condition is that after making
a Lorentz change of variables the form of the Lagrangian remains the same.24 A more
formal description is to consider the operator L which associates to a function u on R1,3 the
function L(u) on R1,3 given by L(u)(x) = L((u(x),∂νu(x)) and to request that this operator
L commutes with the operatorsV (c,C) as in (6.2). Among the simplest Lagrangian densities
with this property are u2 and ημν∂μu∂νu.

Exercise 6.4.2 Recall that L is a function on R5, which we now view as a function
on R × R1,3. Then if the function L is such that for each Lorentz transformation L,
every u ∈ R and every w ∈ R1,3 we have L(u,w) = L(u,Lw) the corresponding
Lagrangian density is Lorentz invariant in the previous sense. Hint: Almost obvious
using the chain rule.

Let us then combine the densities u2 and ημν∂μu∂νu to form the following new
Lagrangian density

L(u,∂νu) = 1

2
(h̄2c2ημ,ν∂μu∂νu−m2c4u2), (6.31)

where m is a positive mass. The coefficients here are constrained by dimensional consider-
ations: The two terms of the equation must have the same dimension.

Exercise 6.4.3 Check that this is the case.

The Lagrangian density (6.31) is given to you by an ukase, but there are not that many
simple Lorentz invariant Lagrangian densities that one can form. A standard procedure in
Quantum Field Theory is to perform a systematic exploration of these Lagrangian densities
to discover various fields. It is used by many authors but we shall follow another route.25

23 One can also think of this as a shorthand for numbering the variables in L = L(slot1,slot2, . . .) so that
∂L/∂(∂x1) means ∂L/∂(slot2).

24 So that two physicists using different coordinate systems can agree on the laws of physics.
25 With some experience one can understand a lot about a quantum field theory just by looking at the

corresponding classical Lagrangian. This is brilliantly used in the last chapters of Folland’s book [31].
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Let us have a closer look at the density (6.31):

L(u,∂νu) = 1

2
h̄2(∂tu)2 − 1

2

(
h̄2c2

∑
1≤i≤3

(∂iu)2 +m2c4u2
)

. (6.32)

This is of the same type as (6.25). The term in (∂tu)2 corresponds to (a density of) kinetic
energy and the rest to (a density of) potential energy. The potential energy increases as the
field gets away from zero and also as it exhibits space variations.

For the Lagrangian density (6.31) we have

∂L
∂u
= −m2c4u ; ∂L

∂(∂νu)
= h̄2c2ημν∂μu = h̄2c2∂νu,

and the Euler-Lagrange equation (6.30) is precisely the Klein-Gordon equation m2c2u +
h̄2∂μ∂μu = 0.

Fixing the Lagrangian density fixes the dimension of u. The proper dimension of the
Lagrangian density (6.31) is such that the quantity (6.28) should have the dimension of an
action. That is, after the density is integrated over space-time, (an operation which adds a
factor [l3t] to the dimension), it has the dimension of an action, i.e. the density should have
dimension [ml−1t−2]. This determines the dimension of u: the dimension of m2c4u2 has
to be [ml−1t−2]. One finds the rather curious result that u has dimension [l−5/2m−1/2t],
which is the dimension of the quantum field which we found in (5.35). It is to match these
dimensions that we inserted the factor 1/

√
c in (5.1).

Textbooks treating the present topics usually choose a system of units in which h̄ = 1 and
c = 1. This simplifies formulas by removing the need to write such factors, and considerably
simplifies dimensional analysis since length and time can then be expressed in units of mass,
and only the way the formulas depend on mass then matters. This approach is better suited
to a trained physicist who has already mastered dimensional analysis, which may not be
the case of most readers here. In retrospect however one can understand another reason
why textbooks proceed this way: The results obtained by the full-dimensional analysis we
perform here are not very enlightening.

6.5 From Lagrangian Mechanics to Hamiltonian Mechanics

Hamiltonian Mechanics is a profound reformulation of Lagrangian Mechanics.26 It will
lead us to natural methods of quantizing classical systems through the identification of a
special function, the Hamiltonian function, which governs the time-evolution of the system
and represents the energy of this system. The state of the mechanical system is described by
a single point in “phase space”, and the evolution of the system i.e. the motion of this point is
described by a first-order system of differential equations27 determined by the Hamiltonian
function. Achieving this simplicity will however require some abstraction.

26 Furthermore, it is as exquisitely beautiful as it is powerful.
27 Hamilton’s equations of motion, to be described below.
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Let us go back to a system with n degrees of freedom described by a Lagrangian L(x,v).
Let us introduce the following notation

pk = ∂L

∂vk
, (6.33)

which is called the conjugate momentum to the variable xk . In the fundamental case (6.25),
the conjugate momentum is just the usual momentum p = mv. The following gives a hint
of what is coming.

Lemma 6.5.1 The quantity∑
k≤n

ẋk(t)pk(x(t),ẋ(t))− L(x(t),ẋ(t)) (6.34)

is a constant of motion.

The proof is immediate: One computes the time derivative of this quantity,∑
k≤n

(ẍkpk + ẋkṗk)−
∑
k≤n

(
ẋk
∂L

∂xk
+ ẍk

∂L

∂vk

)
,

and writing the Euler-Lagrange equation as ṗk = ∂L/∂xk one sees that it is zero. The
secret is that the quantity (6.34) represents the total energy of the system (and this is how
one determines the unknown multiplicative constant in the Lagrangian, since the energy of
the system is known “on physical grounds”).

Suppose now that we can invert the equations (6.33), that is, setting p = (pk)k≤n we can
compute vk as a function of p and x,

vk = vk(x,p). (6.35)

This is not possible in general but it can be done in many interesting situations. For example,
in the case (6.25) we have pk = mvk , so that vk = pk/m. In the case (6.35) we can define
for x,p ∈ Rn the quantity v(x,p) = (vk(x,p))k≤n and the Hamiltonian function

H (x,p) =
∑
k≤n

vk(x,p)pk − L(x,v(x,p)). (6.36)

The important point here is that we consider now x and p as new variables.28 The space of
the pairs (x,p) is called phase space. Here it is simply a fancy name for Rn × Rn, but the
deep underlying idea is that each point in the phase space specifies a set of initial conditions
of the system, here the position and the momentum.

For example in the case (6.25)

H (x,p) = 1

2m
p · p + V (x), (6.37)

describes the energy of the system, the sum of the kinetic and potential energy. It is a general
fact that the Hamiltonian function of the system describes its energy. We will often say

28 In particular we completely forget about the relation (6.33), and x and p are now seen as “independent”.
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“Hamiltonian” rather than “Hamiltonian function”. It should always be clear from the con-
text whether we mean the Hamiltonian function of Classical Mechanics or the Hamiltonian
operator of Quantum Mechanics.

Lemma 6.5.2 We have

∂H

∂xk
(x,p) = − ∂L

∂xk
(x,v(x,p)) ; ∂H

∂pk
(x,p) = vk(x,p). (6.38)

Proof Starting from (6.36) one simply computes these partial derivatives according to the
chain rule, and one observes that the other terms cancel thanks to (6.33), i.e. in shorthand
notation

∂H

∂xk
=
∑
�≤n

∂v�

∂xk
p� −

∑
�≤n

∂v�

∂xk

∂L

∂v�
− ∂L

∂xk

and
∂H

∂pk
= vk +

∑
�≤n

∂v�

∂pk
p� −

∑
�≤n

∂v�

∂pk

∂L

∂v�
.

The motion of a point x(t) is described in (x,v) coordinates by (x(t),ẋ(t)) = (x(t),v(t))
and in phase space by (x(t),p(t)) where

pk(t) = ∂L

∂vk
(x(t),ẋ(t)).

The Euler-Lagrange equation (6.23) then reads

ṗk(t) = ∂L

∂xk
(x(t),ẋ(t)).

Since ẋ(t) = v(t) = v(x(t),p(t)) by (6.35), according to the first part of (6.38) the previous
equation becomes

ṗk(t) = −∂H
∂xk

(x(t),p(t)), (6.39)

while the second part of (6.38) yields

ẋk(t) = ∂H

∂pk
(x(t),p(t)). (6.40)

Equations (6.39) and (6.40) together are called Hamilton’s equations of motion. They are
written in shorthand as

ṗk = −∂H
∂xk
; ẋk = ∂H

∂pk
. (6.41)

The evolution of the system is then represented by a trajectory in phase space given by
Hamilton’s equations of motion (6.41): Knowing the function H , and the initial conditions
at a given time we can in principle compute the position in phase space for all times. For
example in the case (6.25) these equations are

ṗk = − ∂V
∂xk
; ẋk = pk

m
(6.42)
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which together give

mẍk = − ∂V
∂xk

, (6.43)

Newton’s equation of motion of a point of mass m submitted to a conservative force arising
from the potential V . Let us also observe that Lemma 6.5.1 is now immediate, since

Ḣ =
∑
k≤n

(
ẋk
∂H

∂xk
+ ṗk

∂H

∂pk

)
= 0

from Hamilton’s equation of motion.
One reason for which Hamilton’s formulation of mechanics is both successful and beau-

tiful is that there is a large class of transformations of phase space for which Hamilton’s
equations are invariant. These transformations are called canonical transformations. The
beauty of this approach is that it forgets that the phase space is made up of pairs (x,p), but
is thought of as a single object. That is, canonical transformations can mix momentum and
position variables, and provide a very powerful tool. A few more words about Hamiltonian
Mechanics can be found in Section H.5.

To be useful, the preceding construction has to be independent of arbitrary choices. The
next exercise checks this at a very elementary level, by investigating the effect of a change
of orthonormal29 basis in Rn.

Exercise 6.5.3 For a rotation R we consider a new variable x̄ with x = R(x̄). Then
v = R(v̄), and expressing the Lagrangian in terms of these new variables we obtain
the new Lagrangian L̄(x̄,v̄) = L(R(x̄),R(v̄)). Prove that computing the Hamiltonian
H̄ in the new coordinates yields

H̄ (x̄,p̄) = H (R(x̄),R(p̄)). (6.44)

This important fact shows that our construction of the Hamiltonian function behaves as
expected with respect to change of basis, i.e. in other words that it “does not depend on the
choice of orthonormal basis”.

Exercise 6.5.4 Prove that the change of variable x = R(x̄) amounts to a change
of variable (x,p) = (R(x̄),R(p̄)) in phase space. Prove that this transformation is
a canonical transformation (which however does not mix position and momentum
variables).

Let us now investigate the “continuous case” where rather than having only n variables
(xk)k≤n depending on time we have a continuous family u(t,x) of such variables, where x

plays the role of the index, and where we use a Lagrangian density L(u,v,∂xu) as in (6.27),
where L is a function L(u,v,v1,v2,v3). (Note that the second variable is called v rather than
v0.) Then we can mimic (6.33) and define (using again the traditional notation)

π = ∂L
∂(∂tu)

:= ∂L
∂v

. (6.45)

29 The possibility of making such a change of basis will be crucial to diagonalize a certain quadratic form.
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When (6.45) allows us to compute v = v(u,π,v1,v2,v3) as a function of u, π , v1,v2,v3,
the continuous version of (6.36) is then to define the Hamiltonian density30

H(u,π ) = πv − L(u,v,∂xu). (6.46)

Here u = u(x) and π = π (x) are two functions, and, setting

v(x) = v(u(x),π (x),∂1u(x),∂2u(x),∂3u(x)),

the formula (6.46) means

H(u,π )(x) = π (x)v(x)− L(u(x),v(x),∂1u(x),∂2u(x),∂3u(x)). (6.47)

We then define the Hamiltonian as the integral
∫

d3xH(u,π )(x), and it should represent the
energy of the system “in position u and at momentum π”. Thus we have to think of the
phase space as the space of pairs of functions (u,π ), and of the Hamiltonian as a functional
of these pairs.31

In the relativistic notation the Lagrangian density L(u,∂νu) is written in terms of

∂0u = ∂u

∂(ct)
= c−1 ∂u

∂t
= c−1∂tu (6.48)

instead of ∂tu. (The reader should remember this factor c−1 relating the derivatives with
respect to x0 and t .) Let us examine what happens in the case of the Lagrangian density
(6.31):

L(u,∂νu) = 1

2
(h̄2c2ημν∂μu∂νu−m2c4u2)

= 1

2
h̄2(∂tu)2 − 1

2
h̄2c2

∑
1≤i≤3

(∂iu)2 − 1

2
m2c4u2, (6.49)

that is the case where

L(u,v,v1,v2,v3) = 1

2
h̄2v2 − 1

2
h̄2c2

∑
1≤i≤3

(vi)2 − 1

2
m2c4u2

Then π = ∂L/∂v = h̄2v so that v = π/h̄2 and (6.47) yields

H(u,π ) = 1

2h̄2
π2 + 1

2
h̄2c2

∑
1≤i≤3

(∂iu)2 + 1

2
m2c4u2. (6.50)

We should think of the first term as representing kinetic energy and of the second and
third terms as representing potential energy. It is the desire for the natural factor 1/2 in
the potential energy which motivates the factor 1/2 in the Lagrangian. Moreover it is very

30 We observe that in (6.45) and (6.46) time plays a special role, so this construction does not respect Lorentz
invariance. Whereas in Classical Mechanics the Hamiltonian approach is unquestionably the most powerful,
in the relativistic case the Lagrangian approach is far more appropriate to bring forward Lorentz invariance.

31 In physics one traditionally calls a functional a function whose arguments are themselves functions.
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nice that the potential energy term is a quadratic function of u, about the simplest type you
can imagine.32

An obvious question is how to extend Hamilton’s equations of motion (6.39) and (6.40)
to the present continuous setting. The question is examined in Appendix H.

6.6 Canonical Quantization and Quadratic Potentials

Before we attempt to quantize an infinite-dimensional system such as the one described
by (6.50), let us examine how we might quantize a one-dimensional system. The classical
Hamiltonian being a function of position x and momentum p, the most obvious way to
quantize it is “to replace x and p by the corresponding position and momentum operators
X and P constructed in Section 2.5”. This simple procedure called “canonical quantization”
in physics, goes back to the very beginnings of Quantum Mechanics. It bears repeating an
important feature. The number x, which describes the position of the system, is replaced by
an operator (measuring the position of that system).

The operators X and P do not commute, but rather satisfy the commutation relation
[X,P ] = ih̄1. Canonical quantization runs into difficulties when the Hamiltonian is a
bit complicated. For example, how do we handle a term such as x2p2? Do we replace
it by X2P 2, or by XPXP ? It is known that there is no universally consistent scheme to
proceed. These are so-called ordering ambiguities.33 Fortunately, we will have to deal only
with Hamiltonians of the form (6.37) for which this difficulty does not arise. Moreover our
potentials are quadratic, which makes matters even simpler.34

Let us then look at the one-dimensional case (6.37) for the quadratic potential V (x) =
κx2/2. This is the Hamiltonian of a harmonic oscillator. The equation of motion (6.43)
becomes mẍ = −κx, describing an oscillatory motion of angular frequency ω = √κ/m.
Therefore it is a good idea to write κ = mω2 and the Hamiltonian as

H (x,p) = 1

2m
p2 + mω2

2
x2. (6.51)

Here, replacing p by P and x by X leads to the quantized Hamiltonian

H := 1

2m
P 2 + mω2

2
X2, (6.52)

which we have already met in Section 2.10. Under this Hamiltonian the position operator
at time t is given by

X(t) :=
√

h̄

2ωm
(exp(iωt)a† + exp(−iωt)a), (2.100)

32 Furthermore, quadratic potentials are intrinsically connected to harmonic oscillators.
33 In this case (one-dimensional), this obstruction can be circumvented for observables which are at most cubic

in x and p. Inconsistencies are shown to arise in general via the Groenewold−van Hove’s theorem.
34 The process of canonical quantization, in general, depends on the choice of canonical coordinates used to

describe the corresponding classical system. Classical theories related by canonical transformations may
correspond to unitarily inequivalent quantum theories. This led to the theory of geometric quantization which
tries to get rid of the coordinates using only the natural geometric structure on the phase space.
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where a is (the essentially unique) operator such that [a,a†] = 1. As a consequence of
(2.111), specifying this time-evolution exactly amounts to specifying the Hamiltonian
(6.52).

Now, how do we proceed for an n-dimensional system, for example a point in Rn? The
straightforward generalization of the procedure of Section 2.5 is to use L2(Rn) as position
state space, to replace the coordinates xk by the operators Xk given by Xk(f )(x) = xkf (x)
and the momenta pk by the operators Pk = −ih̄∂/∂xk . The resulting operators Xk and Pk
commute between themselves, while

[Xk,P�] = ih̄δ�k1. (6.53)

In the case of the Hamiltonian (6.37) the quantized Hamiltonian is simply

Hn := 1

2m

∑
k≤n

P 2
k + V, (6.54)

where V denotes the “multiplication by the function V (x)” operator on L2(Rn).

Exercise 6.6.1 Show that this procedure does not depend on our initial choice of
orthogonal basis.

The relations (6.53) are preserved by a change of orthonormal basis. A deep result,
the Stone–von Neumann Theorem, which we prove in Theorem C.3.1, asserts (modulo
technical assumptions) that such a system of relations is unique up to unitary equivalence,
providing a considerable generalization of the result of Exercise 6.6.1. It then makes sense
to call this quantization procedure “canonical” since (at least in the absence of ordering
ambiguities) it is the one single sensible way to quantize the system.35

Let us then assume, still in dimension n, that the potential V is given by a quadratic (pos-
itive definite) form. Then we can perform a change of orthogonal basis so that it becomes
of the type

V (x) = m

2

∑
k≤n

ω2
kx

2
k,

and the Hamiltonian becomes

H (x,p) =
∑
k≤n

1

2m
p2
k +

mω2
k

2
x2
k . (6.55)

The Hamiltonian function appears now as a sum of terms, each being the Hamiltonian of a
harmonic oscillator, and these oscillators do not interact.36 This is as simple as a multidi-
mensional system can be. The quantized Hamiltonian may be written as

∑
k≤n ωkh̄(a†

kak+
(1/2)1) where the operators ak satisfy the commutation relations [ak,a

†
k ] = 1, all the other

commutators being equal to zero. Let us consider the operators

35 The linguistic problem that a mathematician may face is that physicists still call “canonical quantization”
similar procedures in situations where they are far less unique. We come back to this point later.

36 Since the energy of the system is the sum of the energy of the components.
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Xk(t) =
√

h̄

2ωkm
(exp(iωkt)a

†
k + exp(−iωkt)ak).

In the quantization procedure, the “position (xk)k≤n of the point” of classical mechanics
is replaced by the “position operator (Xk(0))k≤n”. The time-evolved position operator is the
sequence (Xk(t))k≤n.

6.7 Quantization through the Hamiltonian

Our goal in this section is to quantize the Klein-Gordon field by pretending that the previous
method also applies to this infinite-dimensional situation. The reader is warned though that
the manipulations are pretty formal. Intuitively, after a proper change of basis, the system
appears as a continuous sum of non-interacting harmonic oscillators. The proper change of
basis is realized by the Fourier transform, and it brings us to a situation similar to that of
Section 3.10. However in order not to have to deal with mathematically tricky continuous
sums, as in Section 6.2 we replace the space R3 of spatial coordinates by a torus, i.e.
the spatial universe by the finite box B = [−L/2,L/2]3 of Section 3.9 and use periodic
boundary conditions. The phase space consists of pairs of functions (u,π ) on B.37We will
parametrize functions by their Fourier transform. Recalling the functions gk(x) of (6.12),
we write

u(x) =
∑
k∈K′

bkgk(x) ; π (x) =
∑
k∈K′

ckgk(x), (6.56)

with bk,ck ∈ R. Thus we describe the phase space as a set of families (ck,bk)k∈K′ . Recalling
the Hamiltonian density (6.50), to compute the Hamiltonian

∫
B

d3xH(u,π )(x) we replace
u and π by their Fourier expansions as above. Using integration by parts,∫

B

d3x
∑

1≤ν≤3

∂νu(x)∂νv(x) = −
∫
B

d3xu(x)
∑

1≤ν≤3

∂2v

(∂xν)2 (x), (6.57)

and that moreover the function gk is an eigenvector of the Laplacian, of eigenvalue−k2/h̄2,
as expressed in (6.7). Since the functions gk form an orthogonal basis, it is straightforward
to formally express the Hamiltonian as∫

B

d3xH(u,π )(x) = 1

2

∑
k∈K′

( 1

h̄2
c2
k + (m2c4 + k2c2)b2

k

)
, (6.58)

although the meaning of the infinite sum is unclear. (Problems created by such infinite sums
are discussed in the next section.)

Exercise 6.7.1 Complete the previous computation.

37 One great advantage of doing physics rather than mathematics is that I do not have to tell you what regularity
property I assume for these functions!
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Recalling the definition (6.11) of ω̃k , the formula (6.58) decomposes the Hamiltonian as
the sum ∑

k∈K′

( 1

2h̄2
c2
k +

1

2
h̄2ω̃2

kb
2
k

)
. (6.59)

Each term is the Hamiltonian of a harmonic oscillator.38 This is exactly an infinite-
dimensional version of (6.55), the “position” of the “point” being described by the
“coordinates” bk . To quantize the system we then replace each of the bk by a suitable
“position operator”, and the object which quantizes “the point” is the sequence of operators
measuring the coordinates of this point. In this quantization procedure, the “point”, i.e.
the classical field u(x) = ∑

k∈K′ bkgk(x) is then replaced by “an operator measuring the
position of the point”. It appears as an operator-valued function ψ(x) (although further
analysis reveals that it is better to think of it as a distribution) because this is what one
obtains by replacing the numbers bk by operators in the previous formula. The intuitive
meaning of the operator-valued function ψ is that the operator

∫
d3xψ(x)gk(x) measures

the component of the quantized field on the basis element gk . When bringing in time-
evolution, we are then led to quantize the time-evolved operator corresponding to bk at time
t by the formula (6.16), after which one repeats the steps of Section 6.2, and one lets the size
of the box go to infinity to guess the limiting continuous formulas for the quantum field.

Despite the considerable amount of hand-waving, our quantization procedure is now
arguably related to a successful and general quantization machinery rather than being largely
guesswork. Furthermore this approach motivates the use ofm = h̄2, by comparing the terms
of (6.59) with (6.51).

6.8 Ultraviolet Divergences

Let us now comment on the problem posed by the infinite sum in (6.58). Such infinite
sums create all kinds of problems. Here the meaning of the infinite sum itself is unclear.
Later we will meet similar problems in the form of diverging series (or diverging integrals
when we do not put the universe in a box). Such problems go under the name of ultraviolet
divergences. The reason for the name is that ultraviolet light has high energy and short
wavelength. High energy corresponds to high values of k. Large energies correspond to
small physical distances. This important physical principle can be understood remembering
Einstein’s relation E = hν between the energy E of a photon and its frequency ν since high
frequencies correspond to short wavelength and short distances.

We must keep in mind that the use ofK is just an idealization. There is no reason to believe
that our continuous model of space-time applies to arbitrarily small scales. The large values
of k should somehow be discounted, although we do not know exactly how this should be
done. We may hope however to obtain results that do not depend on the specific method to
discount these values. A first example of this phenomenon is given in Chapter 7 with the

38 In the end, we have simply argued again, in a vastly more elaborate way, that the Klein-Gordon field is just a
sum of independent harmonic oscillators.
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study of the Casimir effect. We will brilliantly pass this first test, but matters are not always
that simple. The brutal methods used in physics, such as ultraviolet cutoff reflect well the
desperate situation: Only the terms for which k2 is less than a certain number are retained
in the sum.

It could shed some light to briefly discuss the current conventional wisdom in physics
regarding these matters. What is the structure of space-time at a very short scale is naturally
an extremely difficult problem, of which we do not have the solution: This solution would
probably require building a quantum theory of gravity. A simpler question is: At about what
scale should the continuous model break down? A reasonable guess can be made using the
“naturalness principle”. This principle states that in a natural system of units, a physical
quantity should always be of order 1: It is not difficult to find natural mechanisms that will
produce, say a factor 2π but much harder to think of a natural mechanism that will produce
a factor 10−12. Thus according to this principle the scale at which the continuous model
breaks down should be of order 1 in a natural system of units. A natural system of units was
invented by Max Planck. In this system the speed of light, Planck’s constant and Newton’s
gravitational constant are all set to 1. This determines units of length, time and mass, known
as Planck’s length, Planck’s time and Plank’s mass, respectively. According to this wisdom,
the scale at which the continuous model of space-time should fail must be about Planck’s
length, about 10−35 m.39 To probe space at this scale, we would need accelerators about
1015 times more powerful than what is available today, so experimentation is unlikely in
the foreseeable future.

Another major idea is that the description of reality at a given scale need not really depend
on the detail of what happens at very much smaller scales. For example continuous models
of matter ignoring its atomic structure are very successful at describing the vast majority of
mechanical phenomenon at our scale. Atoms are only 1010 times smaller than we are, while
the Planck length is (1010)2 times smaller than the nucleons. Thus there is a lot of room for
this change of scale to hide the detailed effects of quantum gravity in particle physics,40 and
we should be able to build a theory of particle physics despite our lack of understanding of
quantum gravity.

6.9 Quantization through Equal-time Commutation Relations

In the present section we attack the problem of quantizing the Klein-Gordon field from
another angle. This approach too is rooted in the canonical quantization of Section 6.6,
but it does not directly use Hamiltonians and is somewhat different from our two previous
(nearly-identical) methods.

As already explained, when one quantizes a system representing one single particle in
n-dimensional space, a successful scheme is to represent the coordinates of the particle

39 Planck length is unimaginably small. It is 1020 times smaller than the diameter of a nucleon. If we scale the
nucleon to the size of our galaxy, Planck length is scaled to just about 1 cm.

40 This idea is at the heart of the renormalization group approach.
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and its momenta along the axes by 2n operators X1, . . . ,Xn,P1, . . . ,Pn, which satisfy the
commutation relations

[Pk,Xk′ ] = −ih̄δk
′
k 1, (6.60)

and all the other commutators equal to zero.
We can then time-evolve these operators according to (2.82) and reach the more impres-

sive looking but equivalent relations

[Pk(t),Xk′(t)] = −ih̄δk
′
k 1, (6.61)

which are called for obvious reasons the “equal time commutation relations”. If one believes
that the functions u and π onR3 in (6.49) have the same structure, in the sense that each u(x)
is a coordinate and each π (x) the corresponding momentum, it is natural in quantization to
try to obtain a continuous generalization of the relations (6.61). In this section we are going
to prove first that the quantum field (5.30) satisfies exactly these relations. We will then show
how the procedure can be reversed, so that starting with these relations one can discover the
formula (5.30) (which is a standard way to find these formulas in the literature). Thus, we
go back to the setting of Chapter 5.41

Proposition 6.9.1 (The equal time commutation relations) The quantum field ϕ(x)
given by (5.30) and the quantity π (x) = ch̄2∂0ϕ(x) satisfy the relations42

[π (ct,x),ϕ(ct,y)] = −ih̄δ(3)(x − y)1, (6.62)

[ϕ(ct,x),ϕ(ct,y)] = 0, (6.63)

[π (ct,x),π (ct,y)] = 0. (6.64)

It requires a little bit of work to give a precise meaning to these relations, but for the
time being we discuss them at a formal level. First, the quantity π is just the “conjugate
momentum” defined by the formula (6.45) for the Lagrangian (6.49), which makes its
occurrence rather natural.

The numerical factor ih̄ in the relation (6.62) is absolutely what is expected here. Let us
review then how we reached it. We defined the invariant measure by the formula (4.36) and
the free field by the formula (5.1). Lo and behold! We heard the music of the spheres and we
obtained the relation (6.62) with exactly the expected factor ih̄! Magic seems to be involved
here because given a number C, changing ϕ into Cϕ changes the left-hand side of (6.62) by
a factor C2 and destroys this relation. Thus the “extraneous” factor 2 in the formula (4.36)
plays a crucial role in the miracle of (6.62). I could not see more than a coincidence in this
“miracle”.43 Anyway, we have found a way which is in a sense “canonical” to normalize the

41 So that in this section H denotes the state space and not a Hamiltonian density!
42 Here and in the sequel we make the customary abuse of notation: We denote by ϕ(ct,x) the quantum field

ϕ(x) given by (5.30) when x = (ct,x).
43 And here again I would have saved much trouble if any of the authors of the main textbooks had been kind

enough to make this clear.
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quantum field, which was intrinsically defined up to this point only up to a multiplicative
constant, by imposing the relations (6.62).44

There is an obvious relationship between Proposition 6.9.1 and (5.10), at least at the
formal level. This becomes apparent if we write the latter as [ϕ(x),ϕ(y)] = 0 whenever
(x − y)2 < 0, so that this implies (6.63) for x �= y. Furthermore, differentiating in the
time component of x implies [π (x),ϕ(y)] = 0 in the same domain (x − y)2 < 0 (observe
that this does not contradict (6.62)). Differentiating in the time component of y then yields
[π (x),π (y)] = 0 in the same domain. Conversely, using Exercise 4.3.2, (6.63) together
with Lorentz invariance imply (5.10). If we are willing to go further in the way of formal
manipulations, (6.62) itself is a consequence of (5.26). Indeed, differentiating (5.26) with
respect to y0 yields

[ϕ(x),π (y)] = h̄2(∂0�0(y − x)+ ∂0�0(x − y))1. (6.65)

Also, following (5.13), we should have

∂0�0(x) = i

2h̄

∫
d3p

(2πh̄)3
exp(i(x,p)/h̄)

equals (i/2h̄)δ(3)(x) for x0 = 0. Therefore (6.65) implies that if x0 = y0 then [ϕ(x),π (y)] =
ih̄δ(3)(x − y).

Let us now try to give a precise meaning to the statements of Proposition 6.9.1. The
problem is that it does not in general make sense to “fix the value of t” in a distribution
on R1,3 any more than it makes sense to think of the value of a distribution as existing at
every point.

Exercise 6.9.2 Convince yourself of the previous statement in the case of the distri-
bution δ(4).

We are going to show however that it makes sense, at a given value of t , to consider ϕ as
a distribution in x, as is already apparent for the formula (5.30). Thus the previous formal
arguments are essentially correct. To formulate things precisely, for a function f ∈ S3 and
t ∈ R let us denote

F(f )(p) =
∫

d3x exp(−ix · p/h̄)f (x) ; Ft (f )(p) = exp(ictp0/h̄)F (f )(p).

Thus, up to a numerical factor, F is the three-dimensional Fourier transform. Let us stress
that we view Ft (f ) as a function of p ∈ Xm and that Ft (f ) ∈ H = L2(Xm,dλm). We can
then define the quantity ϕ(ct,x) as a distribution in x, depending on the parameter ct by the
formula ∫

d3xϕ(ct,x)f (x) = 1√
c

(A(Ft (f
∗))+ A†(Ft (f ))). (6.66)

44 Let us point out though a small caveat. The relation π (ct,x) = h̄2∂t ϕ(t,x) is determined by the choice of
Hamiltonian, so the normalization of the quantum field we obtain by this process is just as “canonical” as is
the choice of the Hamiltonian density (6.50). Whereas there do exist particles that are described by the
quantized version of the Klein-Gordon field, the classical Klein-Gordon field itself is not observed in Nature,
so on which grounds does one tell what its energy should be? But nonetheless (6.62) is a convenient, simple
and natural way to fix the otherwise undetermined multiplicative constant in the quantum field.
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As a further check that this makes sense, if we consider f ∈ S4 and for t ∈ R we denote
ft the function in S3 given by ft (x) = f (ct,x), then

f̂ (p) =
∫
c dtFt (ft )(p), (6.67)

and thus (6.66) implies, as it should, that∫
c dt

( ∫
d3xϕ(ct,x)f (ct,x)

)
= ϕ(f ) = 1√

c
(A(f̂ ∗)+ A†(f̂ )).

So now ϕ(ct,x) is well defined for each t , and (6.66) implies that its derivative in t is
also well defined. We interpret π (ct,x) as h̄2∂tϕ(ct,x) = ch̄2∂0ϕ(ct,x). The statement of
Proposition 6.9.1 is now well defined.

Proof of Proposition 6.9.1 Let us first consider (6.62). This is equivalent to saying that for
two functions f,g ∈ S3

R
, we have[ ∫

d3xπ (ct,x)f (x),
∫

d3xϕ(ct,x)g(x)
]
= −ih̄

∫
d3xf (x)g(x)1. (6.68)

To prove this we first note that∫
d3xπ (ct,x)f (x) = h̄2

∫
d3x∂tϕ(ct,x)f (x) = h̄2

√
c

(A(∂tFt (f ))+ A†(∂tFt (f ))),

and we recall that [A(u),A†(v)] = (u,v)1 where (·,·) denotes the inner product in
L2(Xm,dλm). Since ∂tFt (f )(p) = icp0h̄−1Ft (f )(p), taking into account the factor 1/

√
c

in (6.66), the left-hand side of (6.68) is exactly

h̄
(

(ip0Ft (f ),Ft (g))− (Ft (f ),ip0Ft (g))
)
1 = −2h̄i(p0Ft (f ),Ft (g))1,

where we have used that p0 ∈ R. Now since on Xm we have p0 = ωp,

(p0Ft (f ),Ft (g)) =
∫

d3p

2(2πh̄)3F(f )(p)∗F(g)(p).

Furthermore, just as in (5.24) we have F(f )∗F(g) = F(h) where h(a) = ∫
d3xf (x)

g(a + x). An appropriate version of (1.28) shows that

2(p0Ft (f ),Ft (g)) =
∫

d3p

(2πh̄)3F(h)(p) = h(0)

and this finishes the proof of (6.68). To prove (6.63) we write

c
[ ∫

dxϕ(ct,x)f (x),
∫

dxϕ(ct,x)g(x)
]
= (Ft (f ),Ft (g))− (Ft (g),Ft (f ))

= 2i Im (Ft (f ),Ft (g)).
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Since h is real-valued it holds that F(h)(−p) = F(h)(p)∗. Therefore the change of variable
p→−p shows that

(Ft (f ),Ft (g)) =
∫

d3p

(2πh̄)32ωp
F(h)(p)

is a real number and this proves (6.63). The proof of (6.64) is similar.

Alternative “Proof” of Proposition 6.9.1 Let us sketch how to obtain (6.62) by the type
of formal calculation ubiquitous in this topic (and seemingly unavoidable). As we pointed
out, it seems mostly safe to believe in such computations on the grounds that they encode
a computation in the discrete situation. Here we encourage the reader to repeat the same
computation in the discrete setting using the formula (5.31). We recall that

ϕ(x) =
∫

d3p

(2πh̄)3
√

2c ωp

(
exp(−i(x,p)/h̄)a(p)+ exp(i(x,p)/h̄)a†(p)

)
(6.69)

and, consequently,

π (ct,x) = ih̄
∫

d3p

(2πh̄)3

√
c ωp

2

(− exp(−i(x,p)/h̄)a(p)+ exp(i(x,p)/h̄)a†(p)
)
, (6.70)

where x = (ct,x). Then, taking into account that [a(p),a(q)] = 0, etc., we get

[π (ct,x),ϕ(ct,y)] = ih̄

2
(I+ II)

where, setting y = (ct,y),

I = −
∫

d3p1

(2πh̄)3

d3p2

(2πh̄)3

√
ωp2

ωp1

exp
(
i(y,p2)/h̄− i(x,p1)/h̄

)
[a(p1),a†(p2)]

and

II =
∫

d3p1

(2πh̄)3

d3p2

(2πh̄)3

√
ωp2

ωp1

exp
(
i(x,p1)/h̄− i(y,p2)/h̄

)
[a†(p1),a(p2)].

Now, since [a(p1),a†(p2)] = (2πh̄)3δ(3)(p1 − p2)1, integrating in p1 first yields, using
that x and y have the same time component, and remembering that (y,p) = y0p0 − y · p,

I = −
∫

d3p

(2πh̄)3 exp(−i(y − x) · p)/h̄)1 = −δ(3)(x − y)1

using (1.19). The term II is similarly found to be −δ(3)(y − x)1 = −δ(3)(x − y)1.

Proposition 6.9.1 may serve as a third approach to the quantization of the Klein-Gordon
field, which is found in many physics textbooks. One postulates that a suitable quantization
of this field will be an operator-valued “function” ϕ with the following properties:

• It will satisfy the Klein-Gordon equation.

• It will satisfy the equal-time commutation relations.
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One has to postulate something about the quantization one is looking for. Postulating as
here that things work the same as in the familiar settings should be the first attempt.

Assuming then that the field satisfies the Klein-Gordon equation and the equal-time com-
mutation relations, let us try to find a formula for it. Our derivation is heuristic: distributions
are treated as functions, all integrals exist, etc.45

The quantum field satisfies the Klein-Gordon equation i.e. h̄2∂μ∂μϕ + m2c2ϕ = 0.
Taking the Fourier transform we obtain (m2c2 − p2)ϕ̂(p) = 0. Thus ϕ̂ is supported by the
set {p;p2 = m2c2} = Xm ∪ −Xm. We then express ϕ as the inverse Fourier transform of
ϕ̂, i.e. as an integral over Xm ∪−Xm. We bring back the part of the integral on−Xm to Xm

by the transformation p→−p, and (crossing our fingers) we obtain an expression

ϕ(x) =
∫

dλm(p)(exp(−i(x,p)/h̄)b(p)+ exp(i(x,p)/h̄)c(p)), (6.71)

where b(p) and c(p) are operator-valued functions. Since we are quantizing a real-valued
vector field, and that real numbers correspond to Hermitian operators, we look for ϕ to be
Hermitian, and this implies that c(p) = b(p)†. Let us write46 a(p) = b(p)/

√
2c ωp where

p = (ωp,p), so that (6.71) implies (6.69) and in particular

ϕ(0,x) =
∫

d3p

(2πh̄)3
√

2c ωp

(exp(ix · p/h̄)a(p)+ exp(−ix · p/h̄)a†(p))

=
∫

d3p

(2πh̄)3
exp(ix · p/h̄)d(p), (6.72)

where

d(p) = 1√
2c ωp

(a(p)+ a†(−p)). (6.73)

That is, ϕ(0,x) is the inverse Fourier transform of d(p), so that d(p) is the Fourier transform
of ϕ(0,x):

d(p) =
∫

d3x exp(−ix · p/h̄)ϕ(0,x). (6.74)

Starting from (6.70) and setting

f (p) = ih̄
√
c ωp√
2

(−a(p)+ a†(−p)) (6.75)

we obtain in the same manner

f (p) =
∫

d3x exp(−ix · p/h̄)π (0,x). (6.76)

45 A special case of the “canonical quantization method” is described here, but the method is quite general. It
allows the discovery of many important quantum fields. Some books such as that of Greiner and Reinhardt
[35] go as far as “discovering” the boson Fock space by considering the Schrödinger equation (2.80) as the
equation of a classical field, and applying the previous method to it. This may not contribute to conceptual
clarity but motivates the name of “second quantization” for the construction of the boson Fock space.

46 It is perfectly possible to write the computation below in terms of b(p), but for consistency we follow our
policy to express the quantum field in term of the operators a(p).
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Consequently

[f (p1),d(p2)] =
∫

d3xd3y exp(−i(x · p1 + y · p2)/h̄)[π (0,x),ϕ(0,y)]

= −ih̄
∫

d3xd3y exp(−i(x · p1 + y · p2)/h̄)δ(3)(x − y)1

= −ih̄
∫

d3x exp(−ix · (p1 + p2)/h̄)1

= −ih̄(2πh̄)3δ(3)(p1 + p2)1. (6.77)

Moreover, the same calculation implies [d(p1),d(p2)] = [f (p1),f (p2)] = 0 and from
these we may compute the commutators between the a and the a† by simple algebra, using
(6.73) and (6.75):

[a(p),a†(p′)] = (2π )3δ3(p − p′)1, (6.78)

with all the other commutators being zero.
In physics textbooks the previous argument is presented by obtaining first the explicit

formula (6.79) for a(p) and a similar formula for a†(p), from which one can compute the
commutator of these operators.47

Exercise 6.9.3 Let us introduce the notation

A
↔
∂t B := A∂tB − B∂tA.

(a) Prove that ifA andB are functions that are solutions of the Klein-Gordon equation
and which, for any given t , go fast enough to zero as x goes to infinity, the quantity∫

d3xA
↔
∂t B (where the integral is computed at a given value of x0) is independent

of this value.
(b) Consider a function A on R4 such that at given x0 the function x �→ A(x0,x) is a
test function. Consider a distribution B which is well defined at every given value
of x0. Prove that if A and B satisfy the Klein-Gordon equation then the quantity∫

d3xA
↔
∂t B, where the integral is computed at a given value of x0, is independent of

this value.

Exercise 6.9.4 Prove formally that

i

h̄

√
2c ωpa(p) =

∫
d3xϕ(x)

↔
∂t exp(i(x,p)/h̄). (6.79)

Argue that the right-hand side is independent of x0.

47 These formulas are an overkill here, but they are useful when one studies fields that are not necessarily free
fields. The operator a(p) defined by the formula (6.79) then depends also on t , and can be used to study the
asymptotic properties of the field.
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Exercise 6.9.5 The goal of this exercise is to better understand the mysterious looking

quantity
∫

d3xA
↔
∂t B when A, B are solutions of the Klein-Gordon equation. As in

(6.71) the function A should be of the type

A(x) =
∫

dλm(p)
(
exp(i(x,p)/h̄)f+(p)+ exp(−i(x,p)/h̄)f−(p)

)
.

for two functions f+ and f− on Xm. Using a similar formula for B, with correspond-

ing functions g+,g−, compute
∫

d3xA
↔
∂t B as an expression involving the functions

f+,f−,g+,g−.

6.10 Caveat

We have seen several arguments, each showing that a natural way to quantize the Klein-
Gordon field yields the scalar free field, building a solid case that there is a unique way to
quantize this field. Unfortunately, you have been robbed blind. The Stone–von Neuman the-
orem which we will prove in Appendix C asserts that when we have finitely many canonical
commutation relations, they have an essentially unique solution (in the sense that any two
solutions are unitarily equivalent). But this fails completely when one considers an infinity of
canonical commutation relations: There are many non-equivalent ways to implement them.
i.e. there are many non-unitarily equivalent sequences of operators which satisfy them. Why
this is true is also explained in detail in Appendix C. The commutation relations might be
called canonical, but the sequences of operators which satisfy them are not. In presence of
an infinite number of canonical commutation relations, it makes very little sense to talk of
canonical quantization. The free field (5.1) satisfying the fundamental property (5.5) is the
“correct” quantization of the Klein-Gordon field, and it simply cannot be discovered by any
of the previous methods.48 In particular, despite the commutation relations (13.191) the field
given by the first line in (6.72) has no reason to be unitarily equivalent to the free field (5.1).

To give a simple example of two sequences of operators satisfying the canonical com-
mutation relations which are not unitarily equivalent, consider such a sequence d(k), so that
[d(k),d†(k)] = 1, with all other commutators equal zero. Then, for two real numbers α,β
with α2 − β2 = 1, the operators c(k) = αd(k) + βd†(k) and c†(k) = αd†(k) + βd(k)
also satisfy the canonical commutation relations. However it can be proved that there is no
unitary operator which transforms d(k) into c(k) when β �= 0, see Appendix C.

There is a simple reason why the canonical commutation relations occupy a far more
central place in many physics textbooks than the theoretically more fulfilling description
of the free field used in Chapter 5. As will become apparent in Chapter 13, when comput-
ing quantities which can actually be measured in experiments, the commutation relations
between the operators a(p) and a†(p) in the formula (5.30) are all that matters.49

48 This entire section is again motivated by the very long time during which I was confused by certain physics
textbooks.

49 Unfortunately, it will be shown in Section 13.4 that the whole setting in which one performs these practical
computations is mathematically unsound, so that our clean theoretical understanding of the free field will not
be very useful at that stage.
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6.11 Hamiltonian

In Section 5.3 we heuristically discussed the following result, which we now prove
rigorously.

Theorem 6.11.1 Given any f ∈ S3 the operator
∫

d3xϕ(ct,x)f (x) is the time-
evolution of the operator

∫
d3xϕ(0,x)f (x) in the Heisenberg picture corresponding

to the Hamiltonian HB given by

HB =
∫

d3p

(2πh̄)3 cωpa
†(p)a(p). (5.36)

We will summarize this statement by the sentence “The field ϕ(ct,·) is the time evolution
of the field ϕ(0,·)”.

Proof According to Proposition 5.3.1, exp(−itHB/h̄) is the time-evolution in B, so it is
the canonical extension to B of the time-evolution exp(−itH/h̄) in H. Therefore using
Proposition 3.5.2 we obtain

exp(itHB/h̄)
(
A(F0(f ))+ A†(F0(f )

)
exp(−itHB/h̄) = A(g)+ A†(g), (6.80)

where g := exp(itH/h̄)F0(f ) = Ft (f ) since exp(itH/h̄) is the “multiplication by
exp(ictωp/h̄)” operator. This is the result according to (6.66).

In the preceding sections we have argued different ways that the free quantum field
is the quantization of the Klein-Gordon field, whose time-evolution is governed by the
Hamiltonian density (6.50)

H(u,π ) = 1

2h̄2
π2 + 1

2
h̄2c2

∑
1≤ν≤3

(∂νu)2 + 1

2
m2c4u2. (6.50)

For things to make sense, we expect that if in this expression we replace u(x) by the quantum
field ϕ(x) and π (x) by h̄2∂tϕ(x), we somehow “get a Hamiltonian density governing the
time-evolution of the free field”. In other words, we expect that in some sense the quantity∫

d3xH(ϕ(x),h̄2∂tϕ(x)) (6.81)

equals the Hamiltonian (5.36). Here, x = (ct,x), and we expect the result to be independent
of t .

Our next goal is to perform this computation, showing the “equality” of the quantities
(5.36) and (6.81), provided we discard the usual extraneous infinite term created when
replacing terms such as a(p)a†(p′) by a†(p′)a(p)+ δ(3)(p−p′)1 when p = p′. The com-
putation involves as in Section 3.10 algebraic cancellation of terms that are ill-defined,50

so it is formal, but we stick to our belief that such a formal computation simply encodes a
correct computation in the discretized situation. We start by computing the contribution of
the last term of (6.50), that is we compute

50 A diplomatic way to say that they are not defined at all.
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∫
d3xϕ(x)2 =

∫
d3x

d3p

(2πh̄)3

d3p′

(2πh̄)3

1

2c
√
ωpωp′

U (p)U (p′) (6.82)

where

U (p) = exp(−i(x,p)/h̄)a(p)+ exp(i(x,p)/h̄)a†(p).

For this we first integrate in x, using that for r ∈ R1,3, according to (1.19),∫
d3x exp(i(x,r)/h̄) = exp(ix0r0/h̄)(2πh̄)3δ(3)(r).

We use this relation four times, with r = ±p± p′. Since x0ωp = ctωp and ω−p = ωp we
find that the quantity (6.82) is∫

d3p

(2πh̄)32cωp

(
exp(−2iωpct/h̄)a(p)a(−p)+ a(p)a†(p)

+ a†(p)a(p)+ exp(2iωpct/h̄)a†(p)a†(−p)
)

.

The contributions of the three other terms of (6.50) are computed similarly. Grouping them
the terms depending on t cancel out and replacing the terms a(p)a†(p) by a†(p)a(p) gives
the expression (5.36).

Exercise 6.11.2 Complete the previous computation.

Even when one follows carefully every step it is hard to understand why the previous
computation works at all. We next explain that there is no magic here. Since the system is
in a sense a sum of independent harmonic oscillators, we expect that in the end the whole
computation reduces to a statement about a single harmonic oscillator, namely the formula
(2.111). Let us demonstrate this by moving to the discrete setting, when the spatial universe
is replaced by a box. To perform the calculation, we first observe that if the operator-valued
functions u(x) and π (x) satisfy

u(x) =
∑
k∈K

bkfk(x) ; π (x) =
∑
k∈K

ckfk(x) (6.83)

where b−k = b
†
k and c−k = c

†
k then the same computation leading to (6.58) yields∫

B

d3xH(u,π )(x) =
∑
k∈K

( 1

2h̄2
ckc

†
k
+ 1

2
h̄2ω̃2

kbkb
†
k

)
. (6.84)

Furthermore it follows from (6.18) that u(x) = ϕ(0,x) and π (x) = h̄2∂tϕ(0,x) satisfy
(6.83) for

bk = 1√
2cωk

(a(k)+ a(−k)†) ; ck = ih̄

√
cωk

2
(−a(k)+ a(−k)†).
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For these values the right-hand side of (6.84) then equals∑
k∈K

cωk

4

(
(a(k)+ a(−k)†)(a(k)† + a(−k)+ (−a(k)+ a(−k)†)(−a(k)† + a(−k))

)
=
∑
k∈K

cωk

2
(a(k)a†(k)+ a(−k)†a(−k) =

∑
k∈K

cωk

2
(a(k)a†(k)+ a(k)†a(k)), (6.85)

and since a(k)a†(k) = a(k)†a(k)+1, ignoring this constant term 1, the previous expression
is just the Hamiltonian (5.36) when the universe has been put in a box, and we have obtained
a much shorter proof of the desired equality of (6.81) and (5.36).51

There is a systematic way to get rid of the infinite terms which occur in the previous com-
putations.52 These terms occur when replacing the expression a(p)a†(p) by a†(p)a(p) +
δ(3)(0)1. They would not occur if in the expression H(ϕ(x),h̄2∂tϕ(x)) we had decided
beforehand to write all creation operators a† to the left of the annihilation operators a. Such
an operation is called normal ordering. The normal-ordering of the expression C is denoted
by :C:. To illustrate this procedure by a simple example,

c :ϕ(f )ϕ(g):= A†(f̂ ∗)A†(ĝ∗)+ A†(f̂ ∗)A(̂g)+ A†(ĝ∗)A(f̂ )+ A(f̂ )A(̂g).

If we revisit our computation that the quantity (6.81) equals the Hamiltonian (5.36), we
can then state the following.

Proposition 6.11.3 The following expression is a Hamiltonian density governing the
time-evolution of the free field:

:
h̄2

2

(
(∂tϕ(x))2 + c2

∑
1≤ν≤3

(∂νϕ(x))2
)
+ 1

2
m2c4ϕ(x)2: . (6.86)

This formula represents the Hamiltonian density as a function of a field that itself time-
evolves according to the Hamiltonian. It is tempting to use the same procedure to “define”
Hamiltonians where the density is expressed as in (6.86) as a function of ϕ itself, but with an
extra “interaction term”. For such Hamiltonians nice formulas such as (5.36) do not exist.
This procedure is commonly used in physics, but the results are heuristic, and the existence
of the resulting objects has not been proved, and is arguably dubious.

Key ideas to remember:

• Lagrangian Mechanics naturally leads us to construct classical systems with Lorentz
invariant behavior.

• Hamiltonian Mechanics is a powerful reformulation of Lagrangian Mechanics, but it
singles out the role of time.

• Various paths lead to consider the free quantum field as a quantization of the Klein-
Gordon equation.

• None of these methods actually leads uniquely to the correct quantization, due to
the fact that many essentially different sequences of operators satisfy the canonical
commutation relations when there is an infinity of them.

51 Note that when using the normalization (6.19) there is no factor L−3.
52 In this case, it is easy to get rid of the infinities. We will not be so lucky in the future.
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The Casimir Effect

The Casimir effect can be roughly described as follows. If two well-polished conducting
plates are held parallel very close to each other in a good vacuum, there is an attractive force
between them.1 Let us stress that there is no electrical charge whatsoever involved here,
and that such a force is entirely unexpected in the classical view of the world. It has actually
been measured by experimentalists.2 At a crude level, the explanation is that between the
two plates, there is less room than in unbounded space for the “vacuum energy”, and the
closer the plates the more so. Bringing the plates closer decreases the amount of energy in
the vacuum between them, and this translates into an attractive force.

7.1 Vacuum Energy

The real-world Casimir effect is not due to the scalar field we have studied so far, but due to
the electromagnetic field. However, we will follow a very enlightening discussion in Zees’s
textbook [93] on the simplest possible case, where the electromagnetic field is replaced
by the massless scalar field, that is the case m = 0 of the field we have been studying,
and where physical space is one-dimensional. We consider two “plates”, at positions 0 and
d > 0. We will assume that the scalar field is zero on each conducting plate i.e. it lives in
the interval [0,d].3

The first goal is to “compute” the “vacuum energy” in the interval [0,d]. We reproduce
in the case m = 0 the analysis of Section 6.7, replacing the box B = [−L/2,L/2]3 with the
interval [0,d]. If (fk)k≥1 is a basis ofL2([0,d]) consisting of eigenvectors of the Laplacian of
eigenvalue −a2

k (i.e. f ′′k = −a2
kfk) we were led in that section to attach to each fk a “mode

of excitation” of the scalar field represented by a harmonic oscillator of ground state energy
h̄c|ak|/2.4 The vacuum energy is then the lowest possible energy, the sum

∑
k h̄c|ak|/2 of

1 A force besides the gravitational attraction of course.
2 This is a difficult experiment because the force is rather weak.
3 This assumption is motivated by analogy with the electromagnetic field which behaves just that way.
4 Let us get some details on how to reach this formula. We found a ground state energy of h̄ω̃k/2 where ω̃k is

given by (6.11) when m = 0, i.e. ω̃k = c
√

k2/h̄ but the eigenvalue k2/h̄2 corresponds to a2
k

.
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the ground state energies of all these harmonic oscillators.5 Now a suitable basis is provided
by the functions6 sin(πnx/d) for n ≥ 1, giving a total vacuum energy7∑

n≥1

nπh̄c

2d
= πh̄c

2

∑
n≥1

n

d
. (7.1)

This formula cannot be correct since it gives an infinite value. Furthermore, our model is not
reliable for high-energy contributions.8 The goal of the chapter is to make sense of (7.1).

7.2 Regularization

The Casimir force is essentially an energy difference. The infinity in (7.1) is coming from
the high-frequency modes which, from a physical point of view, will just go through the
conducting plates.9 For these waves, the existence of the conducting plate at position d does
not matter, and so the high modes contribute equally on either side of the plates, that is, they
are not contributing to the force we want to calculate. To make a sense of this difference of
two infinities, we introduce a damping factor on the high-energy terms such that the finite
part of the difference is brought to light, and hope that in the end it does not depend on the
procedure.

So, let us introduce an unspecified “damping function ϕ” and rather than (7.1) use for
the vacuum energy the quantity

Eα(d) := πh̄c

2

∑
n≥1

n

d
ϕ
(αn
d

)
, (7.2)

where α > 0 is a small parameter. We assume very little about the function ϕ, namely that
it is smooth enough and decreases fast enough at infinity so that the series of (7.2) makes
sense. We also want

ϕ(0) = 1, (7.3)

so that when α gets small, the first terms of (7.2) resemble the first terms of (7.1).
Consider now a third conducting plate at position D  d. The point of this device is that

we do not have to consider the even harder problem of making sense of the vacuum energy

5 I must admit that I do not find it very easy to believe in the validity of such a procedure, but, indeed the
Casimir effect is for real.

6 It is rather obvious that these functions are orthogonal to each other, but less obvious that they span L2([0,d]).
To prove this we have to show that a function f which is orthogonal to each of the functions sin(πnx/d) is 0.
Observe then that the odd function g on [−d,d] such that g(x) = f (x) for x ∈ [0,d] is orthogonal to each
function sin(πnx/d) and cos(πnx/d) and hence 0.

7 There are some subtle issues here. In order to make real sense of the notion of “an orthonormal basis of
eigenvectors of the Laplacian” one has to define the Laplacian as a self-adjoint operator. There are multiple
ways to do this. The choice of the functions sin(πnx/d) corresponds to the “Dirichlet boundary conditions”
f (0) = f (d) = 0 which are appropriate here since the field is zero on both plates. The “periodic boundary
conditions” which we have been often using would give the basis sin(2πnx/d) and cos(2πnx/d). Interestingly
these two choices give the same answer for

∑ |ak | but we do not know of a general result to that effect.
8 High-frequency waves have a short wave length, and the structure of space at extremely small scale is

unknown, see Section 6.8.
9 High-frequency waves have a short wave length, and when this wave length is much shorter than the

inter-atomic distances in matter, “to them matter just looks empty”. Our bodies stop visible light but not X-rays.
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of an unbounded interval. The vacuum energy in the interval [d,D] is Eα(D − d), so that
the total energy in both intervals is Eα(d)+Eα(D− d), and the force on the plate at d is10

−E′α(d)+ E′α(D − d). (7.4)

Proposition 7.2.1

lim
α→0

(−E′α(d)+ E′α(D − d)) = −πh̄c
24

( 1

d2
− 1

(D − d)2

)
. (7.5)

The amazing part of this result is that the limit does not depend on the choice of the
regularizing function, and we can believe that we have succeeded in calculating the Casimir
force to be about −πh̄c/(24d2) when d ! D. Similar formulas in the more realistic case
of the electromagnetic field are confirmed by experiment.

To start the proof of Proposition 7.2.1 we observe that

− 2

πh̄c
E′α(d) = 1

αd

∑
n≥1

ψ
(αn
d

)
, (7.6)

where ψ(x) = xϕ(x) + x2ϕ′(x). Thus we are led to estimate the sum
∑

n≥1 ψ(εn), where
ε = α/d. Estimating such sums is the object of the famous Euler-Maclaurin summation
formula. In the present case, this formula reduces to the application of the following simple
lemma.

Lemma 7.2.2 If ψ is three times differentiable, then∫ b

a

dxψ(x) = b − a

2
(ψ(b)+ ψ(a))− (b − a)2

12
(ψ ′(b)− ψ ′(a))+ (b − a)3R,

(7.7)

where

|R| ≤ L sup
a≤x≤b

|ψ ′′(x)| (7.8)

and where L is a numerical constant.11

Proof Let us be quick and dirty. It is straightforward to check that no remainder is nec-
essary when ψ is a polynomial of degree ≤ 2. Subtracting such a polynomial from ψ we
may assume that ψ(a) = ψ ′(a) = 0, and then all the terms are bounded by a constant times
(b − a)3 times the maximum of the second derivative of ψ .

Using this for a = nε, b = (n+ 1)ε, the remainder is bounded by

Lε3 sup
nε≤x≤(n+1)ε

|ψ ′′(x)|.

10 The force is minus the gradient of the potential energy.
11 If it is your game you may like to find the best possible constant in (7.8) but we do not care about this.
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Summing over n ≥ 0 and using that ϕ(0) = 1 we obtain that (provided ψ ′′ decreases fast
enough) ∑

n≥1

ψ(εn) = 1

ε

∫ ∞
0

dxψ(x)− ε
ψ ′(0)

12
+O(ε2). (7.9)

Now ψ ′(0) = ϕ(0) = 1, so that going back to (7.6) gives

− 2

πh̄c
E′α(d) = 1

α2

∫ ∞
0

dxψ(x)− 1

12d2 +O(α). (7.10)

This proves (7.4) as the “infinities”, i.e. the term in 1/α2 cancels when removing the corre-
sponding term for D − d rather than d .

The previous argument is nit-picking. It is much simpler to apply the well-known iden-
tity12(see e.g. the youtube video of Brady Haran [96])∑

n≥1

n = − 1

12

to (7.1) and to differentiate in d . I am not kidding. I have seen books on string theory that
take this identity as a starting point in the most serious manner.

Key ideas to remember:

• We tamed our first really serious infinities with flying colors!
• It looks crazy to “associate the ground state energy of a harmonic oscillator to each

mode of vibration” but the Casimir force is for real.

12 This identity is not as crazy as it sounds. The zeta function ζ (s) =∑
n≥1 1/ns analytically continues to the

value ζ (−1) = −1/12.





Part II

Spin

It sounds paradoxical at first to have an entire part of the book called “spin” with the single
Section 8.7 offering a “brief introduction to spin”.

Let us recall from Definition 2.10.1 that a projective unitary representation U associates
to each element a in a group G a unitary operator U (a) such that for a,b ∈ G we have
U (ab) = r(a,b)U (a)U (b) where |r(a,b)| = 1. When r(a,b) ≡ 1, U is called a (true)
unitary representation. The reader should also review Section 4.5, and in particular the
notion of unitarily equivalent representations.

We argued in Section 2.10 that, as a consequence of the fact that the group of translations
represents a group of symmetries of Euclidean space, any quantum system on R3 should
come equipped with a projective unitary representation of R3. As the group of rotations
SO(3) represents another group of symmetries of Euclidean space, we expect that every
quantum system comes equipped with a strongly continuous∗ projective unitary represen-
tation U of SO(3). It will be useful in the sequel to consider the following very simple
example of this situation. Suppose that we study a system whose state vector in position
state space is a function f on R3, and that we rotate this system by a rotation R. Thinking
that the value of the wave function at a point is related to the probability density of finding
the particle at that point, it should be clear that the wave function of the system after the
rotation should be fnew(x) = f (R−1(x)). That is, the “new” wave function at a point x is
the “old” wave function at the point R−1(x) before the rotation has taken place. As we have
seen this formula defines a representation of SO(3)

U (R)(f )(x) = f (R−1(x)), (II.1)

in the position state space L2(R3). For further considerations, it is more convenient to
move to momentum state space L2(R3,d3p/(2πh̄)3). Taking the Fourier transform, it is
straightforward to check that the action takes the same form as in (II.1), for a function ϕ,

U (R)(ϕ)(p) = ϕ(R−1(p)). (II.2)

∗ Some kind of continuity seems physically obvious, and strong continuity is the fruitful notion.



182 Spin

We can expect that the simplest projective representations of SO(3), that is the finite-
dimensional irreducible unitary projective representations of SO(3), will be especially
important. It turns out that for each integer j ≥ 0 there is an essentially unique such
representation of dimension j + 1. Furthermore, for j odd, these representations definitely
do not arise from true representations. This has mind-boggling consequences, such as the
fact that if one performs a rotation of angle 2π around a given axis on a quantum system
equipped with such a representation, it may change state. Even more remarkable is that
Nature has made extensive use of this structure. These representations are the correct tools
to describe a certain “internal state” of particles, which has no classical equivalent† and
which is called the spin of the particle. The case j = 1 (called spin 1/2) is of particular
importance since we are built from electrons and nucleons of spin 1/2. This book being
already several books in one, it is simply not possible to study spin in detail here (although
we do cover a lot of the underlying mathematics). We will say just enough about spin
to argue in the next chapter that a certain fundamental family of representations of the
Poincaré group may be interpreted as “describing massive particles with spin”. These
representations of the Poincaré group are in turn the foundations for the construction of
free fields in Chapter 10 corresponding to massive particles with spin (which are themselves
basic to understanding the interactions of such massive particles). In some sense, this entire
part of the book takes its roots in the notion of spin, and it is only natural that it should be
named after it. The material presented in this part is both fundamental and beautiful. It will
however not be used in our study of interactions, which we restrict to the simplest case of
spinless particles, so that the reader interested only in understanding the basic problems of
interaction theory may proceed directly to Part III.

† One may argue that it resembles angular momentum.
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Representations of the Orthogonal
and the Lorentz Group

Mathematically, some miracle happens: The complication of having to consider projective
representations goes away when SO(3) is replaced by a certain group of complex 2 × 2
matrices, the special unitary group SU (2). The special orthogonal group SO(3) is the quo-
tient of SU (2) by a two-to-one group homomorphism.1 Thus any projective unitary repre-
sentation of SO(3) gives rise to a projective2 representation of SU (2). The miracle is that all
the strongly continuous projective representations of SU (2) arise from true representations
in the sense of Definition 2.11.1. In some sense, SU (2) is the “correct version” of SO(3).
A similar situation occurs with the Lorentz group SO↑(1,3), for which “the correct version”
is SL(2,C), the group of 2× 2 matrices of determinant 1.

In the present chapter we develop three related but distinct threads of ideas. In the next
section, we define the groups SU (2) and SL(2,C) and list simple properties. In Section 8.2
we provide a first construction of the fundamental family of representations of SU (2).
In Section 8.3 we show how to use tensor products to construct new representations of a
group out of known ones and we provide a second construction of the fundamental family
of representations of SU (2). These two sections are largely independent of the rest of
the material in this chapter. In Section 8.4 we start in a new direction. We construct the
fundamental two-to-one homomorphism κ from SL(2,C) to SO↑(1,3), and in Section 8.5
from this homomorphism we construct projective representations of SO(3) on C2 which
are intrinsically not true representations. In Section 8.7 we relate projective representations
of SO(3) and true representations of SU (2) and we link these representations to the idea
of spin. The last two sections, starting with Section 8.9 develop the third direction: How
to incorporate parity as an additional symmetry of the theory, and how this leads to the
discovery of Dirac matrices.

8.1 The Groups SU (2) and SL(2,C)

These two groups of 2 × 2 matrices are fundamental and deserve to be looked at in great
detail. Their intimate connection with the group of rotations and the Lorentz group will be

1 Here two-to-one means that this homomorphism is onto, and that the inverse image of each element consists of
two elements.

2 Let us recall here that the word “unitary” is not always repeated, as all our representations are understood to be
unitary unless otherwise specified.
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described only in Section 8.4, so for the time being we take their importance for granted.
We describe a few elementary but basic properties.

Definition 8.1.1 The group SL(2,C) is the group of 2 × 2 complex matrices of
determinant 1.

In this terminology L stands for “linear” and S for “special”, i.e. of determinant 1.
Of course 2 stands for the dimension and C for the fact that we deal with complex matrices.
This group is connected but is not compact, as is seen by considering the elements(

a 0
0 1/a

)
which do not have a limit as a→∞. As a consequence, it is known on general grounds that
it cannot have a non-trivial continuous finite-dimensional unitary representation. A direct
proof of this fact follows from the description of all the continuous finite-dimensional
representations given in Appendix D. Consequently, when we discuss representations of
SL(2,C), it is always understood that these are non-unitary representations.

Given a 2× 2 matrix A, the matrix A∗ called the conjugate of A is obtained from A by
replacing each entry by its complex conjugate. The matrix AT is the transpose of A. Thus

A =
(
α β

γ δ

)
⇒ A∗ =

(
α∗ β∗

γ ∗ δ∗

)
; AT =

(
α γ

β δ

)
.

We also consider A†, the conjugate-transpose of A, i.e.

A =
(
α β

γ δ

)
⇒ A† =

(
α∗ γ ∗

β∗ δ∗

)
.

The name of conjugate-transpose forA† is justified byA† = (AT )∗ = (A∗)T . To understand
the notation, let us observe that to each 2×2 complex matrix A corresponds an operator on
C2: Identifying the elements ofC2 with column vectors, it is the operator x �→ Ax whereAx
is the column vector product of the matrix A and the column vector x. Under this natural
identification, the operator corresponding to the matrix A† is the adjoint of the operator
corresponding to the matrix A. Here physics notation clashes with standard mathematical
notation and the reader should be careful to distinguish between the conjugate matrix A∗

and the transpose-conjugate matrix A†.

Definition 8.1.2 Given a group G of n× n matrices the defining representation of G
is the representation of G on Cn obtained by considering as above each element
of G as an operator on Cn.

The following rather trivial fact will turn out to be quite important.

Lemma 8.1.3 The map A �→ A†−1 is a group homomorphism of SL(2,C), that is
(AB)†−1 = A†−1B†−1.

Proof Each of the operations A �→ A† and A �→ A−1 reverses the order of multiplication,
e.g. A†B† = (BA)†.
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We can immediately write no less than four different (non-unitary) representations of
dimension 2 of SL(2,C).3 They are given respectively by

π (A) = A ; π (A) = A†−1 ; π (A) = A∗ ; π (A) = (AT )−1.

Each of these formulas defines a representation because π (AB) = π (A)π (B).
The first two representations above, π (A) = A and π (A) = A†−1 are of fundamental

importance. They are not equivalent in the sense that there exists no element B ∈ SL(2,C)
for which BAB−1 = A†−1 for all A. This will be obvious in a moment. The following says
that, on the other hand, the representation π (A) = A∗ is equivalent to the representation
π (A) = A†−1.

Lemma 8.1.4 Consider the matrix

J =
(

0 1
−1 0

)
. (8.1)

Consider C ∈ SL(2,C). Then denoting by C∗ the conjugate matrix of C, where all
entries have been replaced by their complex conjugate, we have J−1C∗J = C†−1.

Proof For C ∈ SL(2,C) we have

C =
(
α β

γ δ

)
with αδ − βγ = 1, so that

C−1 =
(
δ −β
−γ α

)
; C†−1 =

(
δ∗ −γ ∗
−β∗ α∗

)
, (8.2)

while, by direct computation, and since J−1 = −J ,

J−1C∗J =
(

0 −1
1 0

)(
α∗ β∗
γ ∗ δ∗

)(
0 1
−1 0

)
=
(
δ∗ −γ ∗
−β∗ α∗

)
.

It is rather obvious that the representations π (A) = A and π (A) = A∗ are not equivalent.
Indeed there cannot exist a matrix B such that BAB−1 = A∗ because the matrix BAB−1

has the same eigenvalues as the matrix A, while this is not in general the case for A∗.
Consequently the representations π (A) = A and π (A) = A†−1 are not equivalent either.

Exercise 8.1.5 Show that the representation π (A) = (AT )−1 is equivalent to the
representation π (A) = A.

Definition 8.1.6 The group SU (2) is the group of 2× 2 complex unitary matrices A
(i.e. such that AA† is the identity) of determinant 1.

Thus SU (2) is a subgroup of SL(2,C). It is exactly the subset of SL(2,C) consisting of
matrices A for which A = A†−1. We can view SU (2) as the group of unitary operators

3 We will eventually learn how to describe all finite-dimensional representations of SL(2,C). There are no other
non-equivalent representations of dimension two than the ones we describe here.



186 Representations of the Orthogonal and the Lorentz Group

of determinant 1 on a two-dimensional Hilbert space H. As in the case of SL(2,C), the
elements of SU (2) act on H in a canonical manner: If we represent the elements of H as
column matrices, this operation is matrix multiplication. In contrast with SL(2,C) we do
not get a new representation when we make A act by A†−1 on C2 because A†−1 = A. Also
in contrast with SL(2,C), SU (2) is a compact group.

When one needs to do explicit computations, the following is useful to know.

Lemma 8.1.7 An element of SU (2) is of the type

U =
(

α β

−β∗ α∗

)
(8.3)

for complex numbers α,β with |α|2 + |β|2 = 1.

Proof The rows of the matrix must be orthogonal of length 1, so that given the first row
(α,β) the second row must be of the type (−cβ∗,cα∗) and computing the determinant of
the matrix yields c = 1.

Let us call a curve a continuous map ϕ from [0,1] to SL(2,C). We say that the curve ϕ
is a loop if ϕ(0) = ϕ(1).

Corollary 8.1.8 The group SU (2) is simply connected i.e. all loops can be continu-
ously contracted to a point. In fact each loop can be contracted to the unit I . That is,
given a loop ϕ, there is a continuous map f from [0,1]2 to SU (2) such that f (0,t) = I

and f (1,t) = ϕ(t).

Proof It follows from Lemma 8.1.7 that topologically SU (2) is the three-sphere in
C2 � R4.

Lemma 8.1.9 The group SL(2,C) is simply connected.

Proof For C ∈ SL(2,C) the matrix CC† is positive Hermitian i.e. its eigenvalues are
≥ 0, because (x,CC†x) = ‖C†x‖2 ≥ 0 for any x. Then there is a basis on which CC† is
diagonal. This makes it obvious that there exists a positive Hermitian matrix B such that
B2 = CC†. Then B−1CC†B†−1 = I , so that B−1C ∈ SU (2). Thus C = BA where A ∈
SU (2) and B is positive Hermitian. It is easy to show that B is determined by the relation
BB† = CC† (see Exercise 8.1.10) and that the map C �→ (B,A) is continuous. Consider a
loopC(t) in SL(2,C). Using the unique decompositionC(t) = B(t)A(t) as above, thenA(t)
defines a loop in SU (2) and B(t) defines a loop in the space of positive Hermitian matrices
of determinant 1. Since we have proved that we can contract the curve A(t) to the unit I , it
suffices to show that the curveB(t) can be contracted to a constant loop.4 For 0 ≤ t,u ≤ 1 let
us define B(t,u) as follows. Since B(t) is positive Hermitian, there is an orthonormal basis
such that the basis vectors are eigenvectors of B(t) with eigenvalues λ(t) ≥ 1 and 1/λ(t).
(This basis is essentially uniquely determined unless B(t) = I .) In the same orthogonal

4 We are sketching here the idea of homotopy. The reader can find more details in a basic topology book such as
that of Munkres [57].
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basis the eigenvalues of B(t,u) are λ(t,u) and 1/λ(t,u) where λ(t,u) = 1 + u(λ(t) − 1).
It is then obvious that the map (t,u) → B(t,u) is continuous, whereas B(t,1) = B(t) and
B(t,0) = I .

Exercise 8.1.10 Prove that a positive Hermitian matrix has a unique positive
Hermitian square root. Prove that the map that sends a positive Hermitian matrix
A to its positive Hermitian square root is continuous.

8.2 A Fundamental Family of Representations of SU (2)

For each j ≥ 0 there exists an irreducible unitary representation πj of SU (2) of dimension
j + 1, and this representation is unique up to unitary equivalence. The representations πj
being fundamental objects, we shall look at them from several angles. On the other hand,
the uniqueness up to unitary equivalence is less fundamental for our main story, so its proof
is relegated to Appendix D.

In the present section we will follow the idea of Section 4.6 to construct the representa-
tions πj . This presentation appeals to mathematicians, although physicists usually prefer to
use tensors to describe this representation, the topic of the next section.

Lemma 8.2.1 The elements of SU (2) act on the unit sphere S={z1,z2;|z1|2 +
|z2|2= 1} of C2. The canonical probability dμ on S is invariant under this action.

Proof The elements of SU (2) are unitary operators which act on the two-dimensional
Hilbert space C2. Since they preserve the norm, they leave the unit sphere S of C2 invariant.
Thus SU (2) acts on S. Since S identifies with the unit sphere of R4, it has a canonical
probability measure dμ, which is simply the normalized surface measure of the unit sphere
of R4. It is invariant under the action of any element of SU (2). This is obvious if one looks at
what happens in a basis where this element of SU (2) is diagonal. Indeed the transformations
(z1,z2) → (az1,z2) where |a| = 1 preserve dμ and the action of a diagonal element of
SU (2) is the composition of two such operations (one for each coordinate).

Consequently, as explained in Section 4.6, this action of SU (2) on S induces a unitary
representation of SU (2) onL2(S,dμ). This representation is however not irreducible. Indeed
for every j ≥ 0 the space of (restrictions to S of) homogeneous polynomials of degree j in
the coordinates is invariant under this action. Such a polynomial is of the form

f (z1,z2) =
∑

0≤i≤j
ciz

i
1z
j−i
2 , (8.4)

so that these polynomials form a space Hj of dimension j + 1. Through a brief but violent
struggle with elementary integrals (using Gaussian integrals to compute integrals of poly-
nomials on the sphere in R4) one may prove that the monomials zi1z

j−i
2 form an orthogonal

basis in L2(S,dμ), and that

‖zi1zj−i2 ‖2 = 1

(j + 1)
(
j
i

) . (8.5)
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Exercise 8.2.2 The identity |z1|2 + |z2|2 = 1 holds on S. Raise this identity to the
power j to check the formula∑

0≤i≤j

(
j

i

)
‖zi1zj−i2 ‖2 = 1.

Let us rephrase the definition of this representation.

Definition 8.2.3 The representation πj of SU (2) on the space Hj of homogeneous
polynomials of degree j on the unit sphere of C2 is given for A ∈ SU (2) by

πj (A)(f )(z1,z2) = f (z′1,z
′
2) (8.6)

where (
z′1
z′2

)
= A−1

(
z1

z2

)
= A†

(
z1

z2

)
. (8.7)

Let us stress again that in (8.7) (as in (4.46)) appears A−1 rather than A. Let us also
observe the following immediate fact, where I denotes the 2× 2 identity matrix,

πj (−I )(f ) = (−1)j f . (8.8)

Exercise 8.2.4 For j = 1, prove that the representation π1 is equivalent to the repre-
sentation π (A) = A.

Proposition 8.2.5 The representation πj is irreducible.

Consider the element f of Hj given by (8.4), and assume that f �= 0. Let us denote by
G the closed linear span of the vectors πj (A)(f ) for A ∈ SU (2). The goal is to show that
G = Hj (after which the conclusion follows by Lemma 4.5.6). We will reach it in several
steps.

Lemma 8.2.6 If G contains the polynomial
∑

i ciz
i
1z
j−i
2 then it contains each mono-

mial ckzk1z
j−k
2 . In particular if ck �= 0 the space G contains the monomial zk1z

j−k
2 .

Proof Consider the case where A is diagonal, with diagonal elements a,a−1, |a| = 1.
Then

πj (A)f (z1,z2) =
∑

0≤i≤j
cia
−izi1a

j−izj−i2 . (8.9)

Thus, multiplying the above right-hand side by a2k−j , we obtain that for any 0 ≤ k ≤ j the
space G contains the polynomials

g(z1,z2) =
∑

0≤i≤j
cia

2k−2izi1z
j−i
2 .

Taking a = exp(iθ ), averaging over 0 ≤ θ ≤ 2π and using that
∫ 2π

0 dθ exp(inθ ) = 0 for

n �= 0 yields that G contains the monomial ckzk1z
j−k
2 .
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Lemma 8.2.7 If G contains a monomial zk1z
j−k
2 then for each θ ∈ R it contains the

polynomial

(z1 cos θ + z2 sin θ )k(−z1 sin θ + z2 cos θ )j−k . (8.10)

Proof Consider the case where A is the rotation of angle θ .

Proof of Proposition 8.2.5 As a consequence of Lemma 8.2.6, G contains a monomial
zk1z

j−k
2 . Therefore it contains the polynomial (8.10) for each θ . When sin θ cos θ �= 0, the

coefficient of zj1 in this polynomial is not zero. According to Lemma 8.2.6, G contains the

monomial zj1. It then contains the polynomial (8.10) in the case k = 0. When sin θ cos θ �= 0,
the coefficient of each monomial in this polynomial is �= 0. Then G contains each such
monomial by Lemma 8.2.6, and therefore coincides with Hj .

The previous proof is the simplest “by hand” proof I could figure out. The alternate proof
below is an elementary transcription of the “standard” proof using Lie algebras, about which
the reader can learn in Appendix D.

Magic Proof of Proposition 8.2.5 Consider a subspace G of Hj which is invariant under
each map πj (A) for A ∈ SU (2). If σ is a traceless 2× 2 Hermitian matrix, then exp itσ ∈
SU (2), so that given f ∈ G then πj (exp itσ )(f ) ∈ G. The derivative in t of this t-dependent
element of G also belongs to G:

−1

i

d

dt
πj (exp itσ )(f ) ∈ G. (8.11)

Now, πj (exp itσ )(f )(z1,z2) = f (z1(t),z2(t)) where(
z1(t)
z2(t)

)
= exp(−itσ )

(
z1

z2

)
.

Using then (8.11) for t = 0 we obtain that for f ∈ G, ż1
∂f
∂z1
+ ż2

∂f
∂z2
∈ G where(

ż1

ż2

)
= σ

(
z1

z2

)
.

Here σ can be any of the Pauli matrices σ1,σ2,σ3, or even any linear combination with
complex coefficients of such matrices. Using for σ the matrices σ1± iσ2 one finds that G is
invariant under the operators z2

∂
∂z1

and z1
∂
∂z2

. We now show that this implies that G = Hj

wheneverG is not empty. Indeed, consider f (z1,z2) =∑
0≤i≤j ciz

i
1z
j−i
2 �= 0 ∈ G. Consider

the largest integer k for which ck �= 0. Applying k times the operator z2
∂
∂z1

shows that the

monomial zj2 belongs to G, and applying i times the operator z1
∂
∂z2

to this monomial shows

that the monomial zi1z
j−i
2 belongs to G.

Let us note that πj extends to a representation of SL(2,C) by using the very same
formulas (8.6) and (8.7). Of course this representation is not unitary.

In physics one often makes use of special properties of the representation πj . These are
investigated in the next exercise.
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Exercise 8.2.8 Prove the following. Consider the orthonormal basis fi = αiz
i
1z
j−i
2

for 0 ≤ i ≤ j where αi > 0 is a normalization constant. Prove that αi = αj−i . Prove
that the matrix J of Lemma 8.1.4 satisfies

πj (J )(fi) = (−1)ifj−i ; πj (J−1)(fi) = (−1)j−ifj−i . (8.12)

For C ∈ SU (2) denote by πj (C)k,� the matrix of πj (C) in this basis. Then

πj (C)∗k,� = πj (C∗)k,� = (−1)k+�πj (C)j−k,j−�. (8.13)

8.3 Tensor Products of Representations

Tensor products provide a powerful method to construct new representations from old
ones. The basic idea is that if for j = 1,2, Uj is a representation of a group G on Hj

then U1 ⊗ U2(A) := U1(A)⊗ U2(A) is a new representation of G, this time on H1 ⊗H2.
When U1 and U2 are unitary, so is the new representation. As will be obvious soon,
even when U1 and U2 are irreducible, this need not be the case of U1⊗U2. However when
we are working with unitary representations, H1⊗H2 can be decomposed in an orthogonal
sum of irreducible invariant subspaces for U1 ⊗ U2 and it is a very interesting problem to
figure out which irreducible representations occur this way. In the case where G = SU (2)
the problem is known under the name addition of angular momentum. It is treated in detail in
most Quantum Mechanics textbooks, and in Proposition D.7.6. Typically inside H1 ⊗H2

one can find irreducible invariant subspaces on which U1 ⊗ U2 is “larger” than either
U1 or U2.

Let us put this idea of taking tensor products to work in the simplest possible manner.
Consider the tensor product H = (C2)⊗j of j copies of C2. Thus, if e1,e2 denote the
standard basis vectors of C2, an orthonormal basis of this space consists of the 2j vectors
en1 ⊗ en2 ⊗ · · · ⊗ enj where ni ∈ {1,2} for 1 ≤ i ≤ j , and a generic element of the tensor
product is a sum

x =
∑

xn1,...,nj en1 ⊗ en2 ⊗ · · · ⊗ enj

where the summation is over all ni ∈ {1,2} for 1 ≤ i ≤ j . Using simpler notation, we write
x = (xn1,...,nj ) where it is understood that all indices are equal to 1 or 2. Each element A of
SU (2) can be seen as a unitary operator on C2 and the operator U (A) := A⊗j is therefore
unitary on H. ThusA �→ U (A) defines a unitary representation of SU (2). In concrete terms,
if An,k denotes the entries of the matrix A, with n ∈ {1,2} indicating the row and k ∈ {1,2}
indicating the column, U (A) transforms the tensor (xn1,...,nj ) into the tensor( ∑

k1,...,kj

An1,k1 · · ·Anj,kj xk1,...,kj

)
. (8.14)

This representation is however not irreducible because it leaves invariant the subspace Sj
of symmetric tensors, those for which xn1,...,nj is invariant under any permutation of the
indices. For such a symmetric tensor, the value of xn1,...,nj depends only on how many of
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the indices are equal to 1 (the rest being equal to 2) so Sj is a space of dimension j +1. Let
us denote by �j the restriction of the representation A �→ U (A) to Sj , so that

�j (A)((xn1,...,nj )) =
( ∑
k1,...,kj

An1,k1 · · ·Anj,kj xk1,...,kj

)
. (8.15)

Proposition 8.3.1 The representation�j of SU (2) in Sj is unitarily equivalent to the
representation πj of SU (2) in the space of polynomials described in Definition 8.2.3.

Proof Let us recall the space Hj of polynomials of the form (8.4). We define the map
W : Sj → Hj by

W ((xn1,...,nj )) =
∑

n1,...,nj

xn1,...,nj zn1zn2 · · · znj , (8.16)

where the summation is over n1, . . . ,nj ∈ {1,2}. First we prove that
√
j + 1W is unitary.

For this let ci be the common value of the numbers xn1,...,nj when exactly i of the indices
n� are equal to 1, so that the right-hand side of (8.16) equals∑

0≤i≤j

(
j

i

)
ciz

i
1z
j−i
2

and according to (8.5) the square of the norm of this element is

∑
0≤i≤j

(
j

i

)2

|ci |2‖zi1zj−i2 ‖2 = 1

j + 1

∑
0≤i≤j

(
j

i

)
|ci |2 = 1

j + 1
‖(xn1, . . . ,xnj )‖2.

We reformulate (8.7) as z′n =
∑

k=1,2 A
∗
k,nzk and we compute

πj (A) ◦W ((xn1,...,nj )) =
∑

n1,...,nj

xn1,...,nj z
′
n1
z′n2
· · · z′nj

=
∑

k1,...,kj

( ∑
n1,...,nj

A∗k1,n1
· · ·A∗kj,nj xn1,...,nj

)
zk1 · · · zkj

=
∑

n1,...,nj

( ∑
k1,...,kj

A∗n1,k1
· · ·A∗nj,kj xk1,...,kj

)
zn1 · · · znj .

Comparing with the transformation rule (8.14) this means that

πj (A) ◦W = W ◦�j (A∗),

and we have shown that the representations A �→ πj (A) and A �→ �j (A∗) are unitarily
equivalent.

Finally, since by Lemma 8.1.4 we have J−1A∗J =A for A∈ SU (2), it holds that
A⊗j =V −1(A∗)⊗jV for V = J⊗j and thus the representations A �→�j (A∗) and
A �→ �j (A) are unitarily equivalent. Therefore πj and�j are also unitarily equivalent.
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We now use the same idea to describe some representations of SL(2,C). A key feature
here is that the map A �→ A†−1 is a representation of SL(2,C), and that it may also be
“tensorized”. Consider the space Sj,� of tensors

x = (xn1,...,nj,m1,...,m�
)

which are symmetric in both n1, . . . ,nj andm1, . . . ,m�,5 a space of dimension (j+1)(�+1).

Definition 8.3.2 The (j,�) representation6 of SL(2,C) is the representation on Sj,�
such that the action of A ∈ SL(2,C) on Sj,� is given by the restriction to this space
of the operator A⊗j

⊗
(A†−1)⊗�.

In Appendix D we prove that this representation is irreducible, and that all irreducible
finite-dimensional representations of SL(2,C) are obtained this way. We will use only the
(1,0), (0,1) and (1,1) representations. The representation (1,1) of SL(2,C) lives on C4. We
will gradually understand its importance.

8.4 SL(2,C) as a Universal Cover of the Lorentz Group

The group SL(2,C) is closely related to the Lorentz group SO↑(1,3) and the group SU (2) to
the group SO(3) of rotations. We thoroughly investigate this relationship. The importance
of the present section cannot be overestimated. It is crucial for all the matters concerning
representations of the Lorentz group and the group of rotations. The meaning of the title of
this section will be explained only later.

Let us denote by H the space of 2× 2 Hermitian matrices. The basic observation is that
if M ∈ H and A ∈ SL(2,C) then the matrix AMA† is Hermitian. Thus each A ∈ SL(2,C)
induces a linear map κ(A) : H→ H given by

κ(A)(M) = AMA†. (8.17)

Moreover it is straightforward to check that this is a group homomorphism i.e. κ(A)κ(B) =
κ(AB). As it turns out, H can be naturally identified with R1,3, and under this identification
we are going to prove that κ(A) is a Lorentz transformation. In this manner we define a group
homomorphism κ from SL(2,C) to SO↑(1,3).

To make matters explicit, we observe that the space H of 2 × 2 Hermitian matrices is
of dimension four as a real vector space. A natural basis consists of the following four
matrices:

σ0 = I =
(

1 0
0 1

)
; σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
. (8.18)

We can then identify H with R1,3 using the correspondence

x ∈ R1,3 ↔ M(x) := xμσμ =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (8.19)

5 That is, the value of xn1,...,nj ,m1,...,m� does not change under any permutation of n1, . . . ,nj or any
permutation of m1, . . . ,m�.

6 This representation is usually denoted (j/2,�/2), and we do not follow the common usage here.
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where we use the standard notation xμσμ =
∑

0≤μ≤4 x
μσμ. This notation will be used

many times and should be learned now. The key fact is that

detM(x) = (x0)2 − (x1)2 − (x2)2 − (x3)2 = xμx
μ = x2 = (x,x). (8.20)

For every A ∈ SL(2,C) and every x ∈ R1,3 the matrix AM(x)A† is Hermitian, so there
exists a unique element κ(A)(x) ∈ R1,3 such that

M(κ(A)(x)) = AM(x)A†, (8.21)

which is just the way to rewrite (8.17) under our identification of H and R1,3. Moreover,
since detA = 1, we have detM(κ(A)(x)) = detM(x), which means from (8.20) that κ(A)
preserves the quantity (x,x) i.e. κ(A) ∈ O(1,3), that is, κ is a group homomorphism from
SL(2,C) into O(1,3). The notation κ(A) will be massively used in the sequel and should be
memorized at this point. It is easy and very instructive to compute κ(A) whenA is diagonal.
In that case, since A ∈ SL(2,C) (and since any non-zero complex number is of the type
exp a for some a ∈ C), it is of the type

A =
(

exp a 0
0 exp(−a)

)
= exp(aσ3),

where a ∈ C and where the exponential of the matrix is computed as the sum of the usual
power series (or should simply be considered here as a convenient notation). The following
is obtained by a few lines of straightforward computation but is nonetheless very important.
For s ∈ R,

κ(exp sσ3/2) = Bs, (8.22)

where Bs is the boost considered in Section 4.3. Moreover, for θ ∈ R,

κ(exp(−iθσ3/2)) = Rθ, (8.23)

where Rθ is the rotation of angle θ around the third axis of R3 seen as a Lorentz transfor-
mation in Section 4.2.

Exercise 8.4.1 Make sure you carry out the computations (8.22) and especially (8.23)
to understand the confusing change of sign here.

This doubling of the angle is related to the fact that there are two factors A in the right-
hand side of (8.21). What happens for other directions than the third axis is investigated in
Appendix D.

Since SL(2,C) is connected, the image of this group under κ is contained in the connected
component of the identity of O(1,3), i.e. SO↑(1,3). After studying Appendix D it will be
obvious to the reader that this image is the whole of SO↑(1,3).

Exercise 8.4.2 Find a direct proof of this fact. Hint: Prove that a group of rotations
that contains all the rotations around the third axis and at least another rotation is the
whole of SO(3). To prove that κ(SU (2)) contains a rotation that is not around the third
axis, you may use direct computation or Lemma 8.4.3.
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Lemma 8.4.3 If κ(A) is the identity then A = ±I . Thus if κ(A) = κ(B) then either
A = B or A = −B.

Therefore the inverse image of any element of SO↑(1,3) is determined up to a sign, and
thus κ is a two-to-one homomorphism from SL(2,C) onto SO↑(1,3).

Proof If κ(A) is the identity then in particular since M(e0) = I we have AA† = I so
A ∈ SU (2). Thus A = UBU−1 where B ∈ SU (2) is diagonal and U ∈ SU (2). Thus B is
of the type B = exp(iθσ3). Since κ(U )κ(B)κ(U )−1 = I then κ(B) = I , and by (8.23) θ is
a multiple of π so B = ±I .

An element of SO↑(1,3) can be seen as a real 4 × 4 matrix, and thus as an operator
on C4. In this manner the map κ can be thought of as a representation of SL(2,C) of
dimension four.

Exercise 8.4.4 If you keep reading you will eventually find a proof that this repre-
sentation is equivalent to the representation (1,1) of Definition 8.3.2, but it would be
much more rewarding to figure this out yourself. This is not easy. Hint: You may try
to read Proposition D.12.2.

Let us recall that we say that an element of SO↑(1,3) is a rotation if it is of the type
(x0,x) → (x0,T (x)) where T ∈ SO(3). In this manner we identify SO(3) as a subgroup
of SO↑(1,3). As we have observed an element of SO↑(1,3) is a rotation if and only if
it fixes e0 = (1,0,0,0), and since M(e0) = I this means that κ(A) is a rotation if and
only if AA† = I , i.e. if and only if A ∈ SU (2). Thus the restriction of κ to SU (2) is
valued in SO(3), and is also a two-to-one homomorphism. This map is also of considerable
importance.7 In summary:

The map κ is a two-to-one homomorphism from SL(2,C) to SO↑(1,3). Its restriction to
SU (2) is a two-to-one homomorphism from SU (2) to SO(3).8

Exercise 8.4.5 The restriction of κ to SU (2) is valued in SO(3). Thinking of an
element of SO(3) as a unitary transformation, this restriction can be seen as a unitary
representation of SU (2). Prove that it is unitarily equivalent to the representation π2

of Definition 8.2.3. Warning: This is not so easy.

We end this section by investigating in more detail the map κ for further use. Let us say
that a matrix is positive definite Hermitian if it is Hermitian and its eigenvalues are positive.

Lemma 8.4.6 If V ∈ SL(2,C) is positive definite Hermitian then κ(V ) is a pure
boost. Moreover each pure boost is of the type κ(V ) for a unique positive definite
Hermitian matrix.

Proof If V is positive definite Hermitian it can be diagonalized in an orthonormal basis,
so that V =UCU−1, where U is unitary and C is diagonal with positive eigenvalues.

7 It is unfortunate that many physics textbooks do not distinguish between SL(2,C) and SO↑(1,3) or between
SU (2) and SO(3). They even sometimes go as far as not distinguishing between a Lie group and its Lie
algebra.

8 The reason for the name “universal cover” will be explained in the next section.
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Thus κ(V ) = κ(U )κ(C)κ(U )−1. Since C is diagonal with positive eigenvalues, it is of the
type exp(sσ3/2), and we have then seen earlier that κ(C) is the boost Bs . SinceR = κ(U ) is
a rotation, we know from Lemma 4.3.3 (b) that κ(V )=RBsR−1 is a pure boost. Conversely,
given a boostB, to prove the existence ofV , we reduce to the case whereB =Bs and we take
V = exp(sσ3/2). The uniqueness follows from the fact that if κ(W ) = B then W = ±V ,
and that −V is negative definite.

Exercise 8.4.7 For an operatorL on R1,3 we denote byLT the operator whose matrix
is the transpose of the matrix of L. Prove that

κ(A†) = κ(A)T . (8.24)

Hint: Consider first the cases where A is positive definite Hermitian and where A is
unitary. Prove then that each element of SL(2,C) is the product of two such matrices.

8.5 An Intrinsically Projective Representation

There is a fundamental difference between true and projective representations, which we
illustrate in this section. Recalling first that each element of SL(2,C) can be thought of as
a linear transformation of C2 (a matrix acting on C2 in the natural manner) we will prove
that if we consider a function9 ρ : SO↑(1,3)→ SL(2,C) such that for each C ∈ SO↑(1,3)
it holds that

κ(ρ(C)) = C, (8.25)

then the restriction of ρ to SO(3) is a projective unitary representation of SO(3) which does
not arise from a true representation (whereas ρ itself is a non-unitary projective representa-
tion of SL(2,C) which does not arise from a true representation).10

We will show that a function ρ satisfying (8.25) can never be really satisfactory,11 and
that even its restriction to SO(3) cannot be satisfactory either.

We observe first that

C ∈ SO(3)⇒ ρ(C) ∈ SU (2), (8.26)

because A ∈ SU (2) if and only if κ(A) ∈ SO(3).
Let us consider first a toy situation. The map z �→ z2 from the group U of complex

numbers of modulus 1 to itself is a two-to-one group homomorphism, which somehow
corresponds to κ in the present situation. It is not possible to find a map θ from U to itself
such that θ (z)2 = z in a continuous and single-valued way. More accurately, this can be
done locally but not on all U. (The reader may try to show that it is not possible to find θ

9 ρ is effectively a procedure by which, for each C ∈ SO↑(1,3) we choose one element A of SL(2,C) such that
κ(A) = C. In mathematics, such a function is called a section of the map κ .

10 If one adopts the abstract point of view of Section 2.12 “all the possible choices of ρ correspond to a single
projective representation of SO↑(1,3)”. To see this, we observe that the only multiples of the identity that
belong to SL(2,C) are ±I . Using Lemma (8.4.3) shows that the group SL(2,C)p , the quotient of SL(2,C) by
the subgroup of multiples of the identity, i.e. by subgroup {I, − I }, identifies with SO↑(1,3), and the
canonical map from SL(2,C) to SL(2,C)p identifies with κ . The composition of κ and ρ does not depend on
ρ: it is the identity of SO↑(1,3).

11 As is made precise in the last sentence of the statement of Theorem 8.5.1.
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that is continuous.) Here one may construct ρ nicely in a neighborhood of the identity of
SO(3) but it is impossible to do this globally.

To investigate this, let us assume that we have chosen for each C ∈ SO↑(1,3) a ρ(C) ∈
SL(2,C) satisfying (8.25). Using this relation for C = κ(A), A ∈ SL(2,C) shows that
κ[ρ(κ(A))] = κ(A) so that

ρ(κ(A)) ∈ {±A}. (8.27)

Thus, the “choice” of ρ(C) is really only up to a sign. We will lighten notation by writing
(8.27) as ρ(κ(A)) = ±A.

Theorem 8.5.1 For C1,C2 in SO↑(1,3) we have

ρ(C1C2) = ±ρ(C1)ρ(C2). (8.28)

The restriction of ρ to SO(3) is a projective unitary representation of SO(3) on C2.
This projective representation is not continuous for the usual topology (the topology
on 3× 3 matrices) and does not arise from a true representation.12

However careless we are in constructing ρ, it satisfies (8.28), which implies that it is a
(non-unitary) projective representation of SO↑(1,3) on C2. Yet, however clever we are, we
cannot do much better than this. Any such ρ provides an example of a projective represen-
tation which is genuinely not a true representation. The reason why ρ is not continuous is
that the usual topology is not the natural topology to consider here. For the natural topology,
described in Section A.2, ρ is continuous.13

Proof Given C1,C2 ∈ SO↑(1,3), we have

κ(ρ(C1C2)) = C1C2 = κ(ρ(C1))κ(ρ(C2)) = κ(ρ(C1)ρ(C2)),

and this proves (8.28). For C ∈ SO(3), ρ(C) ∈ SU (2) is an element of the group of unitary
transformations of C2 and consequently (8.28) proves that the restriction of ρ to SO(3) is a
projective unitary representation. Next we prove that ρ is not continuous. Let us recall that
κ(exp(−iθσ3/2)) = Rθ , the rotation of angle θ around the third axis. Hence

ρ(Rθ ) = ρ(κ(exp(−iθσ3/2))) = ± exp(−iθσ3/2) = exp(−iϕ(θ )σ3)

where ϕ(θ ) ∈ {θ/2,θ/2+π}. Increasing θ from 0 to 2π we see that if ϕ is continuous then
if, say, ϕ(0) = 0 then ϕ(2π ) = π contradicting the fact that ϕ(0) = ϕ(2π ) since R2π = R0.
Therefore ϕ is not continuous, and as θ moves from 0 to 2π , ρ(Rθ ) must exhibit at some
point a brutal change of sign.

Next if ρ arises from a true representation we can find λ(C) ∈ U such that ρ′(C) :=
λ(C)ρ(C) satisfies

ρ′(C1)ρ′(C2) = ρ′(C1C2). (8.29)

12 The same results are true if one does not restrict ρ to SO(3).
13 In all the results stated about the structure of continuous projective representations, such as Proposition 8.6.2,

continuity refers to the natural topology as in Section A.2. These technical considerations are not essential.
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Applying κ to both sides we obtain λ(C1)λ(C2)C1C2 = λ(C1C2)C1C2, so that λ(C1)λ(C2) =
λ(C1C2). As is shown in Lemma 8.5.2, this proves that λ ≡ 1, so that to prove that
(8.29) cannot hold it suffices to prove that ρ itself is not a true representation. Now
ρ(Rπ ) = exp(−iθσ3/2) where θ ∈ {π,3π}, so that ρ(Rπ )2 = −I . Then we cannot have
both ρ(Rπ )2 = ρ(R2

π ) and ρ(R2
π ) = ρ(1) = I .

Lemma 8.5.2 If a mapϕ : SO(3)→C satisfiesϕ(1) = 1 andϕ(C1C2) = ϕ(C1)ϕ(C2)
for all choices of C1,C2 then ϕ takes only the value 1.

In particular the one-dimensional representations of SO(3) are trivial.

Proof If you have heard of the theory of Lie algebras, this should be obvious when you
assume that ϕ is differentiable. The derivative ϕ′ of ϕ is a Lie algebra homomorphism into a
commutative Lie algebra, so that everything that is a bracket is sent to zero, and the brackets
generate the Lie algebra of SO(3) as is shown in particular by the commutation relations
between the standard generators.

A direct proof is hardly more difficult, and has the advantage not to assume any kind of
regularity on ϕ. Given A ∈ SO(3), ϕ(A)ϕ(A−1) = ϕ(1) = 1 so that ϕ(A−1) = ϕ(A)−1.
Given A,B ∈ SO(3), then ϕ(ABA−1B−1) = 1, so it suffices to show that every element
of SO(3) is of this type. The key observation is that if A and C are two rotations of the
same angle, but not necessarily of the same axis, then we can find a rotation B for which
A = BCB−1. This applies in particular to the case C = A−1 which is a rotation of the
same angle as A but around the opposite axis. Then ABA−1B−1 = A2 which finishes the
proof since every rotation is a square.

Let us look deeper into the topological structure of the two-to-one map A �→ κ(A) from
SU (2) to SO(3). Given a continuous map ϕ from [0,1] to SO(3) (i.e. a curve in SO(3))
we can lift it into a continuous map ψ from [0,1] to SU (2) such that κ(ψ(t)) = ϕ(t). This
is possible because locally κ is a homeomorphism: There exists a neighborhood W of the
unit in SU (2) such that κ is a homeomorphism between W and κ(W ). However if ϕ is a
loop, i.e. ϕ(0) = ϕ(1) this need not be the case for ψ . There are exactly two different types
of loops ϕ in SO(3), those for which their lifting14 is also a loop, and those for which it is
not. Two loops of a different type cannot be continuously deformed into each other, but two
loops of the same type can (as the reader will show using that SU (2) is simply connected).
The words “universal cover” in the title of the previous section reflect the fact that there is a
covering A �→ κ(A) from the simply connected group SU (2) to SO(3), and that all curves
in SO(3) can be lifted to curves in SU (2).15

The following exercise brings forward a rather extraordinary fact. In a sense, while a
rotation of angle 2π around a given axis is by no means the identity, a rotation of angle 4π
cannot be distinguished from the identity.

14 There are exactly two ways to continuously lift a curve ϕ, and they are related by a change of sign.
15 It is also possible to show that SL(2,C) is simply connected, so that “SL(2,C) is the universal cover of

SO↑(1,3)”.
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Exercise 8.5.3 Let Rθ ∈ SO(3) be the rotation around the third axis by an angle θ .
Prove by an explicit construction that the loop ϕ(θ ) = R4πθ , 0 ≤ θ ≤ 1 can be
continuously contracted to the trivial loop. (This is quite challenging.)

Even though the choice ρ(C) of one of the two elements ±A such that κ(±A) = C

cannot be done in a really nice manner, it still can be of some use as shown in the following
exercise, where I denotes the 2× 2 identity matrix.

Exercise 8.5.4 Consider ρ as above and a representation π of SU (2) and the map
π ′ : A �→ π (ρ(A)). Prove that if π (−I ) is the identity then π ′ is a representation of
SO(3). Prove that if π (−I ) is minus the identity then π ′ is a projective representation
of SO(3).

We may apply in particular the result of Exercise 8.5.4 to π = πj since (8.8) implies that
πj (−I ) is (−1)j times the identity.

Exercise 8.5.5 Using Exercise 8.5.4 for π2 we construct a representation of SO(3)
of dimension 3. Try to figure out what it is. (It is easy to guess the result, but difficult
to prove it, unless you are familiar with Appendix D.)

Exercise 8.5.6 (a) If π is an irreducible representation of SU (2) prove that π (−I ) is
always ± the identity. Hint: Use Schur’s lemma.
(b) With the notation of Exercise 8.5.4 prove that if π is irreducible then π ′ is always
a projective representation.

In some sense Exercise 8.5.4 produces all the irreducible projective unitary representa-
tions of SO(3). A formal proof of this fact is given in Exercise 8.6.3.

Exercise 8.5.7 Since κ is a two-to-one homomorphism, for each C ∈ SO↑(1,3) the
set κ−1(C) = {A ∈ SL(2,C),κ(A) = C} has two elements. Prove that

κ−1(C)κ−1(B) = κ−1(CB), (8.30)

where on the left the product of two subsets F,G of SL(2,C) is defined as FG =
{AB;A ∈ F,B ∈ G}. The map C → κ−1(C) is called in many textbooks a double-
valued representation.

One never sees any of the considerations of the present section in textbooks of physics.
The reason is explained in detail in Appendix D. Physicists define “the action of rotations
on C2”, in a manner which we explain now in the case of rotations around the third axis.
The action on C2 of such a rotation Rθ of angle θ is that of the matrix

C(θ ) := exp(−iθσ3/2). (8.31)

Formula (8.31) makes sense because (8.23) implies that κ(C(θ )) = Rθ . The problem how-
ever is that C(θ ) is not determined by Rθ because changing θ into θ + 2π does not change
Rθ but changes the sign of C(θ ). As physicists say, there is a “sign ambiguity”, so in
our language they define a “double-valued representation”. For the purposes of Quantum
Mechanics, the sign ambiguity is irrelevant since projective representations are as good as
true representations.
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8.6 Deprojectivization

The following is a special case of a fundamental result of Bargmann [4] which is discussed
further in Section A.1.

Theorem 8.6.1 A strongly continuous unitary projective representation of SU (2)
arises from a true representation in the sense of Definition 2.11.1.

The proof in the case of finite-dimensional representations is easier than in the general
case, and is given in Section A.3.

Corollary 8.6.2 Consider a strongly continuous unitary projective representation π ′

of SO(3). Then there exists a true unitary representation π of SU (2) and for A ∈
SU (2) a complex number λ(A) of modulus 1 such that

∀A ∈ SU (2) ; π ′(κ(A)) = λ(A)π (A). (8.32)

Proof Apply Theorem 8.6.1 to the projective representationA→ π ′(κ(A)) of SU (2).

Exercise 8.6.3 Prove that all strongly continuous unitary projective representations
of SO(3) arise from a projective representation of SU (2) constructed through the
procedure of Exercise 8.5.4.

8.7 A Brief Introduction to Spin

In this section and the next we work within non-relativistic Quantum Mechanics.16

On page 181 we argued that, as a consequence of the fact that SO(3) is a group of
symmetries of Euclidean space, every quantum system should come equipped with a
strongly continuous projective unitary representation of SO(3). In view of Corollary 8.6.2,
we expect that:

Every quantum system comes equipped with a strongly continuous unitary representation
of SU (2).

For example, in the case where H = L2 = L2(R3,d3p/(2πh̄)3), the representation
corresponding to (II.2) is given for A ∈ SU (2) by

U (A)(ϕ)(p) = ϕ(κ(A−1)(p)). (8.33)

We somewhat abuse notation here since κ(A−1) ∈ SO↑(1,3) operates on R4 rather than
R3, but we have seen that when A ∈ SU (2) the operator κ(A−1) can also be considered as a
rotation. Let us stress that (8.33) is really nothing more than (II.2). We simply have replaced
the group SO(3) by “its nicer version SU (2)”.

The momentum state space H above is appropriate to describe (at the level of non-
relativistic Quantum Mechanics) particles whose state is entirely described by their
momenta. But it is a fundamental experimental fact that the state of many particles
(say, electrons) is not described only by their momenta.17 Besides the momenta, many

16 So, we forget that we ever heard of the Lorentz and Poincaré group.
17 That is, the result of certain experiments cannot, even statistically, be predicted when knowing only the

momentum of the particle.
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particles have “internal degrees of freedom” which have no classical equivalent. The use
of the momentum state space L2=L2(R3,d3p/(2πh̄)3) is not appropriate to describe
such particles, as it really describes only their momenta, but not their “internal degrees of
freedom”.

Let us recall the fundamental representation πj of Section 8.2 and its state space Hj . The
successful proposal to describe particles, including their “internal degrees of freedom”, is
to use the state space L2 ⊗Hj , equipped with the representation U ⊗ πj of SU (2), where
U is given by (8.33). We then state informally the following definition.

Definition 8.7.1 A particle whose state space is L2 ⊗ Hj equipped with the repre-
sentation U ⊗ πj of SU (2) above is said to be of spin j/2.18

Thus the possible values of the spin of a particle are 0,1/2,1, etc., and it is traditional
to say that spins are “half-integers”. Note that in this definition spin is a property of the
particle.

If we recall Principle 6 on page 73 the use of the tensor product L2 ⊗Hj is completely
natural: The momentum state space L2 is appropriate to describe the momentum of the par-
ticle, and Hj is the appropriate “state space” to describe the “internal degrees of freedom”.
Actually, the success of the model based on this tensor product can be interpreted as showing
that momentum and “internal degrees of freedom” are of an entirely different nature.19

Let us now have a closer look at the representation U ⊗πj . The tensor product L2⊗Hj

identifies with the space L2(R3,Hj,d3p/(2πh̄)3) of Hj -valued functions on R3 and with
this identification the representation U ⊗ πj is given by the formula

(U ⊗ πj )(A)(ϕ)(p) = πj (A)(ϕ(κ(A−1)(p))), (8.34)

with the same abuse of notation as in (8.33). Indeed, it suffices to prove this formula when
ϕ is of the type ϕ(p) = ψ(p)η for η ∈ Hj and ψ ∈ L2, and it becomes obvious. There
are two different ways in which A appears in the previous formula. The term κ(A−1) has
nothing to do with spin, and reflects that the momentum of the particle has changed due to
the rotation. It is the term πj (A) which reflects the spin.20

8.8 Spin as an Observable

Intuitively, particles with spin exhibit a kind of “internal angular momentum”. To discuss
this we outline in the briefest manner the theory of angular momentum. This theory is of
fundamental importance and is extensively developed in any book on Quantum Mechanics,
but we do not need to enter its details here.

18 This is an oversimplification, as it ignores the case where other quantum numbers might be needed to describe
the internal state of the particle.

19 Furthermore, the terminology “internal degrees of freedom” reflects the heuristic idea that whereas the
four-momentum of the particle is easily visible from outside, the “internal state” of the particle is more hidden
and reflects what happens “inside” the particle.

20 Quantum Mechanics describes the situation by stating that total angular momentum is the sum of orbital
angular momentum, corresponding to the term κ(A−1)(p), and of spin angular momentum, corresponding to
the term πj (A). Spin angular momentum is described in the next section.
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There are many one-parameter subgroups of SU (2), for example the group consisting
of the matrices exp(−iθσ3/2). The special importance of this group is that it intuitively
corresponds to the rotations around the z-axis, since κ(exp(−iθσ3/2)) is such a rotation, of
angle θ . Given a unitary representation � of SU (2), the formula V (θ ) = �(exp(−iθσ3/2))
defines a one-parameter unitary group. According to Stone’s theorem, the operator

J3(x) := lim
θ→0

h̄

iθ
(V (θ )(x)− x) (8.35)

is self-adjoint. This operator is called the angular momentum operator with respect to the z
axis.21

Exercise 8.8.1 Compute the operator J3 in the case of the representation (8.33).

When� = πj let us denote by S3
22 the operator defined by the formula (8.35). Since the

space Hj is of dimension j + 1, S3 can have at most j + 1 eigenvalues. On the other hand,

the relation (8.9) witnesses the state zk1z
j−k
2 being an eigenvector of eigenvalue h̄(j −2k)/2

of S3, so that h̄j/2,h̄(j/2− 1), . . . , − h̄j/2 are exactly the eigenvalues of S3.
In the setting of the previous section, one says that the operator 1⊗S3 measures the spin

of the particle along the z-axis. Observe here the traditional but very confusing terminology:

• The word “spin” is used on the one hand to describe a fixed property of the particle,
that its internal degrees of freedom are described by the state space Hj equipped with
the representation πj .

• On the other hand, for such a particle, “spin” is also something that you may measure
along any given direction.

The possible values of the spin (as an observable) of a particle of spin j/2 (as a property
of the particle) in any given direction are h̄j/2,h̄(j/2− 1), . . . , − h̄j/2.

Exercise 8.8.2 Assume that a particle of spin j/2 has spin h̄(j/2 − k) in the
z-direction, in the sense that the measurement of this spin will always yield the
value j/2 − k. In the ideal case where the wave function L2 → Hj is zero unless p

is in the positive z-direction, show that the action of a rotation of angle θ in the
z direction “multiplies the wave function by a phase exp(−iθ(j/2 − k))”. (Here a
rotation of angle 4π is different from a rotation of angle 2π!)

To understand how one should define spin, and more generally angular momentum, with
respect to another axis, you may study the first three sections of Appendix D.

8.9 Parity and the Double Cover SL+(2,C) of O+(1,3)

The group SO↑(1,3) represents a fundamental group of symmetries of space-time. Another
fundamental symmetry that does not belong to SO↑(1,3) is the parity operator P given by

21 This is the reason for the index 3 in the notation J3.
22 S stands for spin.
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(4.27) i.e. P (x0,x) = (x0, − x). An important difference of nature between P and the ele-
ments of SO↑(1,3) is thatP is a “discrete symmetry” which cannot be reached continuously
from the identity. Physically, we can (at least in principle) operate on R1,3 by SO↑(1,3) but
not by P : We cannot have an object “go through the mirror” and become its parity image.
Still it is of great interest to consider theories that have a symmetry corresponding to this
operator. Including parity in our group of symmetries leads us to the following definition.

Definition 8.9.1 We denote by O+(1,3) the subgroup of O(1,3) generated by
SO↑(1,3) andP , or, equivalently, the subgroup ofO(1,3) consisting of orthochronous
transformations.23

The double cover SL(2,C) of SO↑(1,3) will be of considerable importance in the next
chapter. To include parity in our theories, the double cover SL+(2,C) of O+(1,3) is conve-
nient. It is to O+(1,3) what SL(2,C) is to SO↑(1,3). In the present section we construct it
in the most elementary manner possible. Benefits of this approach include:

• Trying to find representations of SL+(2,C) will lead us in the most natural way to
the Dirac matrices.

• In the next chapter, to study the projective representation of the Poincaré group
P = R1,3 � SO↑(1,3) we will be led to study instead the true representations of
P∗ := R1,3 � SL(2,C), and replacing SL(2,C) by SL+(2,C) is the natural way to
introduce parity into the theory.

Since O+(1,3) is generated by SO↑(1,3) and P , we guess that SL+(2,C) will be gener-
ated by SL(2,C) and a new element P ′. We then just have to guess what the multiplication
rules should be, and check that our guess works. The single non-trivial fact that lets us guess
these rules is as follows.

Lemma 8.9.2 For A ∈ SL(2,C) we have

Pκ(A)P = κ(A†−1). (8.36)

In (8.19) we could have replaced M(x) by M(P (x)) which also satisfies (8.20); and in
the right-hand side of (8.21) we could have replaced A by A†−1 . The lemma states that
these two changes do exactly the same thing.

Proof We first observe the identity

M(P (x))M(x) = detM(x)I, (8.37)

where I is the 2× 2 identity matrix, so that when M(x) is invertible,

M(P (x)) = (detM(x))M(x)−1. (8.38)

On the other hand, it follows from (8.21) that

M(κ(A)(x))−1 = A†−1M(x)−1A−1. (8.39)

23 As defined in Section 4.1 these are the Lorentz transformations L with L0
0 > 0, i.e. which preserve the flow

of time.
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Replacing x by κ(A)(x) in (8.38), using (8.39) and since detM(κ(A)(x)) = detM(x) we
obtain, using again (8.38) in the last inequality,

M(Pκ(A)(x)) = detM(x)A†−1M(x)−1A−1 = A†−1M(P (x))A−1. (8.40)

This equality holds whenever M(x) is invertible so that it holds everywhere by continuity.
The right-hand side is M(κ(A†−1)P (x)), so that Pκ(A)(x) = κ(A†−1)P (x) for each x i.e.
Pκ(A) = κ(A†−1)P .

It is then not very difficult to invent the following, denoting by I the identity 2× 2 matrix.

Definition 8.9.3 The group SL+(2,C) is obtained by adding a new element P ′ to
SL(2,C) with the multiplication rules

P ′I = P ′ ; P ′AP ′ = A†−1 (8.41)

whenever A ∈ SL(2,C). (Thus in particular, taking A = I we have (P ′)2 = I .) The
homomorphism κ is extended to SL+(2,C) by defining24

κ(P ′A) = Pκ(A). (8.42)

More specifically, the elements of SL+(2,C) are either of the type A or the type P ′A for
A ∈ SL(2,C) and the way to multiply these elements is entirely determined by the rules
(8.41), for example A(P ′B) = P ′A†−1B and (P ′A)(P ′B) = A†−1B. It is straightforward
to verify (by considering cases) that we do define a group SL+(2,C) in this manner, for
which κ is a two-to-one homomorphism onto O+(1,3). For example, to prove that κ is
a homomorphism, κ(UV ) = κ(U )κ(V ), there are four cases to consider, depending on
whether U and V are of the type A or P ′A for A ∈ SL(2,C). We write simply

κ(P ′AP ′B) = κ(A†−1B) = κ(A†−1)κ(B) = Pκ(A)Pκ(B) = κ(P ′A)κ(P ′B)

and

κ(AP ′B) = κ(P ′A†−1B) = Pκ(A†−1)κ(B) = κ(A)Pκ(B) = κ(A)κ(P ′B),

the other two cases being even easier.
The following exercise should not be missed. It provides a concrete realization of

SL+(2,C). In this exercise 4× 4 matrices are written by 2× 2 blocks.

Exercise 8.9.4 For A ∈ SL(2,C) consider the matrix(
A†−1 0

0 A

)
and the matrix (

0 I

I 0

)
,

where I is the 2× 2 identity matrix. Show that the group generated by these matrices
is isomorphic to SL+(2,C).

24 This extension is not unique. Another extension κ ′ is given by the formula κ ′(P ′A) = −Pκ(A).
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8.10 The Parity Operator and the Dirac Matrices

The short story of the present section is that when trying to find representations of
SL+(2,C), the fundamental Dirac matrices appear rather immediately. This was one of
our motivations in introducing the group SL+(2,C).

The key property of a representation S of SL+(2,C) is that sinceA†−1 = P ′AP ′ it holds
that for each A ∈ SL(2,C) one has

S(P ′)S(A)S(P ′) = S(A†−1). (8.43)

It is quite easy to discover25 the following method of construction: Starting with a repre-
sentation θ of SL(2,C) on a space G, consider the representation S on H = G ⊕ G given
by S(A)(x,y) = (θ (A†−1)(x),θ (A)(y)) and S(P ′)(x,y) = (y,x). The simplest case of this
construction is when θ is the defining representation by 2 × 2 matrices, i.e. θ (A) = A.
Writing S in matrix form yields the formulas

S(A) :=
(
A†−1 0

0 A

)
, (8.44)

where the right-hand side is a 4× 4 matrix decomposed in blocks of size 2× 2, and

S(P ′) =
(

0 I

I 0

)
, (8.45)

where I is the 2 × 2 identity matrix. For A ∈ SL(2,C) we define S(P ′A) = S(P ′)S(A).
Checking that S defines a representation is as straightforward as (and very similar to) check-
ing that the rules of Definition 8.9.3 define a group.

The copy of C4 on which the representation S of SL+(2,C) given by (8.44) and (8.45)
acts is called the space of Dirac spinors. It seems a pure coincidence that the space of Dirac
spinors has the same dimension four as space-time. One should carefully distinguish the
following two (very different) representations of SL+(2,C) of dimension four:

• The extension of κ constructed in the previous section.
• The representation in the space of Dirac spinors given by (8.44) and (8.45).

These representations are very different because the restriction of the first one to SL(2,C)
is irreducible, which is not the case for the second one. At the end of the section the reader
will find exercises analyzing the irreducible representations of SL+(2,C).

Let us have a closer look at the fundamentally important structure occurring here. For
x ∈ R1,3 we define the following 4× 4 matrix:

γ (x) :=
(

0 M(P (x))
M(x) 0

)
. (8.46)

Then the two equations (8.21) and (8.40), i.e.

M(κ(A)(x)) = AM(x)A† and M(Pκ(A)(x)) = A†−1M(P (x))A−1

25 At the end of this section we present as an exercise the analysis of the representations of SL+(2,C), and this
analysis leads to the method we describe here. But it is not hard to just guess this method.
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are equivalent to the relation

γ (κ(A)(x)) = S(A)γ (x)S(A)−1. (8.47)

Moreover since κ(P ′)(x) = P (x) we see from (8.46) and the definition of S(P ′) that (8.47)
holds for A = P ′. It then follows that (8.47) holds for each A ∈ SL+(2,C). The matrices
γ (x) enjoy a number of remarkable properties. For example, using (8.37) it is immediate
to see that γ (x)2 = detM(x)1 = x21, so that replacing x by x + y (the usual polarization
procedure) yields the identity

{γ (x),γ (y)} := γ (x)γ (y)+ γ (y)γ (x) = 2(x,y)1. (8.48)

Incidentally, given two operators A,B, the quantity

{A,B} = AB + BA

is called the anti-commutator of these operators and will be of much use later.
Let us define γμ = γ (eμ) where (eμ)μ=0,1,2,3 is the standard basis of R1,3, so that,

recalling (8.18) and (8.19),

γ0 =
(

0 σ0

σ0 0

)
; γ1 =

(
0 −σ1

σ1 0

)
; γ2 =

(
0 −σ2

σ2 0

)
; γ3 =

(
0 −σ3

σ3 0

)
. (8.49)

The matrices26 γμ are called the Dirac matrices in the Weyl or chiral presentation. They
satisfy the property

{γμ,γν} = 2ημν1. (8.50)

It is this property (rather than the specific form of the matrices) that is really important.
Given matrices γμ satisfying this property, so do the matrices LγμL−1 where L is any
invertible matrix.27 Different choices of L give different sets of matrices. One then infor-
mally talks of “different presentations” of the Dirac matrices. There exist other useful pre-
sentations.

Since κ(A)(x) = κ(A)(x)νeν = κ(A)νμx
μeν , we have γ (κ(A)(x)) = κ(A)νμx

μγν while
γ (x) = γμx

μ so we obtain from (8.47) that κ(A)νμx
μγν = S(A)γμxμS(A−1) and therefore

the fundamental relation:

κ(A)νμγν = S(A)γμS(A)−1, (8.51)

which holds whenever A ∈ SL+(2,C). This is the way the transformation property (8.47)
is expressed in physics textbooks.

The following provides another description of the group SL+(2,C).

Exercise 8.10.1 Consider the set P in(1,3) of 4 × 4 invertible matrices L for which
there exists a 4× 4 matrix θ (L) such that

LγμL
−1 = θ (L)νμγν .

26 In case you have seen other presentations of this material, please observe that γμ is not to be confused with
γμ = ημνγν .

27 It is true that any matrices which satisfy (8.50) are of the type LγμL−1 for a certain invertible matrix L.
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(a) Prove that this relation is equivalent to γ (θ (L)(x)) = Lγ (x)L−1.
(b) Prove that P in(1,3) is a group, and that the map L→ θ (L) is a group homomor-
phism from P in(1,3) to O(1,3).
(c) Prove that the map L→ θ (L) from P in(1,3) to O(1,3) is two-to-one. Hint: This
is a bit challenging. One has to prove that if L commutes with all the γ matrices, it is
± the identity. Prove first that the linear span of all the products of γ matrices consists
of all 4× 4 matrices. This is standard material found in many books.
(d) We can define a group homomorphism S from SL+(2,C) into the group of 4× 4
matrices by the formulas (8.44) and (8.45). Prove that S is valued intoP in(1,3). Prove
that O+(1,3) = θ (S(SL+(2,C))).
(e) Using (c) and (d) prove that S is an isomorphism from SL+(2,C) onto the subgroup
θ−1(O+(1,3)) of P in(1,3). This provides an alternate description of SL+(2,C).
(f) Compute θ (T ) when T is the matrix

T =
(

0 I

−I 0

)
.

Show that θ (T ) can be interpreted as “time-reversal”.
(g) We provided a construction of SL+(2,C) by “adding a new element P ′ to
SL(2,C)”. In the same manner “add a new element T ′ to SL+(2,C)” to obtain a
group isomorphic to P in(1,3). What are the multiplication rules in this group?

In the next two exercises we analyze the finite-dimensional irreducible representations
of SL+(2,C). Consider such a finite-dimensional representation S.

Exercise 8.10.2 Assume that the restriction of S to SL(2,C) is irreducible.
(a) Prove that the representation A �→ S(A†−1) of SL(2,C) must be equivalent to S.
Hint: Use (8.43).
(b) Using the results of Section D.10 describe all the irreducible representations of
SL(2,C) with the previous property.
(c) For these representations construct representations of SL+(2,C) whose restriction
to SL(2,C) is the given representation.

Exercise 8.10.3 If you succeeded in solving Exercise 8.4.4 and (8.10.2), you may try
to prove the following more precise result. The extension κ to SL+(2,C) is unitarily
equivalent to the representation S of SL+(2,C) on C2⊗C2 such that forA ∈ SL(2,C)
we have S(A) = A⊗ A†−1 while S(A)(P ′) is the map that sends the tensor xn1,n2 to
the tensor −xn2,n1 . Hint: All the ingredients are contained in the proof of Proposition
D.12.2 and the solution of Exercise D.12.3, but it still requires some patience to write
this down.

Exercise 8.10.4 Assume now that the restriction of S to SL(2,C) is not irreducible, so
that there exists a proper subspace G of the space H on which lives the representation
which is invariant under all the maps S(A), A ∈ SL(2,C).
(a) Prove that the space G′ = S(P ′)(G) is invariant under all the operators S(A) for
A ∈ SL(2,C).
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(b) Prove that G ∩ G′ = {0}. Hint: Prove that the space G ∩ G′ is invariant under S,
and use that S is irreducible.
(c) Prove that H = G ⊕ G′.
(d) Prove that S is equivalent to a representation of SL+(2,C) on G ⊕ G of the type
S(A)(x,y) = (θ (A†−1)(x),θ (A)(y)) for A ∈ SL(2,C) and S(P ′)(x,y) = (y,x) for a
certain irreducible representation θ of SL(2,C).

Key ideas to remember:

• The group SU (2) “is a better version of SO(3)” and the group SL(2,C) “is a better
version of SO↑(1,3)”. There is a two-to-one homomorphism κ from SL(2,C) to
SO↑(1,3).

• For each j ≥ 0 there exists an irreducible unitary representation πj of SU (2) of
dimension j + 1. This representation is unique up to unitary equivalence.

• Projective unitary representations of SU (2) arise from true representations but this is
not the case for SO(3).

• The word “spin” has two very different meanings. On the one hand, “having spin j/2”
for j ≥ 0 is an intrinsic property of a particle. On the other hand “spin” is a kind of
angular momentum whose value can be measured in any direction. For a particle of
spin j/2, the possible values of this measurement are−h̄j/2,− h̄j/2+1, . . . ,h̄j/2.

• The group SL(2,C) is a subgroup of SL+(2,C) which now contains a parity operator.
The search for representations of SL+(2,C) leads to the Dirac matrices.
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Representations of the Poincaré Group

Let us recall that the Poincaré group P is the group of transformations of R1,3 of the type
x �→ a+A(x) where (a,A) ∈ R1,3×SO↑(1,3). It is the semidirect productR1,3�SO↑(1,3)
and the composition law is given by

(a,A)(b,B) = (a + A(b),AB). (9.1)

As we started explaining in Section 4.7, a fundamental idea of Eugene Wigner is that to
each elementary particle corresponds an irreducible projective unitary representation of the
Poincaré group, so these are of central importance in Quantum Field Theory. In a truly
impressive work, Wigner [90] classified these representations.

Even though to each elementary particle is attached a projective unitary representation of
the Poincaré group, this does not mean that all these representations correspond to observed
particles. Those which do are of course the most important. To each representation corre-
sponding to a particle is attached a number m ≥ 0 which physically corresponds to the
mass of the particle. The particle is called massive if m > 0 and massless if m = 0. Wigner
reached the following very striking conclusion: For a massive particle, besides the mass,
there exists exactly one other characteristic (namely, its spin) which determines how the
Poincaré group acts on it.

Learning the present topic proved particularly arduous. A given representation of the
Poincaré group can be described by many different formulas. A common method for authors
to skirt the difficulty of the present topic and shorten their presentation at the reader’s
expense is to state formulas without giving any clue of what they might mean, how one
might discover them and how one might decide if a different formula would describe the
same representation.1 On the other hand, the well-developed mathematical theory of group
representations bears on this topic and some mathematicians as Folland [31] might choose
to directly throw it at the unprepared reader.2

To avoid the various pitfalls ubiquitous in the literature, we have treated the subject
in great detail. Rather than displaying our dizzying mastery of abstract mathematics, our
emphasis is on various descriptions of the representations corresponding to actual particles,
and in clarifying some points directly motivated by physics which are hardly ever treated
either in mathematics or physics textbooks.

1 See e.g. the formula (C.12) in Araki’s book [2].
2 I personally wasted a very long time there.
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9.1 The Physicists’ Way

The physicists’ view of this topic is pragmatic and efficient.3 Following their methods, we
will easily discover the fundamental tool of induced representations.4 The present section
continues Section 4.11, which the reader should review now. The goal is to determine the
action U (a,A) of a Poincaré transformation (a,A) on the state space of a massive particle
of mass m > 0. The arguments are entirely heuristic, and for simplicity we assume that U
is a true representation.

At rest, the four-momentum of the particle is p∗ := (mc,0,0,0). We will use in a crucial
way that a Lorentz transformation is a rotation if and only if it fixes p∗.5 As we discussed in
Section 8.7, the four-momentum of a particle is not enough to completely describe it. The
particle has “internal degrees of freedom”, which are described by a vector u in a finite-
dimensional Hilbert space V . We may then describe the state of a particle at rest by |p∗,u〉.
Since this state has four-momentum p∗ we expect from (4.73) that6

U (a,1)|p∗,u〉 = exp(i(a,p∗)/h̄)|p∗,u〉. (9.2)

The space V comes equipped with a certain irreducible unitary projective representation
V of SO(3), which for simplicity we assume to be a true representation.7 Since a rotation
R seen as a Lorentz transformation fixes p∗ we expect that for such a rotation

U (0,R)|p∗,u〉 = |p∗,V (R)(u)〉. (9.3)

Combining (9.2) with (9.3) we have determined the action U (a,R) of any element (a,R) ∈
R1,3 � SO(3) on a state |p∗,u〉:

U (a,R)|p∗,u〉 = exp(i(a,p∗)/h̄)|p∗,V (R)(u)〉. (9.4)

Let us then look at the situation in abstract terms. Presumably the states of the type |p∗,u〉
form a copy of V , and (9.4) defines an irreducible unitary representation of H := R1,3 �

SO(3) on this space. How can we “extend” this representation to a larger space and to the
larger group H ′ := R1,3 � SO↑(1,3) (= P)? The answer to that question is known under
very general conditions on the groups H and H ′. This is the general “theory of induced
representations”. Rather than getting buried into abstract mathematics we however keep
thinking as physicists. This will lead us to the solution of this problem in our specific case
of interest.

Let us define the state |p,u〉 by

|p,u〉 := U (0,Dp)|p∗,u〉, (9.5)

3 It is based on a large number of implicit assumptions, which are considered as self-evident, since they are well
supported by observation. We shall not try to present them in the form of axioms.

4 What we call an induced representation, for lack of a better term, does not exactly coincide with the use of this
name in the “general theory of induced representations”. As we do not enter that theory there is however no
risk of confusion.

5 Using terminology to be introduced later, the group of rotations is the little group of p∗, see Definition 9.3.1.
6 Please remember that here we are thinking like physicists, who consider this relation as self-evident. If we

think like mathematicians, we may turn to the analysis of Section 4.9 to see that (9.2) is really the definition of
the statement that the state |p∗,u〉 has four-momentum p∗.

7 We know what these are: the representations πj on the spaces Hj . The reason for using generic names rather
than the specific names Hj and πj is simply that the forthcoming argument does not use this fact.
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where Dp is the pure boost which sends p∗ to p.8 As a mathematician, you may wonder
what is the precise meaning of this formula, but a physicist will find this perfectly clear.
Since |p∗,u〉 has four-momentum p∗, Lemma 4.11.1 shows that |p,u〉 has four-momentum
Dpp

∗ = p.
Next we find how Lorentz transformations act on these states. Consider A ∈ SO↑(1,3).

The key observation is that since R := D−1
ApADp leaves p∗ invariant it is a rotation.

Since ADp = DApR and U is a representation, it holds that U (0,A)U (0,Dp) =
U (0,DAp)U (0,R). Thus, using (9.5), and then using (9.3) in the third equality,

U (0,A)|p,u〉 = U (0,A)U (0,Dp)|p∗,u〉 = U (0,DAp)U (0,R)|p∗,u〉
= U (0,DAp)|p∗,V (R)(u)〉 = |Ap,V (R)(u)〉,

and thus (and this is the key point)

U (0,A)|p,u〉 = |Ap,V (D−1
ApADp)(u)〉.

Finally, since U (a,A) = U (a,1)U (0,A) we obtain the required formula:

U (a,A)|p,u〉 = exp(i(a,Ap)/h̄)|Ap,V (D−1
ApADp)(u)〉. (9.6)

The representation U is entirely determined by V . We have discovered the little group
method. As we will detail later, an irreducible unitary representation of P is determined by
an irreducible unitary representation of the subgroup of SO↑(1,3) consisting of elements
which fix a certain element of R1,3. Conversely to each irreducible unitary representation
of this subgroup is associated an irreducible unitary representation of P .

If the reader has understood the relationship between relations (4.61) and (4.77) she will
be able to guess how we should interpret the formula (9.6): The Poincaré group acts on the
space9 L2(Xm,V,dλm) by the formula10

Ũ (a,A)(ϕ)(p) := exp(i(a,p)/h̄)V (D−1
p ADA−1(p))(ϕ(A−1(p))). (9.7)

Let us derive this formula more precisely. Recalling the formula (4.69), the states |p,u〉 are
defined in the distributional sense by

ϕ =
∫

dλm(p)ξ (p)|p,u〉, (9.8)

where u is a given point of V , where ξ ∈ S4 and where ϕ is the element of L2(Xm,V,dλm)
given by ϕ(p) = ξ (p)u. Using that for a complex number α we have (αξ (p))u = ξ (p)(αu)
we obtain that for any ξ we have

∫
dλm(p)αξ (p)|p,u〉 = ∫

dλm(p)ξ (p)|p,αu〉. Thus
α|p,u〉 = |p,αu〉. In particular ξ (p)|p,u〉 = |p,ξ (p)u〉 = |p,ϕ(p)〉 so that (9.8) becomes

ϕ =
∫

dλm(p)|p,ϕ(p)〉. (9.9)

8 Thus, with the notation of Definition 4.3.1, Dp = Bp/mc . The reason for the change of notation will appear
soon.

9 Since the physicists never tell us what the state space is, we have to guess both the state space and the action
U (a,A) on it.

10 Which is obtained from (9.6) by changing p to A−1(p).
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This formula will then hold for any nice function Xm → V because such a function can
be well approximated by a finite sum of functions of the type p→ ξ (p)u. Using (9.6) and
making the change of variable p→ A−1(p) in the third line,

Ũ (a,A)(ϕ) =
∫

dλm(p)U (a,A)|p,ϕ(p)〉

=
∫

dλm(p) exp(i(a,Ap)/h̄)|Ap,V (D−1
ApADp)(ϕ(p))〉

=
∫

dλm(p) exp(i(a,p)/h̄)|p,V (D−1
p ADA−1(p))(ϕ(A−1(p)))〉

=
∫

dλm(p)|p, exp(i(a,p)/h̄)V (D−1
p ADA−1(p))(ϕ(A−1(p)))〉,

where we have used again in the last line that for a complex number α we have α|p,u〉 =
|p,αu〉. Comparing with (9.9) this yields (9.7).

We have completed our task in this section, which was to guess the formula (9.7). In
Section 9.4 we will prove that this formula actually defines a unitary representation of the
Poincaré group.

Exercise 9.1.1 Pretending as usual that the distribution δm,p′ is a function, given u ∈
V , apply (9.7) to the “function” ϕ(p) = uδm,p′ (p) to recover (9.6).

9.2 The Group P∗

In the previous section we assumed thatU (a,A) is a representation, but we are actually inter-
ested in projective representations. We have learned in Section 8.7 that projective represen-
tations of SO(3) are simply related to true representations of SU (2). A similar phenomenon
occurs here. Projective representations of P are closely related to true representations of the
group P∗ := R1,3 � SL(2,C), where the group law is given by

(a,A)(b,B) = (a + κ(A)(b),AB).

Here κ is the fundamental two-to-one homomorphism (8.17) from SL(2,C) to SO↑(1,3)
given by the formula

M(κ(A)(x)) = AM(x)A†

for the matrices M(x) of (8.19) i.e.

M(x) := xμσμ =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
.

To simplify notation in the forthcoming relatively complicated formulas, forA∈ SL(2,C)
we will write

A(b) := κ(A)(b). (9.10)

This important notation is used in the rest of the book and must be learned now. It is essential
not to forget it, as the following exercise shows.
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Exercise 9.2.1 Is it true that (−A)(b) = −A(b)?

With the convention (9.10), the group law of P∗ takes exactly the same form (4.54) as
the group law of P .

Even though we do not plan to classify all the projective unitary representations of P ,
it is reassuring that the theorem of Bargmann [4] (of which we already stated a special
case in Corollary 8.6.2) ensures that each such representation arises from a true unitary
representation of P∗. The precise statement is as follows.

Theorem 9.2.2 Given a strongly continuous unitary projective representation π ′ of
P there exists a strongly continuous unitary representation π of P∗ such that for
(c,C) ∈ P∗ we have

π ′(c,κ(C)) = λ(c,C)π (c,C), (9.11)

where λ(c,C) is a complex number of modulus 1.

Exercise 9.2.3 Consider ρ as in Section 8.5, that is ρ is such κ(ρ(A)) = A.
(a) Prove that given an irreducible representation π of P∗, the formula

π ′(a,A) = π (a,ρ(A)) (9.12)

defines a projective representation of P .
(b) Prove that if π and π ′ are as in the theorem,

π ′(a,A) = λ′(a,A)π (a,ρ(A))

where λ′(a,A) is a number of modulus 1.

9.3 Road Map

According to Theorem 9.2.2 we may now focus on the study of the strongly continuous
unitary representations of P∗. The two most obvious questions are as follows:

• Which are the physically important representations of P∗ and how do we describe
them?

• What explains the structure of the representations of P∗?

The short answer to the second question is that the semidirect product structureP∗ = R1,3�

SL(2,C) is essential. To explain why, in Section A.5 we provide a complete description
of the unitary representation of certain finite semidirect products. It may greatly help the
reader to grasp at least the content of the main conclusions of that section in order to form
the overall picture of what is happening here. Since, however, the primary goal of this book
is to make the link between mathematical and physical ideas we focus in the main text on
answering the first question.
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9.3.1 How to Construct Representations?

Definition 9.3.1 Given any p∗ ∈ R1,3, the group

Gp∗ := {A ∈ SL(2,C) ; A(p∗)(= κ(A)(p∗)) = p∗},
is called11 the little group of p∗.

The central point of the whole representation theory of P∗ is that to each point p∗ of R1,3

and each unitary irreducible representation V of its little group Gp∗ in a finite-dimensional
space V , one can associate an irreducible unitary representation of P∗ by a construction
directly inspired of the method of Section 9.1. It will be called the representation of P∗
induced by V . In the physically relevant cases the method is described in Theorem 9.4.2,12

and as far as the problem of constructing the required representations is concerned we
are done.

Eugene Wigner proved that every irreducible unitary representation of P∗ arises by the
previous method. His proof relies on the structure of P∗ as a semidirect product. It is too
technical to be given here, but some of the essential ideas are explained in Section A.5.

In mathematical terms, a representationV ofGp∗ in a spaceV determines a unitary repre-
sentation of H := R1,3 �Gp∗ on V by the formula U (a,A)(u) = exp(i(a,p∗)/h̄)V (A)(u),
and the problem is to “extend” it to the larger group H ′ = P∗. As we mentioned, the
solution of this problem is known in great generality through the general “theory of induced
representations”, and the special structure of H and H ′ = P∗ as semidirect products is
inessential here. We do not enter the general theory of induced representations, but instead
perform all constructions in the specific cases needed, even if these constructions could be
performed in a far more general setting. In Section A.4 we have however covered the general
theory of induced representations in the technically simpler situation where all groups are
finite. Studying that section should be most instructive for the abstract-minded reader, as
several of the key ideas there parallel those of the main text.

9.3.2 Surviving the Formulas

The induced representations of P∗ will be basically given by the complicated formula (9.7).
The most urgent task is to find a simpler way to describe these representations. We will
pursue that goal in two somewhat different directions:

• In Section 9.5 we provide a general method to describe induced representations by
simpler formulas. A given representation can be described in many different ways,
and we learn how to recognize what is what.

• In Section 9.8 we learn how to describe induced representations in an abstract, but
powerful and intrinsic manner.

11 This is physicists’ terminology, mathematicians would call G the stabilizer of p∗.
12 But if you are interested in the other cases it works just the same!
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9.3.3 Classifying the Representations

We list all the physically relevant representations of P∗ in Section 9.6 and proceed to a
first investigation of the physical properties of the corresponding particles in Section 9.7.13

This is made easy by an important feature of the method outlined in Section 9.3.1: it is
not so much the point p∗ which matters as its orbit under the action of SL(2,C). We may
describe the same representation using any other point of the orbit. Thus to classify all the
representations we really have to look at the orbits in R1,3 under the action of SL(2,C),
and we may pick for p∗ any convenient point in the orbit. The physically relevant orbits are
X0 \ {0} and

Xm := {p ∈ R1,3;p2 = m2c2,p0 ≥ 0}
for m > 0. We find two series of particles:

9.3.4 Massive Particles

The most important representations arise when for some m > 0 (which is argued to be the
mass of the particle),14

p∗ = (mc,0,0,0) = mce0 ∈ Xm. (9.13)

Then an elementA of SL(2,C) belongs toGp∗ if and only if κ(A)(e0) = e0, and as observed
right after Exercise 8.4.4 this means that A ∈ SU (2).

For m > 0 the little group Gp∗ is SU (2). (9.14)

A unitary representation of the little group SU (2) is one of the representations πj of Def-
inition 8.2.3. The associated representation of P∗ corresponds to a particle of mass m and
spin j/2. Within this theory:15

A massive particle is characterized by its mass and its spin.

9.3.5 Massless Particles

The second most important case is16

p∗ = (1,0,0,1) ∈ X0 \ {0}, (9.15)

13 If you are very impatient to learn about the particles you are made of, you may skip Sections 9.6 and 9.8!
14 The choice of p∗ is just an element of Xm as simple as possible.
15 This means that as far as the action of P∗ is concerned. There are other characteristics of the particle which

have nothing to do with that, such as the electrical charge. Please also note that at this stage, the theory does
not include parity.

16 There is no magic here either, p∗ is just a simple choice of an element of X0. We are focusing on the
representations of P∗ corresponding to actual particles. As we will argue later, the mass m of the particle
satisfies (p∗)2 = m2c2 ≥ 0. However, given any element p∗ of R1,3, even with (p∗)2 < 0 and any unitary
representation of its little group, one may also construct a unitary representation of P∗. The hypothetical
particles corresponding to this case would have imaginary mass, and could travel only at speeds greater than
the speed of light. These are the mythical tachyons.
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and the associated representations of P∗ correspond to massless particles. The little group
Gp∗ is then more complicated. It turns out to consist of the matrices of the form

A =
(
a b

0 a∗

)
, (9.16)

where a,b ∈ C and aa∗ = 1. There is one important family π̂j for j ∈ Z of one-dimensional
representations of Gp∗ .17 Within this family:18

Massless particles are characterized by an integer j ∈ Z.
The number j/2 is called the helicity of the particle. (9.17)

9.3.6 Massless Particles and Parity

The properties of massless particles are elusive. In a sense that will be made mathematically
precise, we will prove that the mirror image of a massless particle of helicity j/2 �= 0 is a
different particle, of helicity −j/2.

9.4 Elementary Construction of Induced Representations

Throughout the chapter we consider a numberm ≥ 0. Form > 0 we define p∗ by (9.13) and
form = 0 we definep∗ by (9.15).19 For eachp ∈ Xm we fix once and for allDp ∈ SL(2,C)
such that20

Dp(p∗)(= κ(Dp)(p∗)) = p. (9.18)

Whenm > 0 there is a canonical choice for such a map, a unique positive definite Hermitian
matrix, as provided by Lemma 8.4.6. We shall see in Proposition 9.6.7 that for m = 0 there
is also a rather natural choice for Dp giving rise to appealing explicit formulas.21 More
importantly, our constructions using such a choice ofDp will in some sense not depend on it.

Lemma 9.4.1 For each p and A ∈ SL(2,C), it holds that

D−1
p ADA−1(p) ∈ Gp∗ .

Proof

D−1
p ADA−1(p)(p

∗) = D−1
p A(A−1(p)) = D−1

p (p) = p∗.

Theorem 9.4.2 Consider a unitary representation V of the little groupGp∗ in a finite-
dimensional Hilbert spaceV , and the Hilbert spaceL2 = L2(Xm,V,dλm) ofV-valued

17 No particle corresponding to any of the other representations has been observed.
18 Again, parity is not considered here. When it is, matters become rather more complicated.
19 Again, the choices hold throughout the entire chapter.
20 It goes without saying that we assume that Dp depends regularly enough on p so that all functions we write

are Lebesgue measurable.
21 In the case m = 0, Dp is very different from a pure boost. This is why we moved away from the notation of

Definition 4.3.1.
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functions on Xm provided with the norm induced by dλm. Then the operators Ũ (a,A)
on L2 given for (a,A) ∈ P∗ and ϕ ∈ L2 by the formula

Ũ (a,A)(ϕ)(p) = exp(i(a,p)/h̄)V (D−1
p ADA−1(p))[ϕ(A−1(p))] (9.7)

form a unitary representation of P∗.

To gain a first understanding we observe that this is the same formula as (4.61) when
V = C and V is trivial, and that the formula makes sense according to Lemma 9.4.1:
The operator V (D−1

p ADA−1(p)) on V is well defined and can be applied to the element
ϕ(A−1(p)) of this space. The problem with the unappealing formula (9.7) is that the product
D−1
p ADA−1(p) belongs to the little group but not the individual factors, so that it is not

possible to expand V (D−1
p ADA−1(p)). Not surprisingly this formula is not convenient for

practical computations. In the next section we will discover much more pleasant formulas.

Proof of Theorem 9.4.2 That the maps Ũ (a,A) are unitary follows from the fact that the
exponential has modulus 1, that V is unitary, and that dλm is invariant under Lorentz trans-
formations.

To prove the representation property, we compute Ũ (a,A)Ũ (c,C)(ψ) for a given func-
tion ψ . For this we apply Ũ (a,A) given by the formula (9.7) to the function

ϕ(p) := Ũ (c,C)(ψ)(p) = exp(i(c,p)/h̄)V (D−1
p CDC−1(p))[ψ(C−1(p))],

and we obtain

exp(i(a,p)/h̄) exp(i(c,A−1(p))/h̄)W [ψ(C−1(A−1(p)))], (9.19)

where

W = V (D−1
p ADA−1(p))V (D−1

A−1(p)
CDC−1(A−1(p)))

= V (D−1
p ADA−1(p)D

−1
A−1(p)

CDC−1(A−1(p)))

= V (D−1
p ACD(AC)−1(p)). (9.20)

Moreover, (c,A−1(p)) = (c,κ(A)−1(p)) = (κ(A)(c),p) = (A(c),p). The proof is then
completed as in Theorem 4.8.2.

In (9.20) we use the formula V (A1A2) = V (A1)V (A2) for operators A1,A2 which
depend onp, and the proof does not work if we only assume thatV is a projective representa-
tion. This is why here it is important to use this theorem for P∗ rather than P: Form > 0 the
little group is SU (2) rather than SO(3). According to Theorem 8.6.1, true representations
of SU (2) suffice, but this is not the case for SO(3). However, the theorem is true for P
rather than P∗ when V is a true representation of the little group (which is then defined as
a subgroup of SO↑(1,3)).

The representation constructed by Theorem 9.4.2 seems to depend on the arbitrary choice
of the elements Dp. The next exercise shows that it is a very simple matter to prove that
different choices of Dp give unitarily equivalent representations.22

22 This also follows from the abstract presentation of induced representations given in Section 9.8.
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Exercise 9.4.3 (a) Prove that D−1
p D′p ∈ SU (2) whenever D′p denotes another choice

of Dp satisfying (9.18).
(b) Prove that the map W (ϕ) given by W (ϕ)(p) = V (D−1

p D′p)(ϕ(p)) is unitary and
an intertwining map between the two corresponding representations.

Thus, up to unitary equivalence, the representation constructed by Theorem 9.4.2
depends only on the representation V of the little group Gp∗ , and the following definition
makes sense.

Definition 9.4.4 The representation Ũ of P∗ is called the representation induced by
the unitary representation V of the little group Gp∗ .

The choice of Dp in Theorem 9.4.2 is unimportant, as different choices produce equiv-
alent representations. Next we show that the choice of p∗ is also unimportant; any other
choice produces an equivalent representation. Any other possible such choice p̃ ∈ Xm is of
the form C(p∗) for C ∈ SL(2,C).

Proposition 9.4.5 In Theorem 9.4.2 we obtain the same representation if we replace
p∗ by another pointC(p∗) (whereC ∈ SL(2,C)) and the representation V of the little
group of p∗ by the representation V ′ : A �→ V (C−1AC) of the little group of C(p∗).

Proof Let p̃ = C(p∗). Then if A belongs to Gp̃, i.e. A(p̃) = p̃, C−1AC belongs to Gp∗ ,
i.e. C−1AC(p∗) = p∗. Further, if Dp satisfies Dp(p∗) = p then D′p := DpC

−1 satisfies
D′p(p̃) = p. Moreover

C−1((D′p)−1AD′
A−1(p))C = D−1

p ADA−1(p),

so that

V (D−1
p ADA−1(p)) = V ′((D′p)−1AD′

A−1(p))

where V ′ is the representation A �→ V (C−1AC) of Gp̃.

Proposition 9.4.6 The representation induced by V is irreducible if and only if V is
irreducible.

The proof of this important result is postponed until Section 9.8.

Exercise 9.4.7 Suppose you want to study by the same method the (unphysical)
representations of P∗ arising from the point p∗ = (0,mc,0,0). You would need an
invariant measure on the orbit of this point. Describe this orbit and find a formula for
the invariant measure. (Warning: The unitary representations of the little group of p∗

are not simple and you are not asked to study them.)

9.5 Variegated Formulas

Changing notation, given a unitary representation V ′ of the little group, we have defined a
representation of P∗ by the formula (9.7):

Ũ (a,A)(ϕ)(p) := exp(i(a,p)/h̄)V ′(D−1
p ADA−1(p))(ϕ(A−1(p))).
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Nobody relishes the term V ′(D−1
p ADA−1(p)) in this formula. In this section, we will learn

how to express the corresponding representation in a much more pleasant way. This method
will allow us to create a variety of formulas, but it will be easy to interpret their meaning.
With this knowledge, the content of the concrete formulas often introduced without justifi-
cation in the literature will become transparent. Better still, in the sequel we will be able to
write our own concrete formulas for the most important representations of physics.

The problem with the term V ′(D−1
p ADA−1(p)) is that V ′ is defined on this product but

not on the individual factors. One might look then for a representation V which extends
V ′ to SL(2,C). For this one may need to go a larger space H0 than V , which we will also
assume to be finite-dimensional.23 We do not worry yet how this will be done, as it will be
rather obvious how to proceed on the examples we need. So, suppose that V is a subspace of
a finite-dimensional space H0 on which there exists a representation24 V of SL(2,C) with
the following property

u ∈ V,A ∈ Gp∗ ⇒ V ′(A)(u) = V (A)(u). (9.21)

Then

V ′(D−1
p ADA−1(p))[ϕ(A−1(p))] = V (D−1

p ADA−1(p))[ϕ(A−1(p))]

= V (D−1
p )V (A)V (DA−1(p))[ϕ(A−1(p))], (9.22)

and we may rewrite (9.7) as

V (Dp)Ũ (a,A)(ϕ)(p) = exp(i(a,p)/h̄)V (A)V (DA−1(p))[ϕ(A−1(p))]. (9.23)

For a function25 ϕ : Xm→ H0 and (a,A) ∈ P let us define26

U (a,A)(ϕ)(p) = exp(i(a,p)/h̄)V (A)[ϕ(A−1(p))]. (9.24)

Let us further define

W (ϕ)(p) = V (Dp)(ϕ(p)). (9.25)

Then (9.23) reads as

WŨ (a,A)(ϕ) = U (a,A)W (ϕ). (9.26)

Our plan is to show that (9.26) means that W transports the representation Ũ (a,A) to a
unitary representation given by the much nicer formula (9.24). We can guess right away
that this representation will live on the space H of functions ψ : Xm→ H0 such that

∀p ∈ Xm , ψ(p) ∈ Vp := V (Dp)(V), (9.27)

23 Even if V ′ extends to a representation of SL(2,C) on V , one may rather like to use another extension using a
larger space H0 in order to get a cleaner formula for the representation.

24 As usual for representations of SL(2,C), this representation is not assumed to be unitary.
25 Of course we always only consider “reasonable” functions, e.g. Borel-measurable.
26 Note that it is U and not Ũ which occurs here. We have reserved the simpler notation for this formula which

we will use much more than (9.7).
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for which

‖ψ‖2 =
∫

dλm(p)‖ψ(p)‖2
p <∞, (9.28)

where

‖u‖p = ‖V (Dp)−1(u)‖, (9.29)

and provided with the norm (9.28). We introduce first some important terminology.

Definition 9.5.1 Consider a representation V of SL(2,C) on a space H0 and a sub-
space V ofH0. Consider a subgroupG of SL(2,C) such that V (A)(V) ⊂ V forA ∈ G.
The restriction of V to V andG is the representation ofG on V obtained in the obvious
manner by considering V (A)(u) only for A ∈ G and u ∈ V .

This should not be confused with the restriction of V to G, which is a representation on
H0. Even if the restriction of V to V and G is a unitary representation of G, the restriction
of V to G need not be unitary (but then V is an invariant subspace of this restriction and on
that subspace V is unitary).

One should also be aware that the restriction of an irreducible representation to a sub-
group is often not irreducible. For example the representation κ of SL(2,C) on R1,3 is
irreducible, but its restriction to SU (2) is not irreducible, since it consists of rotations, which
leave e0 invariant.

To simplify terminology, we will describe the situation where V (A)(V) ⊂ V for each
A ∈ G and where the restriction of V to G and V is unitary simply by saying that “the
restriction of V to V and G is unitary”, keeping implicit the fact that this representation is
well defined. Note that then V (A)(V) = V for each A ∈ G.

Let us recapitulate. We start with a unitary representation V ′ of the little group Gp∗ in
the space V . We find a representation V of SL(2,C) on a larger finite-dimensional space
H0 with the property (9.21). In the words of Definition 9.5.1, the restriction of V to V and
Gp∗ is unitary (since this restriction equals V ′). Turning things around, we now start from
a representation of SL(2,C) into a finite-dimensional space H0 and a subspace V of H0.

Lemma 9.5.2 Let us assume that the restriction of V to V and Gp∗ is unitary. Given
p ∈ Xm the vector space

Vp = V (A)(V) (9.30)

is independent of the choice of A ∈ SL(2,C) satisfying A(p∗) = p. For u ∈ Vp the
norm

‖u‖p = ‖V (A−1)(u)‖ (9.31)

is independent of A ∈ SL(2,C) satisfying A(p∗) = p. Furthermore,

p ∈ Xm , u ∈ Vp , A ∈ SL(2,C)⇒ V (A)(u) ∈ VA(p) ; ‖V (A)(u)‖A(p) = ‖u‖p. (9.32)

In particular the space (9.27) and the norm (9.29) are independent of the choice of Dp

such that Dp(p∗) = p.
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Proof Consider A1,A2 ∈ SL(2,C) with A1(p∗) = A2(p∗). Then A := A−1
2 A1 satisfies

A(p∗) = p∗ so that A ∈ Gp∗ . Thus by assumption V (A)(V) = V . Moreover A1 = A2A,

so that V (A1)(V) = V (A2)(V (A)(V)) = V (A2)(V). We have shown that V (B)(V) is
independent of B ∈ SL(2,C) satisfying B(p∗) = p. As a consequence

v ∈ V , C ∈ SU (2)⇒ V (C)(v) ∈ VC(p∗). (9.33)

Since A1 = A2A we have V (A1)−1 = V (A)−1V (A2)−1 and thus for u ∈ V (A1)(V) =
V (A2)(V) it holds that

‖V (A1)−1(u)‖ = ‖V (A)−1(V (A2)−1(u))‖ = ‖V (A2)−1(u)‖,
using in the last equality that V (A) is an isometry on V by hypothesis. We have thus shown
that ‖V (A)−1(u)‖ is independent of A ∈ SL(2,C) satisfying A(p∗) = p. It remains to
prove (9.32). Consider u ∈ Vp, so that u = V (B)(v) where v ∈ V and B(p∗) = p.
Then C := AB satisfies C(p∗) = A(p) and V (A)(u) = V (C)(v). Thus by (9.33) we
have V (A)(u) ∈ VC(p∗) = VA(p). Since C(p∗) = A(p) by (9.31) we have ‖V (A)(u)‖A(p) =
‖V (C)−1V (A)(u)‖=‖v‖. SinceB(p∗)=pwe have similarly ‖u‖p =‖V (B)−1(u)‖=‖v‖.

Theorem 9.5.3 Consider a representation V of SL(2,C) into a finite-dimensional
space H0 and a subspace V of H0. Assume that the restriction of V to V and Gp∗ is
unitary, and consider the spaces Vp and the norms ‖ · ‖p as defined in Lemma 9.5.2.
Consider the space H of functions ϕ : Xm → H0 such that ϕ(p) ∈ Vp for each p,
provided with the norm (9.28),

‖ϕ‖2 =
∫

dλm(p)‖ϕ(p)‖2
p. (9.28)

Then the formula (9.24)

U (a,A)(ϕ)(p) = exp(i(a,p)/h̄)V (A)[ϕ(A−1(p))] (9.24)

defines a unitary representation ofP∗ onH. This representation is unitarily equivalent
to the representation induced by the restriction of V to V = Vp∗ and Gp∗ .

We will sometimes use the straightforward fact that (9.24) defines a representation of P
itself (rather than P∗) when V is a representation of SO↑(1,3) (rather than SL(2,C)). Let
us note the following, which will be of constant use.

Corollary 9.5.4 Up to unitary equivalence the representation U of Theorem 9.5.3 is
completely determined by the restriction27 of V to Vp∗ and Gp∗ .

Proof of Theorem 9.5.3 We give a self-contained proof, although one may also deduce
some of the statements from Theorem 9.4.2. Let us first compute U (a,A)U (b,B)(ψ) for a
given function ψ . For this we apply (9.24) to the function

ϕ(p) := U (b,B)(ψ)(p) = exp(i(b,p)/h̄)V (B)[ψ(B−1(p))],

27 This restriction is of course unitary, as assumed in the theorem.
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we obtain

exp(i(a,p)/h̄) exp(i(b,A−1(p))/h̄)V (A)V (B)ψ(B−1(A−1(p))), (9.34)

and we conclude as in the case of Theorem 4.8.2.
To prove that the representation is unitary we use (9.32) for u = ϕ(A−1(p)) and A−1(p)

instead of p to obtain

‖U (a,A)(ϕ)(p)‖p = ‖V (A)(ϕ(A−1(p)))‖p = ‖ϕ(A−1(p))‖A−1(p),

and unitarity follows from the Lorentz invariance of dλm. The last statement is proved by
the formula (9.26).

The next exercise provides an alternative formula for the norm (9.28) when m > 0.

Exercise 9.5.5 Considerm > 0 and as usual p∗ = (mc,0,0,0). The groupGp∗ is then
the compact group SU (2). As does every compact group it has a Haar probability, that
is a probability measure ν which is invariant by left translations: For each continuous
function f on SU (2) and any C ∈ SU (2) one has

∫
dν(B)f (CB) = ∫

dν(B)f (B).
(a) Prove that the measure dμ on SL(2,C) given for each continuous function f with
compact support by

∫
dμ(A)f (A) = ∫∫

dλm(p)dν(B)f (DpB) is left-invariant, i.e.∫
dμ(A)f (CA) = ∫

dμ(A)f (A) for each C ∈ SL(2,C).
(b) In the setting of Theorem 9.5.3 prove that for a function ϕ ∈ H we have

‖ϕ‖2 =
∫

dμ(A)‖V (A)−1ϕ(A(p∗))‖2.

(c) What happens in the case m = 0?

Conceptually the statement of Theorem 9.5.3 is very instructive, but in concrete situa-
tions, one may like to describe the constraint (9.27) onψ by equations thatψ should satisfy,
and to get explicit formulas for the norm ‖u‖p. We give one example of such an explicit
formula now in a fundamental situation. We will give many more examples later (the most
elaborate of which are given in Section G.2).

We consider the situation where m > 0 and V is the defining representation of SL(2,C),
where the elements of SL(2,C) act as matrices on H0 = V = C2, so that the space H of
Theorem 9.5.3 is the space of all measurable functions from Xm to H0. Since m > 0 the
little group is SU (2), see (9.14), and the restriction of V to the little group SU (2) is the
action of SU (2) on C2 by matrix multiplication. As we have seen in Sections 8.2 and 8.3
this is the simplest non-trivial unitary representation of SU (2). It will become apparent later
that the representation of P∗ produced then by Theorem 9.5.3 corresponds to particles of
spin 1/2, the most important particles of the universe.

We recall the matrices M(x) of (8.19) and the parity operator P : (p0,p) �→ (p0, − p).

Proposition 9.5.6 Let us assume thatm > 0, and that V is the defining representation
of SL(2,C), where the elements of SL(2,C) act as matrices on H0 = V = C2. Then

‖u‖2
p =

1

mc

(
M(P (p))(u),u

)
. (9.35)
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Proof Consider A ∈ SL(2,C) with A(p∗) = p. Then

‖u‖2
p = ‖A−1(u)‖2 = (A†−1A−1(u),u) = ((AA†)−1(u),u),

and the result follows from (9.37).28

Lemma 9.5.7 Recalling that p∗ = (mc,0,0,0), if A(p∗) = p then

AA† = 1

mc
M(p) (9.36)

and

(AA†)−1 = 1

mc
M(P (p)). (9.37)

Proof We recall that A(p∗) stands for κ(A)(p∗) and that AM(x)A† = M(κ(A)(x)). Using
this formula for x = p∗ yields mcAA† = M(p). Recalling (8.38), and since detM(p) =
p2 = m2c2 we obtain (AA†)−1 = mcM(p)−1 = M(P (p))/mc.

Let us then summarize the situation:

• A representation ofP∗ (as constructed by our methods29) is characterized by a unitary
representation of the little group Gp∗ .

• Given such a representation of Gp∗ the corresponding induced representation of P∗
is given by Theorem 9.4.2.

• Unfortunately, bitter experience teaches us that computations involving the compli-
cated formula (9.7) are hard.

• Given a unitary representation V̄ of Gp∗ on V , we simply find a (possibly non-
unitary) representation V of SL(2,C), in a possibly larger space H0 ⊃ V , such that its
restriction to Gp∗ and V coincides with V̄ , and we rather describe the representation
induced by V̄ using V and Theorem 9.5.3.

• In this manner the same representation ofP∗ can be described in many different ways,
but we do not get confused because we know that all that matters is the restriction of
V ′ to V and Gp∗ .

These methods will be illustrated in Section 9.6.

Exercise 9.5.8 Consider the case m > 0 and H0 = V = C2, and denote by UR

the representation constructed in Theorem 9.5.3 with V (A) = A, and UL the repre-
sentation constructed with V (A) = A†−1. Since A = A†−1 for A ∈ SU (2) these
representations are unitarily equivalent. The purpose of this exercise is to check this
directly. We assume that Dp is Hermitian, so that κ(Dp) is a pure boost. Prove that
the map W from H to H given by W (ϕ)(p) = D−2

p (ϕ(p)) satisfies ‖W (ϕ)(p)‖L,p =
‖ϕ(p)‖R,p and check that ULW = WUR .

28 More generally when V (A)† = V (A†) one has ‖u‖2p = (V ((DpD
†
p)−1)(u),u). This holds true for all the

representations of SL(2,C) constructed from tensor products.
29 That is, we did not prove that different representations could not be found using other methods.
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9.6 Fundamental Representations

Given m ≥ 0 and the point p∗ of Xm, considering an irreducible unitary representation V
of the little group Gp∗ , Theorem 9.4.2 produces an irreducible representation of P∗. In this
section we name the most important representations of P∗ obtained in this manner, and we
show how they can be described within the more friendly setting of Theorem 9.5.3.

9.6.1 Massive Particles

Let us start with the case m > 0. Then the little group Gp∗ of p∗ is SU (2), see (9.14).
We have constructed the fundamental family πj of unitary representations of this group in
Section 8.2. We will however use the equivalent form (8.14) of these representations using
tensor products, which will be recalled in a few lines. The importance of the following
representations cannot be overstated.

Definition 9.6.1 For m > 0, j ≥ 0, the representation πm,j is the unitary representa-
tion of P∗ induced by the representation πj of the little group SU (2).

It should be stressed that this representation depends on m (as does the point p∗, see
(9.13)) despite the fact that the little group does not depend on m > 0.

The representation πm,0 is the representation of Section 4.8. A concrete realization of
πm,1 is given in Proposition 9.5.6, and we can give a concrete realization of πm,j for j > 1
by a rather straightforward generalization of that construction. We consider the space V =
H0 = Sj of symmetric tensors x = (xn1,n2,...,nj ) with nk ∈ {1,2}, and the representation V
of SL(2,C) on Sj given by

V (A)(x) =
( ∑
k1,...,kj

An1,k1 · · ·Anj,kj xk1,...,kj

)
. (9.38)

It is proved in Proposition 8.3.1 that the restriction of V to V and the little group
SU (2) is unitarily equivalent to πj , so that the representation constructed by Theorem
9.5.3 for this choice of V is equivalent to πm,j . We then have Vp =V for each p.
According to Lemma 9.5.7 and the footnote on page 222 the norm ‖u‖p is given by
‖u‖2

p = (V (M(P (p))/mc)(u),u). One may also use the formula of Exercise 9.5.5 for
the norm.

9.6.2 Massless Particles

In the remainder of this section we study the case of massless particles, m = 0. This case
is far more elusive than the case m > 0 due to the more complicated nature of the little
group. This material will be instrumental in understanding what photons are in Section
9.13, but this in itself is a side story to our main line of investigation, and it may be omitted
at first reading.30 When we work specifically in the case m = 0 we will denote by G0 the

30 Generally speaking, all the considerations concerning massless particles constitute a side story and can be
omitted at first reading. The reason massless particles are treated in great detail is that the author wanted to
truly understand this situation, but could not easily find a satisfactory treatment in the literature.
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little group Gp∗ , and the first step is to compute this group.31 We recall that when m = 0,
p∗ = (1,0,0,1) and then the matrix M(p∗) of (8.19) is given by

M(p∗) =
(

2 0
0 0

)
. (9.39)

The condition that A ∈ G0, i.e. κ(A)(p∗) = p∗, that is AM(p∗)A† = M(p∗), yields in a
straightforward manner that A has to be of the type

A =
(
a b

0 a∗

)
, (9.40)

where a,b ∈ C and aa∗ = 1.

Definition 9.6.2 For j ∈ Z and A ∈ G0 as in (9.40) we define π̂j (A) = a−j ∈ C.

The reason for the minus sign will become apparent later. Please keep in mind that π̂j (A)
is a number. However, we can think of π̂j as a one-dimensional representation, by the
formula π̂j (A)(x) = π̂j (A)x.

We recall that for a matrix A, we denote by A∗ the conjugate matrix, where every entry
has been replaced by its complex conjugate. The following is trivial but useful.

Lemma 9.6.3 The map A → A∗ is a group automorphism of G0 and π̂j (A∗) =
π̂−j (A).

Definition 9.6.4 Assume m = 0. For j ∈ Z, j �= 0, the representation π0,j is the
unitary representation of P∗ induced by the representation π̂j of the little group G0.

The following exercise provides a closer look at the little group G0, and brings forward
the fact that this group is itself a semidirect product.

Exercise 9.6.5 (a) Consider the group U of complex numbers of modulus 1. Prove
that the operation on C× U defined by

(c,a)(c′,a′) = (c + a2c′,aa′)

is a group operation. This group is denoted by G.
(b) Prove that G can be naturally identified as a double cover of the group of transfor-
mations of R2 generated by translations and rotations. Hint: Consider the operation of
G on C given by (c,a) · z = c+a2z. Prove that it is an action, i.e. (c′,a′) · ((c,a) · z) =
((c′,a′)(c,a)) · z.
(c) Prove that the map that sends the matrix (9.40) to the element (ab,a) of G is a
group isomorphism from G0 to G.
(d) Given j ∈ Z and α ∈ C, prove that the formula

U (c,a)(f )(w) = aj exp(i Im(αc∗w))f (a−2w)

31 The reader should observe that there are only two possible values for the little group: G0 and SU (2).
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(where Im z is the imaginary part of the complex number z) defines a unitary represen-
tation of G in the set of square-integrable functions on C. Do you see any connection
between this formula and the formulas defining representations of P∗? Why is this
the case? Hint: Study Section A.5.

One may construct unitary representations of P∗ using the unitary representations of G0

exhibited in the previous exercise, but they do not correspond to any known particle, and
for physics the important case is that of Definition 9.6.4.

We now explore concrete realizations of the representation π0,j . These realizations are
neither very important nor very enlightening, but they do make the point that we are dealing
with very non-trivial structures.

Proposition 9.6.6 For

A =
(
a b

c d

)
∈ SL(2,C) (9.41)

and p ∈ X0 let us define ξ (A,p) = d(p0 + p3)− b(p1 + ip2). Then given A, λ0-a.e.
we have ξ (A,p) �= 0. The formula

U (a,A)(ϕ)(p) = exp(i(a,p)/h̄)
( ξ (A,p)

|ξ (A,p)|
)j
ϕ(A−1(p)) (9.42)

defines a unitary representation of P∗ in L2 := L2(X0,dλ0). This representation is
unitarily equivalent to π0,j .

One striking feature of the formula is that the crucial factor (ξ (A,p)/|ξ (A,p)|) does not
change if we replace p by λp for some λ > 0.

We are going to show that this formula is simply the formula (9.7) when V is the repre-
sentation π̂j of G0 and when we use an adequate choice of Dp.

Proposition 9.6.7 For p ∈ X0 we have p0 + p3 ≥ 0. When p0 + p3 �= 0 the matrix

Dp = 1√
2(p0 + p3)

(
p0 + p3 0
p1 + ip2 2

)
∈ SL(2,C) (9.43)

satisfies Dp(p∗) = p, where p∗ = (1,0,0,1).

Proof The first claim follows from the fact that (p1)2+(p2)2 = (p0)2−(p3)2 and p0 ≥ 0.
When A is as in (9.41) it is straightforward to use the definition M(A(p∗)) = AM(p∗)A†

of A(p)(= κ(A)(p)) to check that the relation p := A(p∗) amounts to

2|a|2 = p0 + p3 ; 2a∗c = p1 + ip2 ; 2|c|2 = p0 − p3, (9.44)

from which one readily discovers the choice a =
√

(p0 + p3)/2 and c = (p1 + ip2)/√
2(p0 + p3), the last relation of (9.44) being then a consequence of the relation (p1)2 +

(p2)2 = (p0)2 − (p3)2. The natural choice b = 0 together with the requirement Dp ∈
SL(2,C) then leads to the formula (9.43).
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Proof of Proposition 9.6.6 We make the choice (9.43) when p0 + p3 �= 0 (and any arbi-
trary choice on the negligible set where p3 = −p0), and we carry out the computation of
the expression (9.7).

The basic observation is that for a matrix Ã of the type (9.40), if we know that a = λα for
some α ∈ C and some λ > 0 then since |a| = 1 we have a = α/|α| and therefore π̂j (Ã) =
(α/|α|)−j . Recalling that p0+p3 ≥ 0,D−1

p is a lower-triangular matrix with diagonal coef-

ficients inR+. When we consider a matrixB = (Bi,j ) with Ã := D−1
p B ∈ G0 it follows that

Ã1,1 = λB1,1 with λ> 0. Consequently π̂j (D−1
p B) = Ã

−j
1,1 = (B1,1/|B1,1|)−j . Consider

now A∈ SL(2,C). Then π̂j (D−1
p ADA−1(p)) = (B1,1/|B1,1|)−j where B = ADA−1(p).

From (9.43) the first column of Dp is the same as λ times the first column of M(p) for
a certain λ > 0. Thus the first column of DA−1(p) is the same as λ times the first col-
umn of M(A−1(p)) for a certain λ > 0. Consequently B1,1/|B1,1| = C1,1/|C1,1| where
C = AM(A−1(p)). But then M(A−1(p)) = A−1M(p)(A−1)† so that C = M(p)(A−1)†.
A straightforward calculation yields C1,1 = ξ (A,p)∗. Finally (ξ (A,p)∗/|ξ (A,p)|)−j =
(ξ (A,p)/|ξ (A,p)|)j .

This near-miraculous calculation does not shed much light on why the formula (9.42)
defines a representation. The following exercise will provide a direct proof of this fact.

Exercise 9.6.8 (a) Prove that the formula

U (a,A)(ϕ)(p) = exp(i(a,p)/h̄)g(A,p)ϕ(A−1(p))

defines a representation of P∗ if for each A,B ∈ SL(2,C) and each p ∈ X0 we have

g(B,p)g(A,B−1(p)) = g(BA,p). (9.45)

In the sequel, please do not worry about the rare cases where the definitions make
no sense.
(b) For z ∈ C and A ∈ SL(2,C) as in (9.41) define A · z = (c + dz)/(a + bz). Prove
that this defines an action of SL(2,C) on C, i.e. A · (B · z) = (AB) · z.
(c) For A ∈ SL(2,C) and z ∈ C define f (A,z) = d − bz. Prove that

f (B,z)f (A,B−1 · z) = f (BA,z). (9.46)

(d) What is the relation with Proposition 9.6.6? Hint: Find a suitable identification of
the rays of X0 with C, which transforms the natural action of SL(2,C) on these rays
into the previous one.

Exercise 9.6.9 Think of v ∈ C2 as a column matrix. We denote by v1,v2 the compo-
nents of v ∈ C2. We recall the action of matrix multiplication Av for A ∈ SL(2,C)
and v ∈ C2.
(a) Prove that for v ∈ C2 there exists a unique p(v) ∈ X0 such that M(p(v)) = vv†.
(b) Consider j ∈ Z and the space Hj ⊂ L2(C2) consisting of functions f such that
for any complex number θ of modulus 1 we have f (θv) = θjf (v). Prove that the
formula



9.6 Fundamental Representations 227

V (a,A)(f )(v) = exp(i(a,p(v))/h̄)f (A−1v) (9.47)

defines a unitary representation of P∗ in Hj .

(c) For p ∈X0 define (whenever possible) w(p)∈C2 by
√
p0+p3w(p)=

(
p0+p3

p1+ip2

)
.

Prove that p(w(p)) = p. Prove that if vv† = M(p) then v = (v1/|v1|)w(p).
(d) Prove that Bw(p) = (Bw(p)1/|Bw(p)1|)w(Bp) for B ∈ SL(2,C).
(e) Prove that the representations (9.42) and (9.47) are unitarily equivalent. Hint: Use
the map T : Hj → L2(X0,dλ0) given by T (f )(p) = f (w(p)).

In the remainder of this section we study the description of the representation π0,−j ofP∗
within the framework of Theorem 9.5.3, using this theorem for m = 0. We assume j ≥ 1.
We consider again the space H0 = Sj of symmetric tensors and the representation V of
(9.38). In the important case j = 1 we then have H0 = C2 and V is the action on C2 by
matrix multiplication, V (A)(x) = A(x). Consider the tensor g ∈ Sj given by gn1,...,nj = 0
unless all indices are equal to 1, in which case gn1,...,nj = 1. Thus, when j = 1, g is the
vector with g1 = 1 and g2 = 0. We denote by V the linear span of g, which is then a space of
dimension 1. For A ∈ G0 given by (9.40) we have V (A)(g) = ajg = (a∗)−j g = π̂−j (A)g.
Thus V is invariant under V (A), and the restriction of V to G0 and V is unitarily equivalent
to the representation π̂−j of G0. Consequently, the representation of P∗ constructed by
Theorem 9.5.3 is unitarily equivalent to the representation π0,−j .

Let us now compute the norm ‖u‖p of an element u of Vp. Such an element is of the type

u = V (A)(λg) = (λAn1,1An2,1 · · ·Anj,1),

and p = A(p∗) = κ(A)(p∗) i.e. AM(p∗)A† = M(p). Using (9.39), it is straightforward to
see that if A is as in (9.41) then p0 = |a|2 + |c|2. Thus

‖u‖2
p = ‖V (A)−1(u)‖2 = ‖λg‖2 = |λ|2

whereas since |A1,1|2 + |A2,1|2 = |a|2 + |c|2,

‖u‖2 = |λ|2
∑

n1,...,nj

|An1,1|2 · · · |Anj,1|2 = |λ|2(|a|2 + |c|2)j = (p0)j |λ|2.

Consequently ‖u‖2
p = ‖u‖2/(p0)j . We have proved the following.

Proposition 9.6.10 For j ≥ 1 consider the space H of functions ϕ : X0 → Sj which
satisfy ϕ(p) ∈ Vp for each p, provided with the norm

‖ϕ‖2 =
∫

dλ0(p)
‖ϕ(p)‖2

(p0)j
. (9.48)

Then the formula

U (a,A)(ϕ)(p) = exp(i(a,p)/h̄)V (A)[ϕ(A−1(p))] (9.49)

defines a unitary representation of P∗ on H, which is unitarily equivalent to the
representation π0,−j .
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Exercise 9.6.11 Find the corresponding statement for the representation π0,j .

When j = 1 our next result describes the space Vp by an explicit formula.

Lemma 9.6.12 When j = 1 we have

Vp = {u ∈ H0 = C2 ; M(Pp)(u) = 0}. (9.50)

Proof We recall that when j = 1, we have H0 = C2 and g ∈ C2 is the vector whose
components are g1 = 1 and g2 = 0. Its linear span V is the set of vectors which have a
second component equal to zero. Thus (9.50) holds for p = p∗ since, as in (9.39), we have

M(Pp∗) =
(

0 0
0 2

)
.

For the general case, we observe that since PA(p∗) = Pκ(A)(p∗) = κ(A†−1)(Pp∗) by
(8.36), it holds that

M(PA(p∗)) = A†−1M(Pp∗)A−1. (9.51)

If now v ∈ Vp we have v = Dp(u) for a certain u ∈ V . Applying the previous relation to v
and taking A = Dp shows that M(Pp)(v) = 0 for v ∈ Vp. Since Vp has dimension 1, this
proves (9.50).

Therefore the space H has a very clean description as the set of functions ϕ from X0 to
C2 which satisfy the equation M(Pp)(ϕ(p)) = 0. Let us again state this result.

Proposition 9.6.13 Consider the space H of functions ϕ : X0 → C2 which satisfy
the equation M(Pp)(ϕ(p)) = 0, provided with the norm (9.48). Then the formula

U (a,A)(ϕ)(p) = exp(i(a,p)/h̄)A[ϕ(A−1(p))] (9.52)

defines a unitary representation of P∗ on H, which is unitarily equivalent to the
representation π0,−1.

Recalling that M(p) = pμσμ we can consider the matrices σ̄μ such that M(Pp) =
pμσ̄μ. That is σ̄0 = σ0 and σ̄i = −σi for 1 ≤ i ≤ 3.32 The equation M(Pp)(ϕ(p)) = 0 is
then written as pμσ̄μv(p) = 0 in physics books.

Exercise 9.6.14 Find the corresponding statement for the representation π0,1.

Exercise 9.6.15 In the case of a general value of j ≥ 1 prove that u ∈ Vp if and only
if (DpD

†
pM(Pp)⊗ I ⊗ · · · ⊗ I )(u) = 0.

9.7 Particles, Spin, Representations

The present section is a continuation of Section 4.9, which the reader may like to review
now. What are the properties of a particle to which corresponds the representation πm,j or

32 So that, indeed, σ̄μ = σμ. The point of the new notation is that the formalism forbids the expression pμσμ.
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π0,j ? Let us first consider the case of πm,j where m > 0. As on page 127 we may argue
that the particle is of mass m and here we investigate its spin. We certainly expect from
Section 9.1 that

The representation πm,j of Definition 9.6.1 describes a particle of spin j/2. (9.53)

In Definition 8.7.1 we defined what is a particle of spin j/2 in Non-relativistic Quantum
Mechanics. This theory is however not a part of Quantum Field Theory, just like, say,
Newton’s theory of gravitation is not a part of General Relativity. So we cannot check
that we are here in the setting of Definition 8.7.1. The best we can do is to decide that
we will define the spin of a particle described by the representation πm,j as being j/2 and
to convince ourselves that this is reasonably consistent with Definition 8.7.1. For this let
us denote by Dp ∈ SL(2,C) the unique positive definite Hermitian matrix with Dp(p∗) =
(κ(Dp)(p∗)) = p as provided by Lemma 8.4.6.

Lemma 9.7.1 We have D−1
p ADA−1(p) = A for each A ∈ SU (2) and each p ∈ Xm.

Proof The matrix C := A−1DpA = A†DpA is positive Hermitian. Since A ∈ SU (2) it
holds that A(p∗) = κ(A)(p∗) = p∗ so that C(p∗) = A−1DpA(p∗) = A−1(p). Thus C
equals DA−1(p), the unique positive Hermitian matrix with this property.

Consequently, for A ∈ SU (2), (9.7) yields

Ũ (0,A)(ϕ)(p) = V (A)(ϕ(A−1(p))). (9.54)

To understand what this means we compare it with (8.34), which we write

(U ⊗ πj )(A)(ϕ)(p) = πj (A)(ϕ(A−1(p))), (9.55)

since A−1(p) is the notation we now use for κ(A−1)(p). When V = πj , the overwhelming
analogy between (9.54) and (9.55) supports (9.53).33

The heuristic approach of Section 9.1 effortlessly discovers the method of induced rep-
resentations (9.6). That is, assuming that the particle is characterized by its spin and its
mass, it discovers how the Poincaré group acts on it. On the other hand, Wigner proved
that all the projective representations of P∗ are obtained as induced representations. This
goes much further: The way the Poincaré group acts on a particle of a given positive mass
depends only on its spin. It proves that there is no other possible characteristic of the particle
involved there.

Next we turn to the case of the representation π0,j of Definition 9.6.4, acting as in this
definition on the space L2(X0,λ0). As on page 127 we argue that a particle described by
this representation must be massless.

What property of this particle is reflected by the representation π̂j of the little group? In
imprecise but picturesque terms, we will show that

33 None of the arguments above pretends to be a rigorous deduction of anything.
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a rotation of angle θ around the direction of motionp

multiplies the state by a phase exp(ijθ/2). (9.56)

Keeping in mind the result of Exercise 8.8.2 we describe the situation by saying: “the
particle has helicity j/2”.34 We will think of a particle with helicity j/2 as having spin
|j |/2. Thus a massless particle of given spin j/2 (j > 0) comes in two versions, with
helicity ±j/2. In contrast, a massive particle is determined by its mass and its spin.

The similarity of terminology should not hide that the massive and massless cases are
very different.

Exercise 9.7.2 What differences do you see?

To prove (9.56), let us first consider the ideal case where ϕ(p)= 0 unless p = λp∗ =
(λ,0,0,λ) for some λ > 0. The direction of motion is then the z-axis. The element

A = exp(−iθσ3/2) =
(

exp(−iθ/2) 0
0 exp(iθ/2)

)
is such that κ(A) corresponds to a

rotation of angle θ around the z-axis. The quantity ξ (A,p) of Proposition 9.6.6 equals
2λ exp(iθ/2) and the quantity ξ (A,p)/|ξ (A,p)| then equals exp(iθ/2). Thus (9.42) takes
the form U (0,A)(ϕ)(p) = exp(ijθ/2)ϕ(p) which proves the claim (9.56).

To prove (9.56) in the general case, the basic observation is that if R is a rotation of angle
θ around the direction of a vector u, and S is another rotation, then SRS−1 is a rotation of
angle θ around the direction of S(u). Considering a rotation κ(Up) which sends (p0,0,0,|p|)
to p = (p0,p), and

A = Up exp(−iθσ3/2)U−1
p , (9.57)

then κ(A) is a rotation of angle θ around the direction of p, and

U (0,A)(ϕ) = U (0,Up)U (0, exp(−iθσ3/2))U (0,U−1
p )(ϕ). (9.58)

In the ideal case where ϕ(p′) is �= 0 only when p′ is in the direction of p, then (9.42) shows
that ψ := U (0,U−1

p )(ϕ) is such that ψ(p′) �= 0 only for p′ in the direction of e3. We have
then shown that U (0, exp(−iθσ3/2))(ψ) = exp(ijθ/2)ψ and (9.58) implies as desired that
U (0,A)(ϕ) = exp(ijθ/2)ϕ.

Exercise 9.7.3 The purpose of the present challenging exercise is to try to look at
the representation π0,j using physicists’ tools. We denote by R(θ,u) the rotation of
angle θ and axis u, where u is a unit vector. Considering a representation W of SO(3)
(which models the action of rotations) one defines a self-adjoint operator Ju by

Ju = lim
θ→0

h̄

iθ
(W (R(θ,u))− 1). (9.59)

It is called the angular momentum with respect to axis u.

34 It is the desire to have π0,j describe particles of helicity j/2 (rather than −j/2) which dictates the choice

π̂j (A) = a−j as opposed to the seemingly more natural choice π̂j (A) = aj .



9.7 Particles, Spin, Representations 231

(a) When we consider instead a representation of SU (2), convince yourself after study-
ing the first three sections of Appendix D that instead of (9.59) one should use the
formula

Ju = lim
θ→0

h̄

iθ
(W (exp(−iθu · σ/2))− 1), (9.60)

where the notations are those of Appendix D.
We first assume j = 1 and consider the realization of π0,−1 described in Proposi-

tion 9.6.13. In this case the representation W modeling the action of rotations is given
by W (A) = U (0,A), where U (a,A) is defined in (9.52).
(b) In the ideal case where ϕ is non-zero only for a given value of p = (p0,p) and
where the unit vector u is p/|p| show that Ju(ϕ) is non-zero only at p and that

Ju(ϕ)(p) = − h̄
2
u · σ (ϕ(p)). (9.61)

(c) Use the condition M(Pp)(ϕ(p)) = 0 to show that the previous relation implies

Ju(ϕ)(p) = − h̄
2
ϕ(p),

and interpret this relation as “the spin in the direction of motion is −1/2”.
(d) Generalize the previous considerations to the case of an arbitrary value of j .

Physicists find the considerations of the previous two pages as self-evident, and write the
following argument: “Since −h̄u · σ/2 measures the angular momentum in the direction
of the unit vector u, the operator −h̄p · σ/(2|p|) measures the angular momentum in the
direction of motion, but according the equation M(Pp)(ϕ(p)) = 0, this operator is simply
multiplication by −h̄/2”.35

Let us then summarize the situation:

• For m > 0, the representation πm,j corresponds to a particle of mass m and spin j/2.
• The representation π0,j corresponds to a massless particle of spin |j |/2 and helicity

j/2.

The mathematical subtleties of the treatment of massless particles are largely irrelevant
in physics.36 It is possible in physics to assume that every particle has a tiny mass. The
results of every experiment conceivable today would be the same if photons had a rest mass
of 10−1000 kg, and articles finding experimental upper bounds for this rest mass do get
published.37 Still, as the mathematics are interesting, starting with Section 9.12 we will
indulge for a few pages in thinking about massless particles.

35 I do not see how to give a precise meaning to this without entering the considerations of the previous exercise.
If you think I am nit-picking ask yourself what is the state space on which these operators act.

36 As of today, the photon is the only confirmed massless particle. The hypothetical graviton would also be
massless, but with spin 2. Neutrinos were long thought to be be massless, but now are believed to have a very
small positive mass.

37 Try the search for the words “photon mass limit”! The upper bound 10−16e.V. seems very solid.
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9.8 Abstract Presentation of Induced Representations

In the present section we give a more abstract, but more intrinsic description of the previous
representations. Using it certain results become far simpler. We will witness this when
proving Proposition 9.4.6, again in Section 9.12, and crucially in Section 10.4. The method
is a special case of a very general method in representation theory, the so-called “method
of induced representations”. In the setting of representation of a semidirect product N �H

(with N abelian) the key idea of the method can be implemented in a simple way.38

We carry out the method only in the case of the physically relevant representations of
the Poincaré group.39 We start with a fixed point p∗ ∈ Xm (m ≥ 0), with little group
Gp∗ = {A ∈ SL(2,C);A(p∗) = p∗} for the action of SL(2,C). For each p ∈ Xm we
fix an element Dp ∈ SL(2,C) with Dp(p∗) = p. Consider a unitary representation V of
Gp∗ in a finite-dimensional space V , and the induced representation Ũ (a,A) of Theorem
9.4.2. It acts on the space L2 = L2(Xm,V,dλm). The magic idea (which will transport the
representation to something much nicer) is to associate to each function ϕ ∈ L2 a function
T (ϕ) : SL(2,C)→ V by the formula

T (ϕ)(A) = V (A−1DA(p∗))ϕ(A(p∗)). (9.62)

This makes sense because A−1DA(p∗)(p∗) = A−1A(p∗) = p∗ so that A−1DA(p∗) ∈ Gp∗ .
Recalling the formula (9.7), let ψ := Ũ (a,A)(ϕ) so that

ψ(p) = Ũ (a,A)(ϕ)(p) = exp(i(a,p)/h̄)V (D−1
p ADA−1(p))[ϕ(A−1(p))].

For B ∈ SL(2,C) we compute

T (Ũ (a,A)(ϕ))(B) = T (ψ)(B) = V (B−1DB(p∗))[ψ(B(p∗))]

= exp(i(a,B(p∗))/h̄)V (B−1DB(p∗))V (D−1
B(p∗)ADA−1B(p∗))[ϕ(A−1B(p∗))]

= exp(i(a,B(p∗))/h̄)V (B−1ADA−1B(p∗))[ϕ(A−1B(p∗))]

= exp(i(a,B(p∗))/h̄)T (ϕ)(A−1B). (9.63)

For a function f : SL(2,C)→ V let us then define

π (a,A)(f )(B) = exp(i(a,B(p∗))/h̄)f (A−1B), (9.64)

so that (9.63) means

T Ũ (a,A) = π (a,A)T . (9.65)

Thus, if we transport the representation Ũ (a,A) by T it is given by the much simpler formula
(9.64). The function f = T (ϕ) of (9.62) satisfies

A ∈ SL(2,C),C ∈ Gp∗ ⇒ f (AC) = V (C−1)f (A), (9.66)

38 It was a character-forming experience to figure this out.
39 If it helps you to think in more abstract and general terms, a general scheme to construct unitary

representations of semidirect products is presented in the form of a sequence of exercises at the end of the
section.
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since C(p∗) = p∗ and V (C−1A−1DA(p∗)) = V (C−1)V (A−1DA(p∗)). Conversely, if the
function f satisfies (9.66), then f = T (ϕ) where the function ϕ is given by ϕ(p) = f (Dp).
Indeed,

T (ϕ)(A) = V (A−1DA(p∗))f (DA(p∗)) = f (A),

using (9.66) for C = D−1
A(p∗)A.

Theorem 9.8.1 Given a unitary representation V of the little group Gp∗ on a space
V , consider the space F of functions f : SL(2,C) → V which satisfy the condition
(9.66), provided with the norm

‖f ‖2 =
∫

dλm(p)‖f (Dp)‖2. (9.67)

The formula (9.64) defines a unitary representation of P∗ on F . This representation
is unitarily equivalent to the representation induced by V .

Proof We have shown that T is unitary from L2 to F , so that (9.65) proves the theorem.

Exercise 9.8.2 Prove directly that the formula (9.64) defines a unitary representation
on F . Prove that the norm (9.67) is independent of the choice of Dp ∈ SL(2,C) with
Dp(p∗) = p.

Exercise 9.8.3 Following the method of Exercise 9.5.5 prove that when m > 0 there
is a left-invariant measure dμ on SL(2,C) such that for f ∈ F we have ‖f ‖2 =∫

dμ(A)‖f (A)‖2.

Exercise 9.8.4 Find a proof of Proposition 9.4.5 using the presentation of the present
section.

We are now ready to prove that the method of induced representation constructs irre-
ducible representations.

Proof of Proposition 9.4.6 It suffices to prove the corresponding result for the representa-
tions of Theorem 9.8.1. The “only if” part is obvious, since if W is a subspace of V which
is invariant under V , the space of W-valued functions is invariant under each π (a,A).

The non-trivial proof of the converse may be skipped at first reading. We denote by
g a non-zero element of F and by 〈·,·〉 the inner product in V . Consider an element
f ∈ F and assume that f is orthogonal to all the elements π (a,A)(g). We have to
prove that f = 0 in the space of functions provided with the norm (9.67), that is we
have to prove that f (Dp) = 0 dλm-a.e. The inner product in F is given by (f,g) =∫

dλm(p)〈f (Dp),g(Dp)〉 so that our hypothesis is that for each value of a,A the integral∫
dλm(p)〈f (Dp), exp(i(a,Dp(p∗))/h̄)g(A−1Dp)〉 is zero. Since Dp(p∗) = p we prove as

in Proposition 4.8.4 that for each A in SL(2,C) the function p �→ 〈f (Dp),g(A−1Dp)〉 has
to be zero dλm-a.e. Changing A into A−1, we have proved that for each A ∈ SL(2,C) the
function p �→ 〈f (Dp),g(ADp)〉 has to be zero dλm-a.e.
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We now use that on the locally compact group SL(2,C) there is a right-invariant measure
dμ.40 That is, dμ is invariant by the transformations A �→ AB for B ∈ SL(2,C). In
particular if a function A �→ h(A) is zero dμ-a.e. then for each B ∈ SL(2,C) the function
A �→ h(AB) is zero dμ-a.e. (and conversely). Using Fubini’s theorem for the measure
dλm ⊗ dμ, for dλm-almost each p the function A �→ 〈f (Dp),g(ADp)〉 has to be zero
dμ-a.e. Let us fix now such a value of p with the goal of showing that f (Dp) = 0 (which
will conclude the proof). By right-invariance of μ the function A �→ 〈f (Dp),g(A)〉
is zero dμ-a.e. and hence, again by right-invariance, for every C ∈Gp∗ the function
A �→ 〈f (Dp),g(AC)〉 = 〈f (Dp),V (C−1)g(A)〉 is zero dμ-a.e.

Denoting by dγ the Haar measure of Gp∗ and using Fubini’s theorem again, for
dμ-almost all values of A the function C �→ 〈f (Dp),V (C−1)g(A)〉 is zero dγ -a.e., and
hence everywhere as this function is continuous. In particular this occurs for a value A for
which g(A) �= 0. But since V is irreducible, this proves as desired that f (Dp) = 0.

In the following exercises, we sketch a general method to construct unitary representa-
tions of a semidirect productN�H whereN is commutative andN andH are countable.41

Exercise 9.8.5 Consider a countable group G and a subgroup H . The relation ARB
iff B−1A ∈ H is an equivalence relation on G. The quotient of G by this equivalence
relation is denoted by G/H . Describe a natural action of G on G/H , and consider a
positive measure λ on G/H which is invariant under this action. Let us assume that
we are given a unitary representation V of H in a Hilbert space V . If a function f

from G to V satisfies

A ∈ G,C ∈ H ⇒ f (AC) = V (C−1)f (A), (9.68)

prove that it makes sense to define

‖f ‖2 =
∫
G/H

dλ(p)‖f (Dp)‖2

whereDp ∈ G is such that its class inG/H isp. Consider the Hilbert spaceH of these
functions for which ‖f ‖ < ∞. Prove that we may define a unitary representation π
of G in H by the formula π (A)(f )(B) = f (A−1B).

Exercise 9.8.6 This exercise continues the previous one. We consider a countable
abelian group N and a semidirect product N � H . The law of this group is given by
(a,A)(b,B) = (a + κ(A)(b),AB) where κ(AB) = κ(A)κ(B) and κ(A)(a + b) =
κ(A)(a) + κ(A)(b). A character of N is a unitary representation of N on C, and N̂
denotes the set of these representations, called the dual ofN . Prove that we can define
an action κ̂ of H on N̂ by κ̂(A)(w)(x) = w(κ(A−1)(x)) for w ∈ N̂ and x ∈ H . Let
us then fix w ∈ N̂ , and define the little group Hw of w as the set of A ∈ H for which

40 On a locally compact group there exist both right-invariant and left-invariant measures, which may be
different, although it can be shown that this does not happen in the case of SL(2,C). A left-invariant measure
is constructed in Exercise 9.5.5.

41 If you know about locally compact groups, you may assume that these groups are locally compact, adding the
proper continuity assumptions whenever required.



9.9 Particles and Parity 235

κ̂(A)(w) = w. Explain why the orbit of w under the action of H identifies with the
quotient H/Hw. Consider a unitary representation V of Hw in a Hilbert space V and
the space H of functions from H to V defined in the previous exercise. Prove that we
define a unitary representation π of N �H by the formula

π (a,A)f (B) = κ̂(B)(w)(a)f (A−1B).

Relate this to formula (9.64).

9.9 Particles and Parity

Now, what about parity? We can act on a particle by translations, rotations, even (in prin-
ciple) Lorentz transformations. There is however no machine that takes a particle and pro-
duces a mirror image of it. Still, many situations are mirror images of each other, and to
account for this we should try to build models which involve a parity operator. The first
step in this direction is to enlarge the group P∗ by “adding a parity element”. This is done
simply by considering the group P∗+ = R1,3 �SL+(2,C) where the group SL+(2,C) is as
in Definition 8.9.3. That is, one adds a new element P ′ to SL(2,C), so the group SL+(2,C)
consists of the elements P ′,A,P ′A where A ∈ SL(2,C) with the multiplication rule (8.41):
P ′I = P ′,P ′AP ′ = A†−1, and κ is extended to SL+(2,C) by (8.42), i.e. κ(P ′A) = Pκ(A),
where P is the parity operator (p0,p) → (p0, − p). The “parity element” of P∗+ is then
(0,P ′).

The obvious question is then how to construct meaningful representations of P∗+.
The mass shell Xm is still an orbit under the action of P∗+ and Theorem 9.4.2 extends

in a straightforward manner to the setting where SL(2,C) is replaced by SL+(2,C) and P∗
is replaced by P∗+. This extension will be called “Extended Theorem 9.4.2”.

Let us first say a few words about the really easy case m > 0 and p∗ = (mc,0,0,0).
Then the little group of SL+(2,C) consists of the group SU+(2) generated by SU (2) and
P ′, and the element P ′ commutes with every element of SU+(2).

Let us compare the irreducible representations of SU (2) and SU+(2). Consider first
an irreducible representation V of SU+(2). Since P ′ commutes with every element of
SU+(2) then V (P ′) commutes with every operator V (A). Since V is irreducible, V (P ′)
is a multiple of the identity 1 by Schur’s lemma (Lemma 4.5.7). Since P ′2 is the identity,
there are two cases: Either V (P ′) is the identity or it is minus the identity. Conversely an
irreducible representation of SU (2) can be extended in exactly two ways to SU+(2), by
setting V (P ′)= 1 or by setting V (P ′) = −1.

As a consequence of this and of the extended Theorem 9.4.2 the representation πm,j of
Definition 9.6.1 can naturally be extended to P∗+ in two different ways, one differing from
the other in the fact that for one of them the action of parity involves an extra minus sign.
In physics these two extensions are distinguished by saying that the particle has intrinsic
parity ±1.

The study of massive particles and parity continues in the next two sections, while the
last two sections deal with massless particles.
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9.10 Dirac Equation

The reader should review Section 8.10 and in particular the matrix γ (x) of (8.46) and the
γ matrices γν of (8.49), so that γ (x) = xνγν . Our goal is to apply the extended Theorem
9.5.3 to the case where H0 = C4, where m > 0 and where V = S is the representation of
SL+(2,C) given by (8.44) and (8.45):

S(A) :=
(
A†−1 0

0 A

)
; S(P ′) =

(
0 I

I 0

)
.

There are several reasons to do this. First S is in a sense the simplest non-trivial repre-
sentation of SL+(2,C). Second this will lead us to the Dirac equation, which played a
fundamental historical role in quantum mechanics.

The little group is the group SU+(2) generated by SU (2) and parity P ′. The restriction
of S to SU+(2) is unitary, but it is not irreducible. This is because P ′ commutes with every
element of SU+(2) so that the eigenspaces of S(P ′) = γ0 are invariant under this restriction.
Since γ 2

0 = 1 the eigenvalues are ±1 and the corresponding eigenspaces are

V = {u ∈ C4 ; γ0u = u} ; V ′ = {u ∈ C4 ; γ0u = −u},
each of which has dimension two, and we are going to apply the extended Theorem 9.5.3
to the space V . Given p ∈ Xm, and Dp ∈ SL(2,C) such that p = Dp(p∗), the space
Vp = S(Dp)(V) is independent ofDp and is two-dimensional. The extended Theorem 9.5.3
constructs a representation on the space H of functions ϕ : Xm→ C4 such that ϕ(p) ∈ Vp
for each p.

Lemma 9.10.1 For each p it holds that

Vp = {u ; γ (p)u = mcu}.
Proof First we observe that γ (p∗) = mcγ0 so that the elements u of V are characterized
by the equation γ (p∗)u = mcu. The relation (8.47) implies here

γ (p)S(Dp) = S(Dp)γ (p∗), (9.69)

which shows that the elements u of Vp = S(Dp)V are characterized by the equation
γ (p)u = mcu.

Let us define the Dirac operator D̂ on the space of functions ϕ : Xm→ C4 by

D̂(ϕ)(p) = γ (p)ϕ(p). (9.70)

Therefore the space H is simply the space of functions which satisfy the equation
D̂ϕ = mcϕ, i.e. γ (p)ϕ(p) = mcϕ(p) for each p. This equation is known as the Dirac
equation, and will be discussed in the next section.

Exercise 9.10.2 The extended Theorem 9.5.3 defines the representation U (a,A) of
P∗+ by the formula (9.73). Prove that the operator D̂ commutes with the operators
U (a,A).
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Let us also observe for further use that the identity γ (x)2 = x21 implies

D̂2(ϕ)(p) = p2ϕ(p). (9.71)

We provide now a simple alternative expression for the norm (9.31). Given a Dirac spinor,
that is, an element u of C4 seen as a column vector, let us denote by u† its transpose-
conjugate, which is a row vector. Given two Dirac spinors u,v we consider the quantity

u†γ0v,

which is a number. It is linear in v and anti-linear in u, but one need not have u†γ0u ≥ 0.
The key fact is that this sesqui-linear form is invariant under each map S(A) as shown by
the next lemma.

Lemma 9.10.3 For each A ∈ SL+(2,C) we have

(S(A)u)†γ0S(A)v = u†γ0v.

Proof Since (S(A)u)† = u†S(A)† it suffices to show that whenever A ∈ SL+(2,C) we
have

S(A)†γ0S(A) = γ0. (9.72)

Since γ0 = S(P ′), and since S is a representation, the above is equivalent to S(A)†S(P ′A) =
S(P ′), and one simply checks all the cases. For example ifA = P ′ this holds since S(P ′)† =
S(P ′), while for A ∈ SL(2,C) we have S(A)†S(P ′A) = S(A†)S(P ′A) = S(A†P ′A) and
A†P ′A = P ′.

The nice thing is that for u ∈ V we have u†γ0u = u†u = ‖u‖2. Consequently, for
u ∈ Vp, since S(Dp)−1u ∈ V , we have

‖u‖2
p = ‖S(Dp)−1u‖2 = (

S(Dp)−1u
)†
γ0S(Dp)−1u = u†γ0u,

where we use Lemma 9.10.3 for A = D−1
p in the last equality. This provides a simple

expression for ‖u‖2. In summary:

Theorem 9.10.4 Consider the space HDirac of functions ϕ : Xm → C4 which satisfy
the Dirac equation D̂ϕ = mcϕ, provided with the inner product

(ϕ,ψ) =
∫

dλm(p)ϕ†(p)γ0ψ(p).

Then the formula

U (a,A)(ϕ)(p) = exp(i(a,p)/h̄)S(A)[ϕ(A−1(p))] (9.73)

defines a unitary representation of P∗+ on HDirac.

Exercise 9.10.5 State a similar result for the space of functions that satisfy the
equation D̂(ϕ) = −mcϕ.
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9.11 History of the Dirac Equation

Schrödinger’s equation (2.80) is not Lorentz invariant.42 While looking for a version of this
equation which would be consistent with Special Relativity, Paul Adrien Maurice Dirac was
led to an equation of the type

ih̄aμ∂μf = mcf, (9.74)

where the differential operator ∂μ is defined by

∂μf := ∂f

∂xμ
, (9.75)

and where the quantities aμ should satisfy the commutation relations43

aμaν + aνaμ = 2ημν . (9.76)

The relations (9.76) cannot be satisfied by complex numbers, so that in (9.74) it is not
possible to use for f an ordinary wave function, that is, a map from Minkowski space R1,3

to C. Analysis of these commutation relations led him to discover the matrices γμ, and to
the fundamental idea that f should rather be a “multicomponent” wave function, a map ϕ
from R1,3 to C4. Recalling that γ μ = ημνγν , the equation (9.74) then takes the form

ih̄γ μ∂μf = mcf, (9.77)

that we shall call the Dirac equation.44 The reader is certainly not expected to understand
the physical content of this equation, or even its relationship with the Schrödinger equation
just by looking at the formula (9.77). Doing so requires very significant work.

The standard way to study the Dirac equation goes roughly as follows. Having guessed
this equation following Dirac’s intuition, it should be “Lorentz invariant”: All legitimate
(inertial) observers should agree that the same equation describes the evolution of “wave
functions”. Different observers however use different coordinate systems, so will use dif-
ferent “wave functions” to describe the same particle. That is, there must exist a transfor-
mation rule of the wave function when one changes coordinate systems (i.e. one performs
a Lorentz transformation A) that preserves the form of the Dirac equation. To discover this
transformation rule one analyzes the case where “A is infinitesimally close to the identity”,
or in other words one uses Lie algebras. In this manner one discovers formula (9.78). The
Dirac equation then reveals plenty of symmetries, including parity.

Reversing this historical approach we have shown that the simple desire to have a parity
operator more or less automatically leads us to invent the Dirac matrices, and to discover
the Dirac equation (as in the previous section).

42 Please review Section 6.1 if you forgot what this means.
43 One of the ideas of Dirac is that the equation

9.74 “should be the square root of the Klein-Gordon equation (6.3)”. The relations (9.76) are just the relations
required for this. They imply that the square of the operator ih̄aμ∂μ is −h̄2∂μ∂

μ.
44 The relationship through the Fourier transform between this formula and what we called the Dirac equation in

the previous section will be explained shortly.
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The Dirac equation, seen as a (kind of) relativistic wave equation of a single particle, is a
very interesting topic in the sense that it mixes triumphs and disasters. Among its triumphs is
a better prediction of the energy levels of the hydrogen atom than the Schrödinger equation.
In the end the Dirac equation is however not part of a consistent theory, since there seems to
be no way to avoid the disaster of “negative energy states”.45 We shall not study this aspect
of Dirac’s equation.46 The topic is treated in countless physics textbooks, and sketched in
Folland’s book [31]. The books explain in particular why the Schrödinger equation is the
“non-relativistic limiting case” of the Dirac equation, which is certainly not obvious from
(9.77). The ideas behind the Dirac equation are still very much relevant to Quantum Field
Theory, but there this equation is no longer interpreted as a kind of wave equation.

Let us now prove the Lorentz invariance of the Dirac equation. This property is just
another way to express the result of Exercise 9.10.2 (as can be shown using the Fourier
transform), but we give a direct proof. Now that we are somewhat familiar with represen-
tations of the Poincaré group, it is easy to guess what the transformation rule for the wave
function should be. For a function f : R1,3 → C4 and A ∈ SL+(2,C) let us define the
function TA(f ) by

TA(f )(x) = S(A)f (κ(A−1)(x)). (9.78)

Here for clarity we write κ(A)(x) rather than the shorthand A(x). Then (9.78) defines a
representation of SL+(2,C) in the space of functions on R1,3 valued in the Dirac spinors.
This is checked as in the proof of Theorem 9.5.3.

Theorem 9.11.1 The Dirac operator D := γ μ∂μ satisfies

D(TA(f )) = TA(D(f )). (9.79)

Here of course γ μ = ημνγν , and we assume that f is smooth.

Proof Since the matrix S(A) does not depend on x it commutes with the differentiation
∂μ, so that

γ μ∂μ
(
S(A)f (κ(A−1)(x))

) = γ μS(A)∂μ
(
f (κ(A−1)(x))

)
. (9.80)

Now, since κ(A−1)(x)ν = (κ(A−1))νμx
μ, by the chain rule we get

∂μ
(
f (κ(A−1)(x))

) = κ(A−1)νμ(∂νf )(κ(A−1)(x)),

while by (8.51) (used for A−1 instead of A, and since S(A)−1 = S(A−1)) it holds that
γμS(A) = S(A)κ(A)νμγν = S(A)γνκ(A)νμ which by raising and lowering the appropriate
indices we rewrite as

γ μS(A) = S(A)γ ρκ(A−1) μρ .

45 Sadly enough, some of the negative legacies of this equation, such as the brilliant but nonsensical idea of the
“Dirac sea” to cope with this problem still found their way in textbooks published not so long ago.

46 The study is part of the history of Quantum Field Theory but not of this theory itself.
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Exercise 9.11.2 Justify this statement in detail.

Thus the quantity (9.80) is exactly

S(A)γ ρκ(A−1) μρ κ(A−1)νμ(∂νf )(κ(A−1)(x)),

and since κ(A−1) μρ κ(A−1)νμ = δνρ by (4.18) this is TA(D(f )).

As a consequence, we obtain the fundamental fact that the Dirac equation (9.77) is
Lorentz invariant: Its form does not change under a Lorentz transformation, provided after
such a transformation A we use it for the function TA(f ) of (9.78) rather than for f .

In the next exercise we relate our two versions of the Dirac equation. We recall the Fourier
transform of a function R1,3 → C as defined in (4.58):

f̂ (p) =
∫

d4x exp(i(x,p)/h̄)f (x) =
∫

d4x exp(i(x0p0 − x · p)/h̄)f (x). (4.58)

The Fourier transform of a function R1,3 → C4 is taken component by component.
We recall the operator D̂ of (9.70), given by D̂(ϕ)(p) = γ (p)ϕ(p).

Exercise 9.11.3 (a) Prove that for a function f : R1,3 → C one has ∂̂μ(f )(p) =
−ipμf̂ (p)/h̄, so that ih̄∂̂μ(f ) = pμf̂ (p). Compare with (1.23).
(b) Use the commutation relations between the Dirac matrices to compute the square
of the Dirac operator D. Prove that if a function f satisfies the Dirac equation each
of its components satisfies the Klein-Gordon equation.
(c) Prove that for a function f : R1,3 → C4 one has D̂(f̂ ) = ih̄D̂(f ).
(d) Prove that a function f : R1,3 → R4 which satisfies the Dirac equation is deter-
mined by the restriction of its Fourier transform ϕ = f̂ to Xm, and that this restriction
satisfies the Dirac equation D̂(ϕ) = mcϕ. (This is formal: We pretend that ϕ is well
defined and is a function.)
(e) Recalling the formula (9.78), prove that for a function f on position space,
U (0,A)(f̂ ) = T̂A(f ).
(f) Relate (9.79) and Exercise 9.10.2.

9.12 Parity and Massless Particles

Our true goal is to understand the representation of P∗+ corresponding to the photon, the
most common particle of the universe. This is the object of the next section. In order to
really understand why the representation corresponding to the photon is what it is, we must
look first into the relationship between parity and massless particles. This is considerably
more subtle than in the massive case and is the object of the present section. This material,
as well as the material of the next section, is not required to follow the main story.

At the root of what we discuss here is the following striking fact: If we look at the image
in a mirror of say, a cube, we see a cube. But if we look at the image of a left hand, we
see a right hand, or maybe more to the point, if we look at the image of a corkscrew, we do
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not see a standard corkscrew, but the version for left-handed people.47 One of the main
conclusions of this section is that if we look at the mirror image of the representation π0,j

we see the representation π0,−j , which is not equivalent to π0,j unless j = 0. As a striking
consequence, for j �= 0, the representation π0,j does not extend to P∗+.

Going back to mathematics, we start with the following algebraic identity in P∗+, which
has a fundamental bearing on the structure of the representations of P∗+. If A ∈ SL(2,C)
then

(0,P ′)(a,A)(0,P ′) = (Pa,P ′AP ′) = (Pa,A†−1). (9.81)

As a first consequence, we get the following.

Lemma 9.12.1 The map (a,A) �→ (Pa,A†−1) from P∗ to P∗ is a group homomor-
phism. Consequently if π is a representation of P∗ the map (a,A) �→ π̃ (a,A) :=
π (Pa,A†−1) is also a representation of P∗.

As we try later to explain in words, we may think of the representation π̃ as “the mirror
image” of the representation π . A key result of this section is as follows.

Proposition 9.12.2 The representation π̃0,j of P∗ given by

π̃0,j (a,A) = π0,j (Pa,A†−1), (9.82)

whenever a ∈ R1,3 and A ∈ SL(2,C) is unitarily equivalent to π0,−j .

We will deduce this later from a general result, Proposition 9.12.8, but it also has a simple
direct proof using the concrete realizations of π0,j which we have obtained, as is shown in
the following exercises.

Exercise 9.12.3 In the case j = −1 find an alternative proof of Proposition 9.12.2
using Proposition 9.6.13 and Exercise 9.6.14.

Exercise 9.12.4 Find a direct proof of Proposition 9.12.2 using the representation
(9.47). Hint: Recalling the matrix J of Lemma 8.1.4 use the map T (f )(v) = f (Jv∗)
from Hj to H−j .

Lemma 9.12.5 The representations π0,j and π0,−j are not unitarily equivalent.

This is intuitively obvious from our study of helicity, since the rotations of space do not
act in the same manner in these representations. Generally speaking, it is true that if we
consider unitary representations V and V ′ of the little group, the corresponding induced
representations are unitarily equivalent if and only if V and V ′ are unitarily equivalent, and
in the present case π̂j and π̂−j are not unitarily equivalent. We give a self-contained proof
of Lemma 9.12.5 in the present case.48

47 That is a way to say: in practice, left-handed persons do not get the version of scissors and corkscrews adapted
to them, but have to cope with the standard version. Intolerable, and at times, lethal discrimination. It does
cause deaths in the construction/forest industry.

48 As usual, some of the measure-theoretic details are not covered properly.



242 Representations of the Poincaré Group

Proof In the setting of Theorem 9.4.2 these two representations both live in the space
L2(X0,dλ0). Assume that there is a unitary map T such that

T π0,j (a,A) = π0,−j (a,A)T (9.83)

for each (a,A) ∈ P∗. Taking A the identity, for each a ∈ R1,3 and each ϕ ∈ L2 the image
by T of the function p �→ exp(i(a,p)/h̄)ϕ(p) is the function p �→ exp(i(a,p)/h̄)T (ϕ)(p).
Taking suitable averages over a, for any test function ξ the image by T of the function
p �→ ξ (p)ϕ(p) is the function ξ (p)T (ϕ)(p), i.e. T (ξϕ)(p) = ξ (p)T (ϕ)(p). Next we prove
the existence of a function β(p) such that

T (ψ)(p) = β(p)ψ(p). (9.84)

Consider a test function ξ with compact support and a test function ϕ which is equal to 1
on the support of ξ . Then ξ = ξϕ so that for each p we have T (ξ )(p) = T (ξϕ)(p) =
ξ (p)T (ϕ)(p). When ξ (p) �= 0 this shows that T (ϕ)(p) does not depend on ϕ. It is then a
function β(p) and we have shown that T (ξ )(p) = β(p)ξ (p). This holds for any test function
and (9.84) follows by continuity.

Going back to the formula (9.7) it should be obvious that a map of the type (9.84) cannot
satisfy (9.83) for all elements (0,A).

Lemma 9.12.6 A representation π of P∗ can be extended to P∗+ if and only if π and
π̃ are unitarily equivalent.

Proof Denoting by π ′ an extension of π to P∗+, (9.81) implies

π (Pa,A†−1) = Uπ(a,A)U−1

where U = U−1 = π ′(0,P ′) is unitary. Thus if π can be extended to P∗+ then π and
π̃ are unitarily equivalent. Conversely if U is a unitary operator such that π (Pa,A†−1) =
Uπ(a,A)U−1 then by checking cases one sees that it is possible to extend π to P∗+ by
setting π (0,P ′) = U .

Since π0,j and π̃0,j = π0,−j are not unitarily equivalent, this has the following striking
consequence, showing that the situation is completely different from the massive case.

Theorem 9.12.7 The representation π0,j of Definition 9.6.4 cannot be extended
to P∗+.

We will now prove the following very clean generalization of Proposition 9.12.2.

Proposition 9.12.8 Consider a unitary representation V of the little groupG0 and the
corresponding induced representation π of P∗. Then the representation π̃ defined in
Lemma 9.12.1 is equivalent to the representation induced by the unitary representation
V ′ : A �→ V (A∗) of G0.

To prepare for the proof we recall the matrix J =
(

0 1
−1 0

)
of (8.1).
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Lemma 9.12.9 (a) If p = (p0,p1,p2,p3) we have

J (p) = (p0, − p1,p2, − p3). (9.85)

(b) If A(p∗) = (p0,p1,p2,p3) then A∗(p∗) = (p0,p1, − p2,p3).
(c) Furthermore for A ∈ SL(2,C) we have

JA∗(p∗) = P ′A(p∗). (9.86)

Proof To prove (a) we compute

J

(
a b

c d

)
J † =

(
d −c
−b a

)
,

we use that M(J (p))= JM(p)J † and the definition of M(p). To prove (b), since M(p∗)
is real, taking the complex conjugate of the equality AM(p∗)A†=M(A(p∗)) yields
M(A∗(p∗))=M(A(p∗))∗ and the result. Furthermore (c) follows by combining (a) and (b).

Proof of Proposition 9.12.8 Consider the space F ′ of functions f : SL(2,C)→ V which
satisfy the condition (9.66) for V ′:

A ∈ SL(2,C) , C ∈ G0 ⇒ f (AC) = V ′(C−1)f (A) = V (C∗)−1f (A),

provided with the norm (9.67)

‖f ‖2 =
∫

dλm(p)‖f (Dp)‖2.

Then by Theorem 9.8.1 the representation π ′ of P∗ on F ′ given by the formula

π ′(a,A)(f )(B) = exp(i(a,B(p∗))/h̄)f (A−1B) (9.87)

is unitarily equivalent to the representation induced byV ′. Consider the spaceF of functions
f : SL(2,C)→ V which satisfy the condition (9.66) for V

A ∈ SL(2,C) , C ∈ G0 ⇒ f (AC) = V (C−1)f (A),

also provided with the norm (9.67). According to Theorem 9.8.1, the representation π of
P∗ on F given by the right-hand side of (9.87) is equivalent to the representation induced
by V .

For f ∈ F ′ we define the function T (f ) by

T (f )(A) = f (JA∗). (9.88)

We will show that this map is unitary and witnesses the equivalence of the previous two
representations, finishing the proof. It is obvious that T (f ) ∈ F . We prove first that for
(a,A) ∈ P∗ and f ∈ F ′ it holds that

T π ′(a,A)(f ) = π (Pa,A†−1)T (f ). (9.89)

We compute

T [π ′(a,A)(f )](B) = π ′(a,A)(f )(JB∗) = exp(i(a,JB∗(p∗))/h̄)f (A−1JB∗). (9.90)
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From (9.86) we have (a,JB∗(p∗)) = (Pa,B(p∗)), andA−1J = J (A†)∗, so thatA−1JB∗ =
J (A†B)∗ and f (A−1JB∗) = f (J (A†B)∗) = T (f )(A†B). Thus the right-hand side of
(9.90) is indeed π (Pa,A†−1)T (f )(B).

To prove that T is unitary we observe from (9.86) that JD∗p(p∗)=P ′Dp(p∗) =
Pp = DPp(p∗). Now, since ‖f (A)‖ depends only on A(p∗) it holds that ‖T (f )(Dp)‖ =
‖f (JD∗p)‖ = ‖f (DPp)‖, and thus∫

dλ0(p)‖T (f )(Dp)‖2 =
∫

dλ0(p)‖f (DPp)‖2 =
∫

dλ0(p)‖f (Dp)‖2,

making the change of variable p→ Pp in the last equality.

To end this section we discuss some considerations often read in physics textbooks about
“mirror images” and “parity images”. A reformulation of Proposition 9.12.2 is as follows.

Theorem 9.12.10 The parity image of a massless particle of helicity j/2 is a massless
particle of the same spin but opposite helicity −j/2.

To make sense of these words, one has to define “how the group P∗ operates on the
parity image of a particle”. We first apply the parity operator to go back from the parity
image of the particle to the particle itself, we act on the particle by an element of P∗ and
then we apply the parity operator again to go back to the parity image of the particle. If we
were working with P itself rather than P∗ this would mean that the action of (a,A) ∈ P
on the parity image is given by π0,j (Pa,PAP ), but since we are working with P∗, where
the parity operator is P ′ we have to replace PAP by P ′AP ′ = A†−1. Therefore Theorem
9.12.10 indeed follows from Proposition 9.12.2.

Exercise 9.12.11 We have defined the “parity image” of a particle using the parity
transformation (x0,x) → (x0, − x). Replacing the symmetry through the origin
x →−x by a symmetry through a given plane, define the “mirror image” of a particle.
Show that it is the same as the “parity image”. Hint: A symmetry through the origin
is the composition of a symmetry through a plane and a rotation of angle π .

The physicists describe Theorem 9.12.10 with the words “the mirror image of a massless
particle is a massless particle of the same spin but with opposite helicity”. Hence this mirror
image (just like in the case of a corkscrew) is a different object. This suggests the following
convenient terminology.

Definition 9.12.12 We say that a particle is its own mirror image if it is described by
a representation π of P∗+.

One should be cautious that this does not mean that π (0,P ′) will act as the identity on
the state space.49 The terminology makes sense according to Lemma 9.12.6. If a particle
is described by a representation π of P∗ which is equivalent to its “mirror image” π̃ , the
representation of Lemma 9.12.1, then π can be extended to P∗+.

49 As is made particularly clear by the next section.
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9.13 Photons

In this section we investigate (at the level of representations) photons, ubiquitous massless
“spin 1” particles, which are their own mirror image.

Starting with a representation π of P∗, one may construct a representation π+ of P∗+
as follows.

Proposition 9.13.1 Given a unitary representation π of P∗ on a Hilbert space H
there is a unique unitary representation π+ of P∗+ on H×H such that

π+(a,A)(x,y) = (π (a,A)(x),π̃(a,A)(y)) = (π (a,A)(x),π (Pa,A†−1)(y)) (9.91)

and

π+(0,P ′)(x,y) = (y,x). (9.92)

It is not difficult to invent this construction, as the basic idea already occurs in Exercise
8.9.4. The proof is straightforward.

Exercise 9.13.2 Check the proof in all its details. Hint: This is really simple, the key
identity to check is π+(0,P ′)π+(a,A)π+(0,P ′) = π+(Pa,A†−1).

Definition 9.13.3 We denote by π+0,2 the representation of P∗+ constructed by Propo-
sition 9.13.1 in the case π = π0,2.

This representation models the photon. The state space of the photon is a space of func-
tions on X0 valued in a space of dimension two. Consequently the state space of a photon
is of the type H ×H, and a photon can naturally be seen as a mixture of two components,
belonging to the spaces H×{0} and {0}×H and corresponding to the representations π0,2

andπ0,−2. As both of these represent particles of spin 1 (but with opposite helicity) it is quite
natural to say “the photon is of spin 1”. Photons for which one of these two components is
zero are called in physics photons of left or right circular polarization.

More generally one could consider the representation π+0,j , which would describe a mass-
less particle “of spin j/2” which is its own mirror image. The corresponding particles for
j �= 2 apparently do not occur in Nature.50 Massless particles of spin 1/2 (neutrinos and
anti-neutrinos, in a theory where they are massless) are not their own mirror image, but are
described by the representations π0,±1, which cannot be extended to include parity.

Our next goal is to introduce a natural representation of P∗+ and to show that it is
equivalent to π+0,2. Let us define a sesqui-linear form on C4 by the formula

(x,y)η := −(xμ)∗yνημν = −x0∗y0 +
∑
i≤3

xi∗yi, (9.93)

where the subscript η in the expression (x,y)η prevents confusion with the Lorentz bilinear
form. (So, this sesqui-linear form is the natural extension toC4 of the opposite of the Lorentz

50 Gravitons, massless particles of spin 2, have been theorized but not observed yet.
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bilinear form.51) We may consider each transformation in O(1,3) as operating on C4 (by
the same matrix) and such a transformation A satisfies

∀x,y ∈ C4 , (Ax,Ay)η = (x,y)η, (9.94)

because this is true if x,y ∈ R4 since A ∈ O(1,3), and because both the left and the right-
hand sides are linear in y and anti-linear in x. Given p ∈ R1,3, p �= 0 we define

Vp = {x ∈ C4 ; (x,p)η = 0}. (9.95)

Thus, p ∈ Vp if and only if p2 = 0.

Lemma 9.13.4 If p2 ≥ 0, for x ∈ Vp we have (x,x)η ≥ 0. If p2 > 0 it holds that
(x,x)η > 0 for x ∈ Vp and x �= 0. If p2 = 0, for x ∈ Vp we have (x,x)η = 0 if and
only if x = αp for some α ∈ C.

Proof This is rather obvious by Lorentz invariance (9.94). When p2 > 0 we have p =
A(p∗) where p∗ = (a,0,0,0) and A ∈ O(1,3). If x ∈ Vp we have (x,p)η = (x,A(p∗))η =
(A−1(x),p∗)η so A−1(x) ∈ Vp∗ . Since (x,x)η = (A−1(x),A−1(x))η it suffices to prove the
result for p = p∗, which is straightforward. We proceed similarly when p2 = 0 but now
with p∗ = (a,0,0,a).

Consider m ≥ 0 and the space Hm of functions ϕ from Xm to C4 such that

∀p ∈ Xm , ϕ(p) ∈ Vp.

As a consequence of Lemma 9.13.4, the inner product

(ϕ,ψ)η =
∫

dλm(p)(ϕ(p),ψ(p))η (9.96)

on Hm is positive, and is also positive-definite if m > 0.

Exercise 9.13.5 Assume m > 0. Prove that the formula

V (a,A)(ϕ)(p) = exp(i(a,p)/h̄)A(ϕ(A−1(p))) (9.97)

defines a unitary representation of R1,3�O(1,3) on Hm. Use (a variation of) Theorem
9.4.2 to describe it. Hint: Observe that A(Vp) = VA(p) for A ∈ O(1,3).

From now on m = 0, and H := H0 denotes the space of functions from X0 to C4

such that for each p, ϕ(p) ∈ Vp. For ϕ in H and (a,A) ∈ P∗+ we define V (a,A)(ϕ) by
the formula (9.97). There, for A ∈ SL(2,C) and x ∈ C4 we denote by A(x) the element
κ(A)(x) where κ(A) ∈ O+(1,3) is seen as a 4×4 matrix.52 More specifically, we now view
the map (8.19) as being defined on C4:

x ∈ C4 ↔ M(x) := xμσμ =
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (9.98)

51 If you remember the convention of (4.16) to raise and lower indices you may write this as
(x,y)η = −(xμ)∗yμ = −x∗μyμ.

52 We could as well here define a representation of R1,3 �O+(1,3) by the same formula, but we use
P∗+ = R1,3 � SL+(2,C) to make the comparison easier with π+0,2.
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and for A ∈ SL(2,C), A(x) = κ(A)(x) is given by M(κ(A)(x)) = AM(x)A†, so that

M(A(x)) = AM(x)A†. (9.99)

Then V (a,A)(ϕ) ∈ H becauseA(Vp) ⊂ VAp. Furthermore, it is straightforward to check
the formula

V (a,A)V (b,B) = V ((a,A)(b,B)). (9.100)

According to Lemma 9.13.4, (ϕ,ϕ)η = 0 if and only if ϕ(p) is proportional to p for
λ0-almost each p. Thus H is not a Hilbert space, but the set

Hnull = {ϕ ∈ H ; (ϕ,ϕ)η = 0}
is a subspace of H and the quotient Hphys = H/Hnull is a Hilbert space. For ϕ in H let us
denote by [ϕ] its image in Hphys.

Proposition 9.13.6 The formula

U (a,A)([ϕ]) = [V (a,A)(ϕ)] (9.101)

defines a unitary representation of P∗+ on Hphys. This representation is unitarily
equivalent to the representation π+0,2 constructed at the beginning of the present
section.

Formula (9.101) makes sense because (trivially) V (a,A)(Hnull) = Hnull, and defines a
representation because of (9.100), and this representation is obviously unitary. The appeal
of Proposition 9.13.6 is the simple formula defining the representation.

Let us now explain why this representation is natural from the physical point of view,
using the language of Section E.2. Consider a four-momentum p and b ∈ C4 which satisfies
(bμ)∗pμ = 0, or simply bμpμ = 0 since the components of p are real numbers. Thinking
like physicists, the ideal case where ϕ ∈ H is of the type bδp corresponds to a state |p,b〉.
Furthermore, if b and b′ differ only by a multiple of p, |p,b〉 and |p,b′〉 represent the same
state. The action of an element A ∈ SL+(2,C) on the state |p,b〉 is as simple as it can be:
it sends this state to |Ap,Ab〉. The point of this formulation is that the data of p and b with
(p,b)η = 0 is closely connected to the data which describes classically a plane wave of the
electromagnetic field, as explained in Section E.2.

We turn to the proof of Proposition 9.13.6. Our first task will be to study the action on
Vp∗ of some elements of the little group G+0 = {A ∈ SL+(2,C);A(p∗) = p∗}. Since
p∗ = (1,0,0,1), Vp∗ contains the vectors

xL = (0,1,i,0) ; xR = (0,1, − i,0). (9.102)

We recall the representation π̂j of G0 constructed in Definition 9.6.2 and the matrix J
of (8.1).53

53 Let us recall that π̂j (A) ∈ C for A ∈ G0.
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Lemma 9.13.7 (a) If A ∈ G0 we have

A(xL)− π̂−2(A)xL ∈ Cp∗ ; A(xR)− π̂2(A)xR ∈ Cp∗. (9.103)

(b) The element Q := P ′J belongs to G+0 . We have Q(xL) = xR and Q(xR) = xL.

Proof We observe the relations

M(xL) =
(

0 2
0 0

)
; M(xR) =

(
0 0
2 0

)
, (9.104)

and we recall the relation (9.99): M(A(x)) = AM(x)A†. Consider A =
(
a b

0 a∗

)
∈ G0,

so that π̂−2(A) = a2 by Definition 9.6.2 and we have

A

(
0 y1

y2 0

)
A† =

(
c a2y1

a∗2y2 0

)
(9.105)

for a certain c ∈ C. We then compute M(A(xL)) −M(π̂−2(A)xL) to find that it is of the

type

(
c 0
0 0

)
and hence of the type M(z) for z ∈ Cp∗. Since M is a linear isomorphism

this proves the first part of (9.103).
(b) It follows from (9.86) that J (p∗) = P (p∗), J (xL) = −xR and J (xR) = −xL. Further-
more P (xL) = −xL and P (xR) = −xR .

Let us define the following subspaces of Vp∗ :

L = span(xL,p
∗) ; R = span(xR,p

∗).

Since the spaces L and R are invariant under the action of G0, for each A ∈ SL(2,C) the
spaces A(L) and A(R) depend only on A(p∗), see the proof of Lemma 9.5.2. Thus we may
define Lp := A(L) whenever A(p∗) = p, and Rp similarly. Then A(Lp) = LAp and
A(Rp) = RAp for A ∈ SL(2,C). Furthermore Lp and Rp span Vp and have the property
that (x,y)η = 0 for x ∈ Lp and y ∈ Rp, because this is true for p = p∗, and the structure
of Vp is simply obtained by transporting the structure on Vp∗ .

Lemma 9.13.8 For each p ∈ X0 we have P ′(Lp) = RPp and P ′(Rp) = LPp.

Proof In the relation A(Lp) = LAp let us replace A by P ′AP ′ and p by Pp. Keeping
in mind that P ′AP ′(Pp) = P (Ap) we obtain the relation A(Sp) = SAp where Sp :=
P ′(LPp). We want to prove that Sp = Rp for all p. Since A(Rp) = RAp it suffices to
prove this for p = p∗. Since J (p∗) = P (p∗) we have J (Lp∗ ) = LJ (p∗) = LP (p∗). Thus
Sp∗ = P ′(LP (p∗)) = P ′(J (Lp∗ )) = Q(Lp∗ ). Since Q(p∗) = p∗ and Q(xL) = xR by (b)
of Lemma 9.13.7 the proof is complete.

Proof of Proposition 9.13.6 The properties of Lp and Rp described above should make
it obvious that have a natural orthogonal decomposition Hphys = HR ⊕ HL where HL

consists of the classes [ϕ] of functions where ϕ(p) ∈ Lp for each p and similarly for HR .
It follows from Lemma 9.13.8 that U (0,P ′)(HR) = HL, so that the map T : (x,y) �→
x + U (0,P ′)(y) is unitary from HR ⊕ HR to Hphys. Denoting by π the restriction of U
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to P∗ and HR , we claim that the map T witnesses that U is unitarily equivalent to the
representation π+ constructed from π in Proposition 9.13.1. It is straightforward to check
this claim. For example to prove that for A ∈ SL(2,C) we have T (π+(a,A)(x,y)) =
U (a,A)T (x,y) all it takes is that U (0,P ′)U (a,A)U (0,P ′) = U (Pa,A†−1). To conclude
the proof of the proposition, we now prove that π is unitarily equivalent to π0,2. Given a
function ϕ : X0 → C we consider the function ϕ̃ ∈ H given by ϕ̃(p) = ϕ(p)Dp(xR) so
that the class W (ϕ) := [ϕ̃] of ϕ̃ in Hphys belong to HR . Our goal is to prove that

U (a,A)(W (ϕ)) = W (π0,2(a,A)(ϕ)). (9.106)

Since it is straightforward to check thatW is proportional to an isometry the claim the π and
π0,2 are unitarily equivalent follows. Recalling the formula (9.7) defining π0,2 the righthand
side of (9.106) is the class [θ ] in Hphys of the function

θ (p) = exp(i(a,p)/h̄)π̂2(D−1
p ADA−1(p))ϕ(A−1(p))Dp(xR). (9.107)

Now, using the second part of (9.103) for the element D−1
p ADA−1(p) ∈ G0 we obtain that

π̂2(D−1
p ADA−1(p))xR −D−1

p ADA−1(p)(xR) ∈ Cp∗,

and thus, recalling that π2(D−1
p ADA−1(p)) ∈ C,

π̂2(D−1
p ADA−1(p))Dp(xR)− ADA−1(p)(xR) ∈ Cp.

Let us now define ψ by

ψ(p) = exp(i(a,p)/h̄)ϕ(A−1(p))ADA−1(p)(xR).

Then ψ(p) − θ (p) ∈ Cp so that ψ − θ ∈ Hnull and [ψ] = [θ ]. Recalling the formula
(9.97) we see that ψ = V (a,A)(ϕ̃). Since U (a,A)(W (ϕ)) = U (a,A)([ϕ̃]) = [V (a,A)(ϕ̃)]
by definition of U we have proved (9.106).

Key ideas to remember:

• To consider only true representations one replaces the Poincaré group byP∗ = R1,3�

SL(2,C).
• Given p∗ ∈ R1,3 its little group is Gp∗ = {A ∈ SL(2,C) , k(A)(p∗) = p∗}. When

p∗ = (mc,0,0,0) its little group is SU (2).
• An irreducible finite-dimensional unitary representation of the little group induces

an irreducible unitary representation of P∗.
• The physically relevant representations of P∗ come in two families. (i) The represen-

tations πm,j (j ∈ N) that correspond to massive particles of mass m and spin j/2. (ii)
The representations π0,j (j ∈ Z) which correspond to massless particles of helicity
j/2.

• Parity is brought into the picture by studying representations of P∗+ =R1,3 �

SL+(2,C).
• The mirror image of a massless particle is a massless particle of opposite helicity.
• Photons are massless particles “of spin 1” which are their own mirror images.



10

Basic Free Fields

The free field discussed in Chapter 5 is scalar in the sense that it has a single component.
This free field is a mathematically canonical object, but Nature uses it sparingly. Rather,
Nature1 uses multicomponent fields (the most apparent of which is the electromagnetic
field) so these are of crucial importance. Studying them is the object of this chapter. Each
component of such a field is a function (or rather, a distribution) with values in the space of
operators on a certain Fock space.2 If our models are to describe the bewildering complexity
of the subatomic world, we must expect to meet a whole menagerie of fields.3 This is
confusing at first, and any study of the topic must strive to bring some organization to it.
Two main roads can be followed for this purpose.

In the majority of physics textbooks, including some very recent ones such as that of
Schwartz [80], the free quantum fields are introduced through the following procedure:
One systematically looks for Lagrangians with suitable invariance properties. Each of these
Lagrangians gives rise to a classical field, and one quantizes this field in a (more or less)
canonical manner to arrive at a corresponding quantum field. The procedure however faces
serious obstacles because certain quantum objects simply do not have a classical equivalent.
(This is typically the case for anything with spin 1/2.) To pretend otherwise, one must bend
the rules of mathematical sanity to a point where the usefulness of the whole approach
becomes questionable. This will become particularly apparent in Sections 10.15 and 10.19,
where we attempt to present the Dirac field as a quantization of a classical field.4

As mathematicians we are more comfortable with the far more solid approach put for-
ward by Steven Weinberg [87]: The natural condition under which such fields should trans-
form under the action of the Poincaré group almost determines their entire structure. Let
us insist on the miracle which gives its appeal to the present chapter. A few very natural
and weak-looking constraints considerably limit the possible quantum fields, and while
exploring how to satisfy these constraints, we will be naturally led to the discovery of the
main free quantum fields relevant to the physical world.

1 Or, more accurately, our description of Nature.
2 It will not always be boson Fock space.
3 For this intrinsic reason, whatever our efforts of exposition may be, the chapter is demanding.
4 Classical Mechanics is a wonderful theory. But why do so many people accept so many contortions to pretend

that it explains certain quantum phenomena, which are remarkable precisely because they have no classical
equivalent?

250
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The starting point of the construction of a free quantum field is an irreducible uni-
tary representation of the Poincaré group, or in other words, a particle.5 The situation is
described by saying that particles of this type are the quanta of the free field. We will then
face a fundamental fact: When the quanta of the field have spin 1/2, it is not possible to
use boson Fock space to describe multiparticle states. Another fundamental construction,
fermion Fock space, is required. Fermion Fock space is based on anti-symmetry rather than
symmetry, and commutators give way to anti-commutators.

Quantum fields will appear later as natural building blocks from which Hamiltoni-
ans describing interactions between different particles can be constructed. This will be
explained at the end of Section 13.3. To study interactions between real-world particles,
one must use these quantum fields. But the real world is a complicated matter, and in the
book we concentrate on toy models, for which the Hamiltonian describing interactions
uses only the free scalar field of Chapter 5 (and not the free fields constructed in this
chapter). Thus the material of the present chapter, however beautiful, is not a prerequisite
for the sequel.

The reader should have Chapters 5 and 9 fresh in her mind before continuing.

10.1 Charged Particles and Anti-particles

The present section is a kind of prelude to the heart of the matter. Its purpose is to
demonstrate a fascinating aspect of Quantum Field Theory: The existence of anti-particles
is almost unavoidable. We will reach this conclusion by heuristic arguments analyzing
electrical charge, but the rest of the chapter is entirely rigorous. This analysis is based on a
fundamental experimental fact:

• Particles have a property called electrical charge, which, just as their rest mass or
their spin, is an intrinsic property of the particle. The electrical charge can be positive
or negative. A particle whose electrical charge is zero is called neutral. A particle
whose electrical charge is not zero is called charged.

• In any particle interaction, the sum of the electrical charges of the incoming particles
equals the sum of the electrical charges of the outgoing particles. Electrical charge is
conserved.6

In the framework of Quantum Mechanics, electrical charge is measured by a self-adjoint
operator Q. This operator must satisfy remarkable commutation relations with the creation
and annihilation operators of a particle of charge q:

[Q,a†(p)] = qa†(p) ; [Q,a(p)] = −qa(p). (10.1)

To explain these relations (which may not be intuitive at first) we appeal to their physical
meaning. Consider a state |ϕ〉 of well-defined charge μ so that it is an eigenstate of Q,

5 In principle it could happen that two different particles correspond to the same representation of the Poincaré
group, for example if the particles have the same mass, the same spin, and different electrical charge. But in
Nature this occurs only for the pairs particle–anti-particle.

6 In a nutshell, the content of this section is that conservation of electrical charge “implies” the existence of
anti-particles.
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Q|ϕ〉 = μ|ϕ〉. Then a†(p)Q|ϕ〉 = μa†(p)|ϕ〉. On the other hand the creation operator
a†(p) creates a particle of well-defined electrical charge q, so that the charge of a†(p)|ϕ〉
is μ + q, i.e. a†(p)|ϕ〉 is an eigenstate of Q of eigenvalue q + μ, that is Qa†(p)|ϕ〉 =
(q + μ)a†(p)|ϕ〉. Therefore [Q,a†(p)]|ϕ〉 = qa†(p)|ϕ〉. This should hold for sufficiently
many |ϕ〉 that indeed [Q,a†(p)] = qa†(p). Taking adjoints, since Q is self-adjoint, we also
have [Q,a(p)] = −qa(p).

On the other hand, since electrical charge is conserved in every interaction the operator
Q has to commute with the Hamiltonian governing the interaction. As we will see, the most
important such Hamiltonians are constructed from the quantum field, and it does not seem
possible to achieve this unless the quantum fields themselves have simple commutation
relations with Q. But the formula (5.30)

ϕ(x) =
∫

d3p

(2πh̄)3
√

2cωp

(e−i(x,p)/h̄a(p)+ ei(x,p)/h̄a†(p))

shows that there is no simple commutation relation between ϕ(x) and Q. This is a com-
pelling reason why the formula (5.30) must be modified.7 A brilliant solution to this problem
is, for each particle, say of mass m and charge q, to consider another particle, called the
anti-particle of the original particle, with the same mass m and opposite charge −q. We
then consider the field

ϕ(x) =
∫

d3p

(2πh̄)3
√

2cωp

(exp(−i(x,p)/h̄)a(p)+ exp(i(x,p)/h̄)b†(p)) (10.2)

and its conjugate

ϕ†(x) =
∫

d3p

(2πh̄)3
√

2cωp

(exp(−i(x,p)/h̄)b(p)+ exp(i(x,p)/h̄)a†(p)). (10.3)

Here, as in much of the chapter, we lighten the presentation by pretending that distributions
are functions and we let the reader state the results in terms of distributions if she likes. In
these formulas, b(p) and b†(p) are respectively annihilation and creation operators for the
anti-particle. That is, we consider a copyB′ of the boson Fock spaceB of the particle, and the
basic state space is now B⊗B′. There a(p) acts only on B. More precisely, a(p) = a′(p)⊗1
where a′(p) is an operator on B, and similarly b(p) = 1⊗ b′(p). Moreover the “operators”
a(p),a†(p),b(p) and b†(p) satisfy the commutation relations

[a(p),a†(p′)] = (2πh̄)3δ(3)(p − p′)1 ; [b(p),b†(p′)] = (2πh̄)3δ(3)(p − p′)1, (10.4)

with all other commutators zero. Let us stress once and for all that in this construction
the operators a(p),a†(p) commute with the operators b(p′),b†(p′) “because they live on
different spaces”.

7 The preceding is a very rough version of the argument of Weinberg [87, page 199], to which we refer for more
details.
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This construction behaves very well with respect to the charge operator Q. Since the
anti-particle has charge −q it satisfies [Q,b†(p)] = −qb†(p) and therefore8 [Q,ϕ(x)] =
−qϕ(x).

At this stage the decision as to which is the particle and which is the anti-particle is pretty
arbitrary. So it is really by convention that we call “the field” the expression (10.2) which
destroys a particle and creates an anti-particle, and the “conjugate field” the expression
(10.3) which does the opposite.9

The following fundamental fact is proved just as Theorem 5.1.5. The notion of micro-
causality is explained on page 136 and is detailed further at the beginning of Section 10.7.

Theorem 10.1.1 (Microcausality) Consider ϕ and ϕ† as in (10.2) and (10.3). If x
and y are causally separated, i.e. (x − y)2 < 0 then

[ϕ(x),ϕ(y)] = [ϕ†(x),ϕ†(y)] = [ϕ(x),ϕ†(y)] = 0. (10.5)

As we explained, charged particles “must” have an anti-particle with opposite charge.10

It turns out that neutral particles also have anti-particles. This anti-particle may be different
from the particle itself. In this case the corresponding quantum field is still given by (5.30). It
may also happen that the neutral particle is its own anti-particle. In this case the operators a
and b in the formulas (10.2) and (10.3) are identical, as in the case of the massive scalar field
of Chapter 5. Particles which are their own anti-particles are rare in physics. Nonetheless,
we shall also cover this case in detail, if only because the extra effort required is minimal.

10.2 Lorentz Covariant Families of Fields

We start now the real study of families of quantum fields.
Our basic setting consists of a unitary representation U (c,C) of P∗ on a Hilbert space

F and its extension UB(c,C) on the corresponding boson Fock space B. (Our universe still
contains only bosons at this stage.) We consider a family (ψk)1≤k≤N of quantum fields.
These are operator-valued distributions as in Section 5.1, that is, for f ∈ S4, ψk(f ) is an

8 To obtain this key relation, it is crucial that the anti-particle has charge −q.
9 In many textbooks, this quantum field is often obtained as “quantization of the complex Klein-Gordon field”

(which does not seem to occur in Nature more often than its real counterpart). Whichever way the argument is
wrapped, its depth is exactly the same as that of the following argument: Given two real numbers a and b, the
complex numbers a + ib and a − ib are complex conjugates. A complex Klein-Gordon field is simply a pair
of real Klein-Gordon fields, independent of each other. Quantizing them gives the two fields

ϕi (x) =
∫

d3p

(2πh̄)3
√

2cωp
(exp(−i(x,p)/h̄)ai (p)+ exp(i(x,p)/h̄)a†

i
(p))

for i = 1,2, and the fields

ϕ(x) = 1√
2

(ϕ1(x)+ iϕ2(x)) ; ϕ†(x) = 1√
2

(ϕ1(x)− iϕ2(x)),

are the fields we are looking for. The purpose of the
√

2 factor is to ensure that the operators
a(p) = (a1(p)+ ia2(p))/

√
2 and b(p) = (a1(p)− ia2(p))/

√
2 satisfy the commutation relations (10.4).

10 This is not a mathematical theorem, but Nature has agreed with our argument and made things that way.
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operator on B which is defined at least on the space B0 of (3.26). We recall the definition
(5.2) of V (c,C)(f ) for f ∈ S4 i.e. V (c,C)(f )(x) = f (C−1(x − c)).

Definition 10.2.1 The family (ψk)k≤N is Lorentz covariant if there exists an repre-
sentation S of SL(2,C) on CN such that the following occurs: For each c ∈ R1,3,
C ∈ SL(2,C), k ≤ N , f ∈ S4

R
we have

UB(c,C) ◦ ψk(f ) ◦ UB(c,C)−1 =
∑
�≤N

S(C−1)k,�ψ�(V (c,C)(f )). (10.6)

Here we have denoted the composition of operators on B by ◦ for legibility. WhenN = 1
the Lorentz covariance condition coincides with (5.5), and the reader should review the para-
graph following this equation, as the motivation behind (10.6) is the same. Equation (10.6)
looks scary at first, but this formula describes the simplest possible situation. Acting on the
fields by a Poincaré transformation as in the left-hand side simply amounts to combining
them linearly.

The strange term S(C−1) in the right-hand side has to do with ever-confusing matters of
linear algebra. In abstract terms, coordinates on CN are linear functionals, which belong to
the dual of CN and the way an operator on CN acts on a space and its dual are transpose of
each other. In more concrete terms, if (e�) form a basis, an operator of matrix (Vk,�) satisfies
V (ek) =∑

� V�,ke�. In (10.6) the indices k and � are exchanged compared to this formula.
Transposition of matrices reverses the order of multiplication, and this is compensated by
the other reversing of factors due to the C−1. Nonetheless, we recommend that the reader
carry out the following exercise in complete detail.

Exercise 10.2.2 Consider elements ek of a vector space G, an N-dimensional repre-
sentation S of SL(2,C) and linear maps W (C) on G that satisfy

W (C)(ek) =
∑
�≤N

S(C−1)k,�e�. (10.7)

Prove that these maps form a representation of SL(2,C) in the linear span of the
vectors (ek)k≤N , i.e. prove that W (D)W (C) = W (DC).

The reader may also wonder why rather than (10.6) we do not use the simpler formula

UB(c,C) ◦ ψk(f ) ◦ UB(c,C)−1 =
∑
�≤N

S(C)�,kψ�(V (c,C)(f )), (10.8)

which amounts to changing the representation S into the representation C �→ S(C−1)T . It
will only become apparent later that (10.6) is the natural formulation, as it is the represen-
tation S itself which will come up in the arguments.

Pretending as usual that distributions are functions we write (10.6) as

UB(c,C) ◦ ψk(x) ◦ UB(c,C)−1 =
∑
�≤N

S(C−1)k,�ψ�(c + C(x)). (10.9)

It is not required in Definition 10.2.1 that the representation U (c,C) be irreducible because
this definition is designed to accommodate models which would describe families of par-
ticles. It could also happen that the representation S involves block matrices, so that it is
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simply a direct sum of smaller representations. We however concentrate on the simplest
situation, where S is irreducible. It is then appropriate to think of the ψk as being the
components of a single N -component quantum field.

10.3 Road Map I

Our goal is to investigate how one might construct Lorentz covariant families of quantum
fields that satisfy a suitable version of the microcausality condition (5.10),11 and as far as
possible to find all such families of fields, at least within a certain setting. The microcausality
condition is essential, as it will put considerable constraints on the construction.

We make from the start a number of hypotheses on our quantum fields. In order to
obtain fields that satisfy the microcausality condition we copy the scheme on page 134.
We assume that the fields have both an annihilation part and a creation part. We assume that
both the annihilation and the creation part of the fields are Lorentz covariant. It is for the
microcausality condition that both parts are needed together.

We first discuss the annihilation part ψ+k of the fields.12

At the root of the construction is a Hilbert space F provided with an irreducible rep-
resentation U (c,C) of P∗. According to Wigner’s idea, such a representation describes an
elementary particle. Particles of this type are called the quanta of the field.13 In other words,
for a given representation U (c,C) of P∗ and a quantum field built upon this representation,
the quanta of the field are the particles described by the very same representation.14 When-
ever we talk of “the particle” we mean the particle type described by this representation.
The representation associated to the particle does not entirely describe it as there are other
characteristics of a particle than its mass and its spin, and first of all its electrical charge. The
charge of the particle is not involved in the present construction. Simply, the anti-particle has
to be of opposite charge. (So, in particular, when the particle is identical to its anti-particle
it is neutral, its electrical charge is zero.)

The quantum fields ψ+k are valued in the space of operators on the boson Fock space
B of F . More precisely we assume from the start that ψ+k (x) is of the type A(fk(x)) for a
certain element fk(x) ofF , whereA(fk(x)) denotes the corresponding annihilation operator
in B. We express this by saying that “the annihilation part of the field annihilates particles”,
being understood that it acts only on the particles which are the quanta of this field.

In Section 10.4 we translate the Lorentz covariance condition (10.6) in terms of the
properties of the family of functions (fk), and we soon reach a rather detailed understanding
of the possible forms of the annihilation fields.

11 The reader might like to review this notion now, as it will play an important part in the present chapter.
12 Denoting the annihilation part of the field by ψ+ is common practice. However this notation creates a

psychological conflict, since the sign + and positivity have beneficial connotations, whereas annihilation is
typically considered detrimental.

13 Poetic expressions such as “a particle is an excitation of a quantum field” found in physics textbooks have no
deeper meaning.

14 There is a kind of duality between quantum fields and particles, although many different quantum fields may
correspond to the same quanta. As will gradually become clear, it is the quantum fields that are the
fundamental objects.
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We will then have to perform the same analysis for the creation part of the fields, replacing
the particle by its anti-particle (which may be the same as the particle or not).15 We again
assume from the start that the creation part of the fieldψ−k (x) is of the typeB†(f ′k(x)) where
now B† is the creation operator on the boson Fock space of the anti-particle. In words,
we say that the creation part of the field creates anti-particles. The analysis is not entirely
identical to the analysis of the annihilation part of the field because the map B† is linear in
its argument and the map A is anti-linear in its argument.

Having determined the general form of both the annihilation and the creation parts of the
field, we investigate in Section 10.7 how we might achieve microcausality. Our general con-
siderations end there, and from Section 10.9 we investigate concrete examples, discovering
in turn the most important fields used by Nature.

10.4 Form of the Annihilation Part of the Fields

Having made these precise (and restrictive) assumptions as to the nature of the space F and
the form of the fields ψ+k we now turn to the determination of the structure of these fields.
We advise reviewing the argument on page 134, since the arguments of the present section
are in the same spirit (although technically more complicated).

In order to describe the irreducible representation U (c,C) of P∗ at the root of the con-
struction, we use the setting provided by Theorem 9.8.1, which we briefly review. We start
with a mass m ≥ 0. We consider the action of SL(2,C) on Xm, and the little group Gp∗ of
the specific point p∗ given by p∗ = (mc,0,0,0) if m > 0 and p∗ = (1,0,0,1) if m = 0. We
consider a finite-dimensional Hilbert space V , and an irreducible unitary representation V
of Gp∗ in V . The state space F is then the set of functions f : SL(2,C) → V that satisfy
the condition

A ∈ SL(2,C),B ∈ Gp∗ ⇒ f (AB) = V (B)−1f (A), (10.10)

provided with the norm ‖f ‖2 = ∫
dλm(p)‖f (Dp)‖2, where as usual Dp ∈ SL(2,C) is

such that Dp(p∗) = p, and the operators U (a,A) are given for (a,A) ∈ P∗ by

U (a,A)(f )(B) = exp(i(a,B(p∗))/h̄)f (A−1B). (10.11)

If we were physicists, we would immediately write down explicit formulas for the rep-
resentations V of (10.10) and use their specific properties. These specific properties are
however not helpful. Furthermore, our more conceptual approach is valid both for massive
and massless particles. Matters are transparent. The action of the groupP∗ on the state space
F is completely determined by the irreducible representation V of the little group Gp∗ ,
and we will prove that condition (10.6) is equivalent to a precise relationship between this
representation and the representation S. Only later we will specialize our results to the cases
of physical interest: The case where m > 0, Gp∗ = SU (2) and V is the representation πj

15 When the anti-particle is different from the particle, the field ψk(x) = ψ+
k

(x)+ ψ−
k

(x) operates on the tensor
product of the boson Fock space of the particle and the boson Fock space of the anti-particle. To formulate the
notion of Lorentz covariant family of fields we need to extend in the obvious manner Definition 10.2.1. This
is not really needed since we require from the start that both the creation and the annihilation part of the field
are Lorentz covariant.
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(j ≥ 0) of Definition 8.2.3 and also the case wherem = 0, and whereV is the representation
π̂j (j ∈ Z) of Definition 9.6.2 of the little group G0.

We denote by (ek)k≤N the canonical basis of CN . We recall that for an element f of
the state space F , A(f ) denotes the corresponding annihilation operator on the boson Fock
space B.

Proposition 10.4.1 The annihilation fields

ψ+k (x) = A(fk(x)) (10.12)

for k ≤ N satisfy the condition (10.6) of Lorentz covariance if and only if the functions
fk(x) ∈ F are of the type

fk(x)(B) = exp(i(x,B(p∗))/h̄)�S(B)†(ek) (10.13)

where � is a linear map CN → V which satisfies the condition

∀C ∈ Gp∗ , V (C)−1� = �S(C)†. (10.14)

CN �−−−−→ V⏐⏐"S(C)†

⏐⏐"V (C)−1

CN �−−−−→ V
In order for equation (10.13) to make sense, the right-hand side, seen as a function of B,

must belong to F , i.e. must satisfy (10.10). Condition (10.14) is exactly what is required
for this.

The meaning of the formula (10.13) is not transparent at this stage, but will gradually
become clear as we learn to write it in different ways.

Before we start the preparations for the proof of Proposition 10.4.1 we interpret the
condition (10.14). Taking adjoints and using that V (C) is unitary this condition is equivalent
to saying that W := �† : V → CN satisfies

∀C ∈ Gp∗ , WV (C) = S(C)W, (10.15)

and we now focus on the meaning of this condition.

Proposition 10.4.2 Unless W = 0, condition (10.15) occurs if and only if the follow-
ing occur: The range G of W is invariant under the restriction of the representation S
on CN to the little group Gp∗ , W is one-to-one from V to G and

∀C ∈ Gp∗ ; V (C) = W−1S(C)W . (10.16)

Furthermore the map W is determined by (10.16) up to a multiplicative constant.

Consequently, in order to determine the possible forms of the annihilation part of a
Lorentz covariant field, it is sufficient to determine the representations S and the subspacesG
of CN which are invariant under the restriction of S to Gp∗ , and are such that the restriction
of S to Gp∗ and G is equivalent to V . We will turn to this clean mathematical problem
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later. Its analysis will lead us to discover in a completely natural manner the many fields
considered in physics.

Proof Condition (10.15) implies that the kernel of W is invariant under the action of
all the maps V (C). Since we assume that V is irreducible, this kernel is either {0} or V .
Thus when W is not identically zero this kernel is {0} and W is one-to-one on its image,
and (10.15) therefore implies V (C) = W−1S(C)W . Conversely it is obvious that (10.16)
implies (10.15).

Finally, consider a mapW ′ : V → G which satisfies V (C) = W ′−1S(C)W ′ forC ∈ Gp∗ .
Then V (C) = W−1W ′V (C)W ′−1W . Since we assume that V is irreducible, W−1W ′ is a
multiple of the identity by Schur’s lemma.

We now start the preparations for the proof of Proposition 10.4.1.

Lemma 10.4.3 The fields (10.12) satisfy the Lorentz covariance condition (10.6) if
and only if the following equality holds for each values of k ≤ N,x,p,c ∈ R1,3,C,B ∈
SL(2,C):

exp(i(c,B(p∗))/h̄)fk(x)(C−1B) =
∑
�≤N

S(C−1)∗k,�f�(c + C(x))(B). (10.17)

Proof Use of Proposition 3.5.2 shows that

UB(c,C) ◦ ψ+k (x) ◦ UB(c,C)−1 = A(U (c,C)fk(x)).

On the other hand, since A is anti-linear, we get∑
�≤N

S(C−1)k,�ψ
+
� (c + C(x)) = A

(∑
�≤N

S(C−1)∗k,�f�(c + C(x))
)

.

Consequently the Lorentz covariance condition is satisfied if and only if we always have
U (c,C)fk(x) = ∑

�≤N S(C−1)∗k,�f�(c + C(x)), which is the formula (10.17) using the

definition of U (c,C), (U (c,C)fk(x))(B) = exp(i(c,B(p∗)/h̄)fk(x)(C−1B).

Lemma 10.4.4 If the fields (10.12) satisfy the Lorentz covariance condition (10.6)
then the functions fk are of the type (10.13) and the condition (10.14) is satisfied.

Proof We proved in the previous lemma that under the present assumptions (10.17) holds.
In this relation we take C equal to the identity I and x = 0 to obtain

fk(c)(B) = exp(i(c,B(p∗))/h̄)Gk(B), (10.18)

where we have set Gk(B) := fk(0)(B). We then define � : CN → V by �(ek) = Gk(I ).
Using now (10.17) with c = x = 0, B = I and changing C into C−1 gives

Gk(C) =
∑
�≤N

S(C)∗k,�G�(I ) =
∑
�≤N

S(C)∗k,��(e�)

= �
(∑
�≤N

S(C)∗k,�e�
)
= �S(C)†(ek).

Finally (10.14) follows from (10.10).



10.4 Form of the Annihilation Part of the Fields 259

Proof of Proposition 10.4.1 It remains only to prove that under (10.15) the fields corre-
sponding to the functions (10.13) are Lorentz covariant. For this one simply checks that the
identity (10.17) holds for the functions (10.13), which is straightforward, using only that S
is a representation.

It could help the reader to think of the previous construction in an equivalent way, but
where now the representation U of P∗ is constructed through Theorem 9.5.3.

Exercise 10.4.5 In this (challenging) exercise we consider a representation S of
SL(2,C) on CN . We consider a subspace G of CN , which is invariant under S(C) for
each C ∈ Gp∗ and we assume that the restriction of S to G and Gp∗ is unitary. We
are therefore in the setting of Theorem 9.5.3. The formula

U (a,A)(ϕ)(p) = exp(i(a,p)/h̄)S(A)[ϕ(A−1(p))] (10.19)

defines a unitary representation of P∗ in the space H of functions ϕ : Xm→ CN such
that ϕ(p) ∈ Gp = S(Dp)(G) provided with the norm

‖ϕ‖2 =
∫

dλm(p)‖S(Dp)−1(ϕ(p))‖2. (10.20)

We denote byW the injectionG→CN and by� the adjoint ofW , so that� : CN→G.
(a) Using that S(C) is unitary on G for C ∈ Gp∗ prove that

S(C−1)� = �S(C)†. (10.21)

(b) Show that the map�p : CN → Gp given by�p = S(Dp)�S(Dp)† is independent
of the element Dp ∈ SL(2,C) with Dp(p∗) = p. Show that for C ∈ SL(2,C) we
have S(C)�pS(C)† = �C(p).

For a function ϕ : Xm → CN we then define �(ϕ) by �(ϕ)(p) = �p(ϕ(p)) so
that �(ϕ) ∈ H. (At least when ϕ is not “too large” so that the integral corresponding
to (10.20) exists.)
(c) Let (gk)k≤N be the canonical basis of CN . For a function f ∈ S4

R
, consider its

Fourier transform f̂ , seen as a function onXm. Then f̂ gk is a functionXm→ CN and
the function �(f̂ gk) belongs to H. Prove that the family of quantum fields defined by

ψk(f ) = A(�(f̂ gk)),

(where A in the right-hand side corresponds to the boson Fock space of H) satisfies
(10.8). Hint: Recall that an operator B on CN satisfies B(gk) =∑

�≤N g�B�,k . Prove

that the functions ϕk(f ) := �(f̂ gk) satisfy

U (c,C)(ϕk(f )) =
∑
�≤N

S(C−1)∗k,�ϕ�(V (c,C)f ) (10.22)

and prove then that this relation implies (10.8).
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10.5 Explicit Formulas

Let us pause now and learn how to write the quantum field given by (10.12) and (10.13)
the way a physicist would do. The first step is to replace the space F of functions from
SL(2,C) to V by the more usual space H = L2(Xm,V,dλm), using the map T : F → H
given by T (f )(p) = f (Dp). The operators ψ+k (x) will then operate on the boson Fock
space of H = L2(Xm,V,dλm). The state space and its boson Fock space are not the same
as in the previous section. Still we lighten notation by denoting again A(f ) the annihilation
operator on the boson Fock space corresponding to the element f of the state space, as the
notation is unambiguous.

Using that Dp(p∗) = p, formula (10.12) then becomes

ψ+k (x) = A(Fk(x)) (10.23)

where the functions Fk(x) of p ∈ Xm are of the type

Fk(x)(p) = exp(i(x,p)/h̄)�S(Dp)†(ek) = exp(i(x,p)/h̄)
∑
�≤N

S(Dp)∗k,��(e�). (10.24)

Throughout the rest of this section

n is the dimension of V and n ≤ N,

and (fs)s≤n is an orthonormal basis16 ofV . Let us then define an operator-valued distribution
a(p,s) just as in the case of the scalar free field, by the formula, holding for any test
function ξ , ∫

d3p√
2ωp(2πh̄)3

a(p,s)ξ (p) = A(ξs) (10.25)

where ξs ∈ L2(Xm,V,dλm) is given by ξs(p) = ξ (p)∗fs for p = (ωp,p).17 The commuta-
tion relations between these operators are given by

[a(p,s),a†(p′,s′)] = δs
′
s (2πh̄)3δ(3)(p − p′)1, (10.26)

with all other commutators being zero.
For now it serves no purpose to specify which basis of V we use, but in practice one

should strive to choose a basis of V which makes physical sense. For example, in the case
where m > 0, the irreducible representation V is unitarily equivalent to one of the πj , (with
n = j + 1) and there is an orthonormal basis of V which corresponds to particles having
“given spin in the z direction”, and such a choice is very natural for a physicist. Then each
operator a(p,s) can be interpreted as “destroying a particle of momentum p and given spin
in the z direction”.

In our next result we keep the notation of the previous section and in particular W is the
map of Proposition 10.4.2.

16 Thus, s denotes an integer in the rest of this chapter.
17 The occurrence of ξ∗ rather than ξ in the definition of ξs is motivated by the fact that A is anti-linear, not

linear.
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Proposition 10.5.1 Consider u(p,s) = (u(p,s)k)k≤N ∈ CN given by the formula

u(p,s) = S(Dp)W (fs). (10.27)

Then the annihilation part of the quantum field ψk is given by the formula

ψ+k (x) =
∑
s≤n

∫
d3p√

2ωp(2πh̄)3
exp(−i(x,p)/h̄)u(p,s)ka(p,s). (10.28)

To understand this formula we simply use that for ξ ∈ S4 we haveψ+k (ξ ) = ∫
d4xψ+k (x)

ξ (x) and we formally compute this integral using the expression (10.28). We find

ξ̂ (p)
∑
s≤n

∫
d3p√

2ωp(2πh̄)3
u(p,s)ka(p,s),

and using the definition (10.25) this is A(�) where �(p) = ξ̂ (p)∗
∑

s≤n u(p,s)∗kf
′
s . The

formula (10.27) is remarkably simple. We should think of the map W as a way to identify
V and the range G of W . This identification provides G with a natural inner product,18 and
for this inner product the vectors W (fs) are simply an orthonormal basis of G.

Proof Let us decompose �(e�) in the basis (fs), i.e. �(e�) =
∑

s≤n fs,�fs , so that

W (fs)� = (e�,W (fs)) = (�(e�),fs) = f ∗s,�
and ∑

�≤N
S(Dp)∗k,��(e�) =

∑
s≤n

(∑
�≤N

S(Dp)∗k,�fs,�
)
fs .

We then rewrite (10.24) as

Fk(x)(p) = exp(i(x,p)/h̄)
∑
s≤n

u(p,s)∗kfs (10.29)

where

u(p,s)k :=
∑
�≤N

S(Dp)k,�f
∗
s,� =

∑
�≤N

S(Dp)k,�W (fs)�, (10.30)

i.e. u(p,s) = (u(p,s)k)k≤N satisfies (10.27). Then (10.28) follows from (10.25) and (10.29).

We may rewrite (10.28) in a compact way as

ψ+(x) =
∑
s≤n

∫
d3p√

2ωp(2πh̄)3
exp(−i(x,p)/h̄)u(p,s)a(p,s). (10.31)

Since W is determined only up to a multiplicative constant this is also the case for the
field (10.31). One may then decide at a later stage on a reasonable condition to impose to

18 This inner product has the property that when G is provided with it, the restriction of S to G and Gp∗ is
unitary and irreducible. It is shown in Proposition D.6.5 that this inner product is unique up to a multiplicative
constant.
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normalize the field, i.e. to fix this constant. One may also choose this multiplicative constant
in order to achieve a given dimensionality of the field. Such dimensionality considerations
motivated the factor

√
c in the denominator of the formula (5.30). For similar reasons we

may get other factors, e.g. in the case of the Dirac field to be investigated in Section 10.19.
Let us now summarize the method to construct annihilation fields that satisfy the Lorentz

covariance condition (10.6).

• We start with a given mass m ≥ 0, and a specific point p∗ of Xm. Let Gp∗ be
its little group with respect to the natural action of SL(2,C) on Xm. We are given
an irreducible representation V of Gp∗ in a finite-dimensional Hilbert space V . We
consider the unitary representation U (c,C) of P∗ on the space H = L2(Xm,V,dλm)
provided by Theorem 9.4.2. This representation determines “the particle”, the type
of the quantum of the field.

• We consider an irreducible19 representation S of SL(2,C) on CN . Its restriction to the
little group Gp∗ need not be irreducible. We look for an invariant subspace G ⊂ CN

on which this restriction is irreducible and for a one-to-one linear map W from V to
G which satisfies V (C) = W−1S(C)W for each C ∈ Gp∗ .20

• The annihilation field is then given by the formula (10.31) for u(p,s) = S(Dp)W (fs)
as prescribed by (10.27).

Exercise 10.5.2 Prove that every component of the quantum field constructed above
satisfies the Klein-Gordon equation in the sense of distributions. Hint: Copy the argu-
ment of Proposition 6.1.3.

Exercise 10.5.3 Try to rewrite the arguments leading to (10.27) the way a physicist
might write them. That is, first study the transformation properties of the operators
a(p,s) in the spirit of (5.43), and then look for annihilation fields of the type

ψ+k (x) =
∑
s≤n

∫
d3p√

2ωp(2πh̄)3
u(p,x,s)ka(p,s).

Express the transformation properties of the functions u(p,x,s)k implied by (10.6),
and reach your own version of (10.27). Warning: This is a small research project. Look
into Duncan’s textbook [24] if this is too hard.

10.6 Creation Part of the Fields

We now need to consider the creation part ψ−k (x) of the field. We will assume that it is of
the type B†(fk(x)) where B† is the creation operator on the boson Fock space of the anti-
particle. We assume from the start that the anti-particle has the same mass as the particle.
Since the little group depends only on whether the mass is > 0 or 0, it is the same for the
anti-particle and the particle. The anti-particle is described again by a representation given

19 As we already mentioned this condition is not essential and we impose it for simplicity.
20 Since V is irreducible, such a W can exist only if the restriction of S to Gp∗ and G is irreducible!
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by Theorem 9.4.2, and we denote by V ′ the corresponding finite-dimensional space and
V ′ the corresponding representation of the little group. (This will also cover the case of a
neutral particle which is its own anti-particle.) We assume from the start that V ′ has the
same dimension n as V . It simplifies notation and does not decrease generality to then take
V ′ = V . In the case m > 0 there is a unique choice for V , namely the representation πj of
Definition 8.2.3 for j + 1 = n. Then V ′ = V . However, in the case of massless particles
there are several possible choices for V : if n = 1, all the representations π̂j of Definition
9.6.2 are of dimension one. In that case one may have V ′ �= V .

A difference between creation and annihilation is that the mapB† is linear in its argument
rather than anti-linear, so that in (10.17) the numbers S(C−1)∗k,� have to be replaced by their
complex conjugates. This brings the need for the following.

Definition 10.6.1 Given a representation S of a group G on CN , we denote by S∗ the
representation of G on CN such that for C ∈ G the matrix of S∗(C) is the conjugate
S(C)∗ of the matrix of S(C), i.e. each entry in the matrix is replaced by its complex
conjugate.

We next summarize the situation in the case of the creation part of the fields. The proofs
are identical to the case of the annihilation part of the fields.

Proposition 10.6.2 The creation fields satisfying the Lorentz covariance condition
(10.6) are obtained as follows. There is a one-to-one linear map W ′ from V to a
subspace G′ of CN which is invariant under the restriction of the representation S∗ to
Gp∗ , and such that

∀C ∈ Gp∗ ; V ′(C) = W ′−1S∗(C)W ′, (10.32)

and the creation part of the quantum fields are given by

ψ−k (x) =
∑
s≤n

∫
d3p√

2ωp(2πh̄)3
exp(i(x,p)/h̄)v(p,s)kb

†(p,s) (10.33)

where

v(p,s)k :=
∑
�≤N

S(Dp)k,�W
′(fs)∗� . (10.34)

Here (fs)s≤n is an orthogonal basis for V and b†(p,s) is defined similarly to a(p,s). In
a compact form we may write (10.33) as

ψ−(x) =
∑
s≤n

∫
d3p√

2ωp(2πh̄)3
exp(i(x,p)/h̄)v(p,s)b†(p,s), (10.35)

and (10.34) as

v(p,s) = S(Dp)W ′(fs)∗. (10.36)

Here W ′(fs)∗ denotes the column vector with components W ′(fs)∗� .
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Exercise 10.6.3 The purpose of the present (very challenging) exercise is to prove
that when m > 0 (and provided one has chosen an appropriate basis) there is a very
tight relation between the creation and annihilation parts of the fields. Since m > 0
the only possibility is V = V ′ = πn for some n ≥ 0. We choose in V the special basis
of Proposition 8.2.8 (which is the numbered from 0 to j = n − 1 rather than from 1
to n = j +1 as was done in the present section). You are going to prove that for some
number λ, and all 0 ≤ s ≤ j it holds that

v(p,s) = λ(−1)su(p,j − s). (10.37)

(a) Study the results of Appendix D to convince yourself that since we assume that S
is irreducible there is at most one single subspace G of CN such that the restriction of
S to G and SU (2) is equivalent to πn.
(b) Recall the matrix J of Lemma 8.1.4. Thinking of (10.32) as an identity between
matrices, take the complex conjugate of this equality to obtain the relation

∀C ∈ G = SU (2) , V (C) = V (J )Z−1S(C)ZV (J−1), (10.38)

where Z := W ′∗ (in the sense that the matrices of Z and W ′ are conjugate).
(c) Deduce from Proposition 10.4.2 that for some λ ∈ C we have ZV (J−1) = λW ,
and deduce from (10.36) that v(p,s) = λS(Dp)WV (J )(fs). Conclude using (8.12).

10.7 Microcausality

The massive scalar free field ϕ which we constructed in Chapter 5 is self-adjoint, so that
the values ϕ(x) correspond to observables. We used this fact to argue that preservation
of causality implies the microcausality condition (5.10). We cannot use this argument for
quantum fields that are not self-adjoint, since they do not correspond to observables. The
necessity of microcausality is then less obvious, but let us try to explain it in a few words.
As will be explained at the beginning of Chapter 13 the main purpose of quantum fields
is to construct interaction Hamiltonian densities out of products of such fields. As will be
detailed in Section 13.5, in order to obtain a sensible theory these Hamiltonian densities
must commute at causally separated points. One method to obtain this property is to impose
the following condition, which will again be called microcausality.21 For any k,k′ ≤ N ,

(x − y)2 < 0⇒ [ψk(x),ψk′ (y)] = 0 ; [ψ†
k (x),ψ†

k′ (y)] = 0 ; [ψk(x),ψ†
k′ (y)] = 0.

(10.39)

Quantum fields which do not satisfy this condition (or the appropriate substitutes which we
will meet later) are simply not physically interesting.

Microcausality is known to hold in great generality for massive particles of integer spin
and S irreducible (where we previously explained that both the creation and the annihilation
parts of the fields ψk are unique up to a multiplicative constant). Unfortunately the proof

21 The second condition follows automatically from the first one.
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is difficult and beyond the scope of this book.22 Thus we will give a separate argument in
each of the examples we shall present. A part of the computations is common to all these
examples. It is presented here. The reader eager for concrete examples of free fields should
move now to the next section, coming back to the present results only when required.

The following identities are a straightforward consequence of the commutation relations
(10.26) (although it takes a bit of patience to get the signs right). We formulate a first version
in the case where the particle is its own anti-particle, where the fields ψ+ and ψ− are given
by (10.28) and (10.33) for b = a. Let us observe that even in this case, there is no obvious
reason why the fields ψk should be self-adjoint.

Theorem 10.7.1 When the particle is its own anti-particle the quantum fieldsψk(x) =
ψ+k (x)+ ψ−k (x) satisfy

[ψk(x),ψk′ (y)] = (Gk,k′ (y − x)−Gk′,k(x − y))1 (10.40)

where for z ∈ R1,3 we define

Gk,k′ (z) =
∫

d3p

2ωp(2πh̄)3 exp(i(z,p)/h̄)
∑
s≤n

u(p,s)kv(p,s)k′ . (10.41)

Moreover,

[ψk(x),ψ†
k′ (y)] = (G′k,k′ (y − x)−G′′k,k′ (x − y))1, (10.42)

where

G′k,k′ (z) =
∫

d3p

2ωp(2πh̄)3 exp(i(z,p)/h̄)
∑
s≤n

u(p,s)ku(p,s)∗k′, (10.43)

and

G′′k,k′ (z) =
∫

d3p

2ωp(2πh̄)3
exp(i(z,p)/h̄)

∑
s≤n

v(p,s)kv(p,s)∗k′ . (10.44)

Exercise 10.7.2 Prove the reassuring fact that the quantities∑
s≤n

u(p,s)kv(p,s)k′ ;
∑
s≤n

u(p,s)ku(p,s)∗k′ ;
∑
s≤n

v(p,s)kv(p,s)∗k′

are independent of the choice of the element Dp ∈ SL(2,C) such that Dp(p∗) = p

and of the choice of the orthogonal basis in V .

Corollary 10.7.3 Assume that Gk,k′ (z) = Gk′,k(z) and that this function is even in
the domain z2 < 0. Assume also that G′

k,k′ (z) = G′′
k,k′ (z) and is even in the domain

z2 < 0. Then the quantum fields (10.28) satisfy the microcausality condition (10.39).

22 Among the many obstacles which a mathematician faces while trying to read a textbook of physics, one is
particularly unexpected: Arguments presented as a “proof” but which do not even approach the main
difficulty, as in pages 182–183 in Duncan’s textbook [24] concerning the present point.
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Generally speaking parity arguments about the functionsGk,k′,G
′
k,k′,G

′′
k,k′ such as in the

previous corollary will be of constant use. To prove a parity property of a function of this
type we will use the following.

Lemma 10.7.4 If the function f (p) is a homogeneous polynomial in the components
of p then on the domain z2 < 0 the function∫

d3p

2ωp(2πh̄)3 exp(i(z,p)/h̄)f (p)

is even if f is of even degree and is odd if f is of odd degree.

Proof The function I (z) = ∫
d3p exp(i(z,p)/h̄)/(2ωp(2πh̄)3) of (5.13) is even on this

domain, so that its partial derivatives of even order are even and its partial derivatives of
odd order are odd.

We must face the fact that we must compute the three different functions of p occurring
in the statement of Exercise 10.7.2. This is not fun.

When the particle is different from its anti-particle we have the following version of
Theorem 10.7.1, which is obtained again by a straightforward computation.

Theorem 10.7.5 When the particle is distinct from its anti-particle the quantum field
ψk(x) = ψ+k (x)+ψ−k (x) satisfies [ψk(x),ψk′ (y)] = 0 and [ψ†

k (x),ψ†
k′ (y)] = 0 while

the formulas (10.42) to (10.44) remain true.

Therefore in that case to check microcausality it is sufficient to prove that for k,k′ < N ,

(x − y)2 < 0⇒ [ψk(x),ψ†
k′ (y)] = 0. (10.45)

Corollary 10.7.6 Assume that the particle is distinct from its anti-particle. Assume
that G′

k,k′ (z) = G′′
k,k′ (z) and is even in the domain z2 < 0. Then the quantum fields

(10.28) satisfy the microcausality condition (10.39).

The program of the rest of the chapter can be roughly described as follows. We will try
to describe the quantum fields with a given type of quanta that satisfy the microcausality
condition, or try to show that such fields do not exist. (This is a rough description indeed,
and the precise path we shall follow is laid out very carefully in the next section.) In such a
construction there are always two versions, one where the particle is its own anti-particle and
one where it differs from its anti-particle. Assume that we have constructed a quantum field
for which the particle is its own anti-particle and ψ− is given by (10.35) where b† = a†,
and that we have proved through Corollary 10.7.3 that this field satisfies the microcausality
condition. Consider now “the same” quantum field where the particle differs from its anti-
particle. This new quantum field also satisfies the microcausality condition because there are
fewer conditions in Corollary 10.7.6 than in 10.7.3. So, when trying to construct quantum
fields that satisfy the micro-causality condition, it makes sense to attempt first the most
difficult construction, where the particle is its own anti-particle. On the other hand, if you
try to show that such a field does not exist, then it is better to prove that this is the case
even when the anti-particle differs from the particle, because then the other version of field,
where the particle is its own anti-particle will not satisfy the microcausality condition either.
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10.8 Road Map II

In the rest of the chapter we will mostly work out a large number of examples, trying to
construct quantum fields, and discovering in a natural manner the most important of them.

We gave a step-by-step description of how to construct Lorentz covariant quantum fields.
In this description we assumed that we had already decided what are V and the representa-
tion V , or in other words that we look for a quantum field with a specific type of quanta.
(Let us recall the terminology here. The pair (V,V ) determines a representation of P∗, and
such a representation is associated with a particle. Particles of this type are called the quanta
of the field.)

In practice, however, we will proceed differently. We will start with the representation S,
then look for an invariant subspace of the restriction of S toGp∗ , and use it to find suitable V
and V , determining in this manner what the quanta of the field should be. It seems therefore
necessary to restate the method.

• We decide the massm ≥ 0 of the quanta. This determines p∗ and its little groupGp∗ .
• We consider an irreducible representation S of SL(2,C) on CN . We look for a sub-

space G of CN such that the restriction of S to G and Gp∗ is irreducible.
• We look for a Hilbert space V of the same dimension as G and a one-to-one map W

fromV toG such that the representationV ofGp∗ onV given byV (C) = W−1S(C)W
for each C ∈ Gp∗ is unitary and irreducible. The map W is completely determined
up to a multiplicative constant.

• Theorem 9.4.2 then provides the representation U (c,C) of P∗ on the space
H = L2(Xm,V,dλm). This representation determines the quanta of the field.

• The annihilation part of the quantum fields are then given by the formula (10.31)
where u(p,s) = S(Dp)W (fs) as prescribed by (10.27).

• We look for a subspace G′ of CN with dimG = dimG′ such that the restriction of
S∗ to G′ and Gp∗ is irreducible, and for a one-to-one map W ′ from V to G′ such that
the representation V ′ of Gp∗ on V given by V ′(C) = W ′−1S∗(C)W ′ is unitary and
irreducible.

• Theorem 9.4.2 used for the representation V ′ then provides a representation U ′(c,C)
of P∗ on the space H = L2(Xm,V,dλm). This representation must correspond to the
anti-particle of the quanta of the field.23

• The creation part of the quantum fields are then given by the formula (10.33) where
v(p,s) = S(Dp)W ′(fs)∗ as prescribed by (10.36).

• Finally we check that the microcausality condition holds, for otherwise the field is
not physically interesting.

In all our constructions we will follow this exact pattern, trying first to construct quantum
fields for which the quanta of the fields are their own anti-particle, since as explained above
this is the most difficult construction to perform. We will investigate the case where S is

23 In the case of massless Weyl spinors, this will impose a strong requirement: The anti-particle must be of
opposite helicity from the particle.
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the trivial representation (N = 1), the case where S is the (1,1) representation in disguise24

(N = 4) and the case where S is the (1,0) representation (N = 2).
Mathematically, the most interesting cases are probably those of the massive and mass-

less Weyl spinors, and the reader may like to concentrate on these at first reading.

10.9 The Simplest Case (N = 1)

The first example is almost trivial. It is the case where N = 1 and where S is the trivial
representation, S(C) ≡ 1. Then n = 1, and the indices s disappear. The only possible
choices are G = G′ = V = C. Then V and V ′ are trivial.

How do we choose the map W? As always the maps W and W ′ are determined up to a
multiplicative constant. Denoting by e1 the basis vector of C and f1 the basis vector of V ,
we must have W (f1) = λe1, and similarly W ′(f1) = τe1. Thus, assuming that the particle
is its own anti-particle,

ψ+(x) = λ

∫
d3p√

2ωp(2πh̄)3
exp(−i(x,p)/h̄)a(p) (10.46)

and

ψ−(x) = τ

∫
d3p√

2ωp(2πh̄)3
exp(i(x,p)/h̄)a†(p). (10.47)

Thus we exactly recover the formula (5.9), which is not surprising as we derived that formula
by a special case of the present arguments. Recalling the function I of (5.13) and the
functions of (10.43) and (10.44) we find

G′1,1(z) = |λ|2I (z) ; G′′1,1(z) = |τ |2I (z).

Consequently since I is an even function we obtain from (10.42) that [ψ1(x),ψ†
1 (y)] = 0 for

(x−y)2 < 0 if and only if |λ| = |τ |. In that case we can write λ = α exp(iθ ), τ = α exp(−iθ )
where α ∈ C, θ ∈ R. The parameter θ can be eliminated by changing a(p) into exp(iθ )a(p).
The multiplicative factor α should always be real if we want ψ+ to be the adjoint of ψ−.
Modulo the multiplicative constant α we just find the field (5.30).

In this case nothing fruitful came out of the parameters λ and τ . This is a general fact and
we shall no longer consider them. Since W and W ′ are determined up to a multiplicative
constant, we will make a convenient choice for these constants without further comment.

10.10 A Very Simple Case (N = 4)

We next turn to another very simple situation. In general we work with SL(2,C) rather
than SO↑(1,3) so as to deal only with true representations; but in the present section and
the next we do not need SL(2,C) and we can work using only SO↑(1,3). We consider
the simplest non-trivial representation S of SO↑(1,3), the “defining representation” as a

24 See Definition 8.3.2 for the (j,�) representation of SL(2,C).
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group of matrices operating on C4. Let us note right away that in this case the entries of the
matrices are real, so that S = S∗.25

Our first problem in studying this situation is a conflict of notation.26 In the general
setting of a representation S(C) on CN we label the coordinates from 1 to N and we denote
a matrix S(C) by S(C)k,� where k indicates the row and � indicates the column. On the
other hand to study SO↑(1,3) we number the coordinates from 0 to 3 and denote matrices
differently: For a matrixC ∈ SO↑(1,3) we denote its elements byCμ

ν whereμ indicates the
row and ν indicates the column, the notations we will use in this section. To be consistent
with the fact that the coordinates of a point x in R1,3 are denoted by xν we will give upper
indices to the field components. To construct the field:

• We choose m > 0, so p∗ = (mc,0,0,0) and the little group Gp∗ is the orthogonal
group SO(3).

• The restriction of S to SO(3) has two invariant subspaces, namely the spans of e0

and of e1,e2,e3 respectively. We choose for G the span of e0.27

• Thus here n = 1 and the representation of SO(3) on G is the trivial one. We must have
G′ = G as this is the only one-dimensional space invariant under the action of SO(3).
Denoting by f1 the basis vector of V = C we simply choose W (f1) = W ′(f1) = e0.
(We may also, as we will often do, simply identify V with the span of e0.) The indices
s disappear and there is only one creation operator a†(p), without indices s and one
annihilation operator a(p).

In the present setting Dp denotes the unique pure boost which sends p∗ to p. According
to the first part of (4.25) and since Dp = Bp/mc one has

(Dp)μ0 =
pμ

mc
. (10.48)

Thus u(p)μ = pμ/mc = v(p)μ and then

ψ−μ(x) := (ψ−)μ = 1

mc

∫
d3p√

2ωp(2πh̄)3
exp(i(x,p)/h̄)pμa†(p), (10.49)

and a similar formula forψ+μ. In particularψ−μ is proportional to ∂μϕ−(x) = ∂ϕ−(x)/∂xμ
where ϕ−(x) is the creation part of the field (5.30), and thus we are not doing anything
really new here.

10.11 The Massive Vector Field (N = 4)

As in the previous section we consider the case where S is the defining representation of
SO↑(1,3) on C4, but where now G is the span of e1,e2,e3. The restriction of S to G and
Gp∗ = SO(3) is the representation of SO(3) by matrices acting onC3 in the natural manner.

25 An alternative route here is to stick with SL(2,C) and to use the representation κ of this group. We will
eventually see that κ is equivalent to the representation (1,1) of SL(2,C) so that we are studying this
representation in disguise.

26 The reader may wonder why we choose as a first example a representation S with this extra difficulty of
notation. This is simply because this is the simplest choice before one has learned what fermions are, as we
will soon do.

27 In the next section we will consider the case where G is the span of e1,e2,e3.
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We simplify our mental picture by taking for V = G the span of e1,e2,e3 and W the
identity.28 To describe the corresponding representation of P (since here there is no need to
consider P∗), we consider the space L2 = L2(Xm,C

3,dλm). For p ∈ Xm we denote by Dp

the unique pure boost which sends p∗ to p. Then the unitary representation of P is given
by the following formula

U (a,A)(ϕ)(p) = exp(i(a,p)/h̄)(D−1
p ADA−1(p))(ϕ(A−1(p))). (10.50)

We know from Section 9.7 that it describes a spin-one massive particle. We perform the
construction in the case where it is its own anti-particle.

Let us turn to the creation part of the quantum fields. The only invariant subspace for
S∗ = S of C4 of dimension 3 is G′ = G. Choosing as usual the multiplicative constant in
W ′ to our liking, the only choice for W ′ is then the identity.

The last task is to choose a basis of V to get explicit formulas. A physicist would probably
like to choose a basis that describes the spin in the z direction, but as mathematicians we will
accept the simpler basis e1,e2,e3. The formulas for the quantum field ψμ(x) = ψ−μ(x)+
ψ+μ(x) := (ψ−)μ + (ψ+)μ then take the very simple form

ψ+μ(x) =
∑

1≤s≤3

∫
d3p√

2cωp(2πh̄)3
exp(−i(x,p)/h̄)(Dp)μsa(p,s) (10.51)

ψ−μ(x) =
∑

1≤s≤3

∫
d3p√

2cωp(2πh̄)3
exp(i(x,p)/h̄)(Dp)μsa

†(p,s). (10.52)

As in the case of the free field, a factor 1/
√
c has been inserted to give the fields the

dimensionality consistent with the forthcoming Lagrangian density (10.57).

Theorem 10.11.1 The quantum fields ψμ(x) are self-adjoint and satisfy the micro-
causality condition

(x − y)2 < 0⇒ [ψμ(x),ψν(y)] = 0. (10.53)

Proof Defining T μν(p) =∑
1≤s≤3(Dp)μs(Dp)νs and

Gμν(z) =
∫

d3p

2ωp(2πh̄)3 exp(i(z,p)/h̄)T μν(p), (10.54)

we use (10.40) or proceed directly from the relations (10.27) to obtain

c[ψμ(x),ψν(y)] = (Gμν(x − y)−Gνμ(y − x))1. (10.55)

Since the matrix of Dp is symmetric, as in (4.8) the condition that Dp is a Lorentz trans-
formation implies ∑

0≤s,s′≤3

ηss
′
(Dp)μs(Dp)νs′ = ημν (10.56)

28 Since by the last assertion of Proposition 10.4.2 this is basically the only choice.
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and thus, using (10.56) in the second inequality and again (10.48) in the last equality,

T μν(p) =
∑

1≤s≤3

(Dp)μs(Dp)νs = −ημν + (Dp)μ0(Dp)ν0 = −ημν +
pμpν

m2c2
.

It then follows from Lemma 10.7.4 that Gμν(z) = Gνμ(−z), and the conclusion follows
from Corollary 10.7.3.

10.12 The Classical Massive Vector Field

The previous quantum field can be viewed as the quantization of a classical four-dimensional
field (Aμ), “the massive vector field”. We investigate the massive vector field in the present
section which can be skipped at first reading. To follow the forthcoming arguments, the
reader should review Sections 6.4 and 6.5. We will not attempt to quantize the massive
vector field and to show that the result of this quantization is the field of the present section,
as this is a significant undertaking. In this section we use the convention (4.16) for raising
and lowering indices in Lorentz space.29 We first give the Lagrangian density of the massive
vector field by fiat (postponing a brief discussion to the end of this section):

L = − h̄
2c2

4
FνμF

νμ + m2c4

2
AνA

ν, (10.57)

where

Fνμ = ∂νAμ − ∂μAν . (10.58)

Here m ≥ 0 is a parameter. When m > 0, it is the last term in (10.57) “which makes the
field massive”.30 The Euler-Lagrange equations then take the form

∂L
∂Aμ

= ∂ν
∂L

∂(∂νAμ)
, (10.59)

where this confusing but standard notation pretends that ∂νAμ are independent variables.
To make the Euler-Lagrange equations explicit one has to learn how to get the signs right.
For example, writing AμA

μ = A2
0 −

∑
1≤μ≤3(Aμ)2 one obtains

∂L
∂Aμ

= m2c4Aμ, (10.60)

and again with some patience31

∂L
∂(∂νAμ)

= −c2h̄2Fνμ. (10.61)

29 So that Fμ,ν = Fμ,ν if μ = ν = 0 or if μ,ν > 0 and Fμ,ν = −Fμ,ν otherwise. We also use the convention
that repeated indices in the same term, one of which is a subscript and the other one is a superscript, are
summed.

30 Thus the name “massive vector field” is reserved for the case m > 0. When m = 0, the Lagrangian density
becomes that of four-potential of the electromagnetic field, see Section E.2, which now is a good time to read.

31 The reason the factor 1/4 of (10.57) disappears is that the term ∂νAμ occurs four times, in the terms
Fν,μ,F

ν,μ,Fμ,ν and Fμ,ν . As for understanding the signs, I see no other way than writing things down in
complete detail, in each of the situations which determine the sign of Fμ,ν compared to Fμ,ν .
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This gives the Euler-Lagrange equations m2c2Aμ + h̄2∂νF
νμ = 0, or, equivalently

m2c2Aμ + h̄2∂νFνμ = 0. (10.62)

The analysis here differs when m = 0 or m > 0. When m = 0 the above equation reduces
to ∂νFνμ = 0, which, as you will learn in Section E.2 are the famous Maxwell equations,32

so we assume m �= 0. Since Fνμ = −Fμν we have ∂μ∂νFνμ = 0, so that the previous
relation implies m2c2∂μAμ = 0 and thus

∂μAμ = 0. (10.63)

This implies in turn that ∂νFνμ = ∂ν(∂νAμ − ∂μAν) = ∂ν∂νAμ, and therefore (10.62)
becomes

m2c2Aμ + h̄2∂ν∂νAμ = 0. (10.64)

Thus each of the components Aμ satisfies the Klein-Gordon equation, a condition which
is certainly expected if we are to succeed in quantizing the field as is shown by Exercise
10.5.2. Still, at this stage it is not obvious at all yet that the massive vector field has any
relationship with the quantum field of the previous section. Some relation is brought to
light by the following exercise.

Exercise 10.12.1 Prove that in the sense of distributions the quantum field (10.52),
(10.51) satisfies the equations of motion corresponding to (10.63) and (10.64).

In order to compute the Hamiltonian density corresponding to the Lagrangian density
(10.57), we would like to use the formula (6.46). For this one introduces the variables
πν = ∂L/∂(∂tAν) which are conjugate to the variables Aν in the sense of Lagrangian
Mechanics, see (6.33) and (6.45). One tries as in (6.35) to express the variables ∂tAν using
the variables πν . An ominous sign of trouble33 is that π0 = ∂L/∂(∂tA0) = 0 according
to (10.61), and the procedure fails. This is a reflection of the fact that the variables Aν are
not independent (they are related by (10.63)). As we show in Section H.1 it is nonetheless
possible to identify A1,A2,A3 “as a proper set of independent variables”. This suggests
that the variables ψ1,ψ2,ψ3 (where ψμ are the components of the quantum field of Section
10.11) and their “conjugate variables” (in the sense of (6.45)) satisfy remarkable commu-
tations relations. This is the content of the next result. This result is made rigorous by
methods similar to those of Proposition 6.9.1. The proof offers no new difficulty and is
left to the reader.

Theorem 10.12.2 (Equal time commutation relations) The fields (10.52) and
(10.51) satisfy the relation

[ψk(ct,x),πk(ct,y)] = ih̄δ(3)(x − y)1

where ψk = −ψk and πk = ch̄2(∂0ψk− ∂kψ0). All the other equal time commutators
are zero, e.g. [ψk(ct,x),ψk′ (ct,y)] = 0, [ψk(ct,x),πk′(ct,y)] = 0 if k �= k′.

32 When the electromagnetic fields is expressed in terms of a four-potential.
33 In this situation the Legendre transform is singular, and the passage from the Lagrangian to the Hamiltonian

formulation is not readily available. A deeper theory, the Dirac–Bergmann constraint analysis is needed here.
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Let now briefly discuss the formula (10.57). It is an instance of a quite amazing fact:
The correct Lagrangian is often the simplest which makes sense. To follow our discussion,
the reader should study Section E.2. To produce equations of motion the Lagrangian should
contain terms such as ∂0Aν , which occur naturally as one of the components of the tensor
field Gνμ := ∂νAμ (here tensor field is in the sense explained in Section E.2). The use of
the tensor field Fνμ is however more natural because in the case of the electromagnetic field
m = 0 it creates equations of motions that do not involve the (non-physically measurable)
four potential A but only the measurable components of the electromagnetic field. To pro-
duce a Lorentz invariant term the natural method is then to perform a contraction FνμF νμ

(you can learn more about this general procedure in Section D.12). The term AνAν is also
completely natural. In principle one could also have terms such as AνAμFνμ, but these
would lead to non-linear equations of motion, and again this is not the most natural choice.

10.13 Massive Weyl Spinors, First Attempt (N = 2)

In this section we fix m > 0, and we investigate the case where S is the defining repre-
sentation of SL(2,C), S(C) = C, so that N = 2. Our goal is to construct a quantum field
satisfying the microcausality condition based on this representation (sometimes called the
massive Weyl spinor).34 Our first attempt will fail, not because we are clumsy, but because
it is doomed from the start, due to a deep fact, called the “spin-statistic theorem”. Informally
stated this theorem35 asserts that when the spin of the quanta of the field is not an integer
(here it will be 1/2) we must use a new quantization method which we develop in the next
section.

The representation S∗ where S(C) is replaced by its conjugate will simply be written as
S∗(C) = C∗. Let us then apply the theory of Sections 10.4 and 10.6 to build a Lorentz
covariant quantum field. We investigate the less constraining case where the particle is
different from its anti-particle. The restrictions of S and S∗ to SU (2) = Gp∗ are irreducible,
so the spaces G and G′ of Propositions 10.4.2 and 10.6.2 have to be equal to C2. There is no
loss of generality to choose V = V ′ = C2 and W the identity (so that the particle has spin
1/2). To perform the computations we choose as a basis of V the vectors

f1 =
(

1
0

)
; f2 =

(
0
1

)
,

so that the components fs,� of these vectors are given by fs,� = δ�s . We then have to find a
map W ′ which satisfies (10.32). Recalling the matrix J of Lemma 8.1.4,

J =
(

0 1
−1 0

)
(10.65)

34 One would expect that a situation related to such a basic representation should be fundamental, and you may
wonder why you have not heard of it before. The corresponding particles do not occur in Nature, but the
corresponding structure is indeed fundamental, as it can be thought of as a theory of electrons that does not
yet incorporate parity.

35 In axiomatic Quantum Field Theory, this is a legitimate mathematical theorem.
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for C ∈ SU (2) we have J−1CJ = J−1S(C)J = S∗(C) = C∗. Thus W ′ = J satisfies
(10.32). (The most general choice is W ′ = λJ , and this does not change our conclusion.)
Thus

f ′1 := W ′(f1) = J (f1) = −f2 ; f ′2 := W ′(f2) = J (f2) = f1,

so that the components of these vectors are given by36

f ′1,1 = 0 ; f ′1,2 = −1 ; f ′2,1 = 1 ; f ′2,2 = 0.

Let us then rewrite the formulas for the quantum field:

ψ+(x) =
∑
s=1,2

∫
d3p√

2ωp(2πh̄)3
exp(−i(x,p)/h̄)u(p,s)a(p,s). (10.66)

ψ−(x) =
∑
s=1,2

∫
d3p√

2ωp(2πh̄)3
exp(i(x,p)/h̄)v(p,s)b†(p,s), (10.67)

where

u(p,s) = Dp(fs) ; v(p,s) = Dp(J (fs)) = Dp(f ′s ). (10.68)

Lemma 10.13.1 In the domain z2 < 0 we have G′
k,k′ (z) = G′′

k,k′ (z) and this function
is odd.

Recalling from (10.42) that

[ψk(x),ψ†
k′ (y)] = (G′k,k′ (y − x)−G′′k,k′ (x − y))1 = 2G′k,k′ (x − y)1,

there is no reason why this quantity should be zero. Our attempt to construct a quantum
field which satisfies the microcausality condition has failed.

Despite this negative result the lemma is important. It will imply (a substitute of) micro-
causality after we learn a new method of quantization in the next section. For further refer-
ence, we perform a part of the computation separately.

Lemma 10.13.2 The quantity

T ′k,k′ (p) :=
∑
s≤2

u(p,s)ku(p,s)∗k′

is the coefficient Bk,k′ of the matrix B := M(p)/mc = M(p/(mc)). Moreover

T ′′k,k′ (p) :=
∑
s≤2

v(p,s)kv(p,s)∗k′ = T ′k,k′ (p). (10.69)

Proof To lighten notation we set Dk,� = (Dp)k,�, so that u(p,s)k =
∑

�≤2 Dk,�fs,�, etc.
We compute

T ′k,k′ (p) =
∑
s≤2

∑
�,�′≤2

Dk,�fs,�D
∗
k′,�′fs,�′ =

∑
�,�′≤2

Dk,�D
∗
k′,�′a�,�′,

36 This argument is a special case of the general argument leading to (10.37).
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where a�,�′ =
∑

s≤2 fs,�fs,�′ , so that a1,2 = a2,1 = 0 and a1,1 = a2,2 = 1. Thus T ′
k,k′ (p) =∑

�≤2 Dk,�D
∗
k′,�. Since the matrix Dp is Hermitian, D∗

k′,� = D�,k′ so that T ′
k,k′ (p) is the

coefficient Bk,k′ of the matrix B = D2
p = DpD

†
p, which equals M(p)/mc by (9.36). We

then obtain (10.69) by the same computation.

Proof of Lemma 10.13.1 It follows in particular from Lemma 10.13.2 that T ′
k,k′ (p) is a

homogeneous first-degree polynomial in the quantities pμ, and Lemma 10.7.4 implies that
G′
k,k′ (z) = G′′

k,k′ (z) is an odd function of z in the domain z2 < 0.

10.14 Fermion Fock Space

The most important particles (such as electrons and protons) are fermions, which behave
quite differently from bosons. The boson Fock space of Section 3.4 (which the reader should
review now) is not appropriate to describe multiparticle systems consisting of fermions. We
need another construction, fermion Fock space, which we describe in this section. We recall
that Sn denotes the group of permutations of {1, . . . ,n}.

Principle 8 Consider the state space H of a fermion, provided with a basis (ei)i≥1.
Then the state space which represents a system of n such identical fermions is

Hn,a =
{ ∑
i1,...,in

αi1,i2,...,inei1 ⊗ · · · ⊗ ein ; ∀σ ∈ Sn , αi1,...,in = sign σ αiσ (1),...,iσ (n)

}
,

(10.70)

where sign σ ∈ {−1,1} is the signature of the permutation σ .

The index a stands for “anti-symmetric”. The norm there is the obvious quadratic norm.
We observe that

H = H1,a .

Let us pause for a moment. We model here the two-particle states by H2,a ⊂ H⊗H. This
innocent-looking hypothesis has extremely deep consequences. For example x⊗x �∈ H2,a .
Two identical fermions cannot be in the same state. The model obeys Pauli’s exclusion
principle.37

For n = 0 we defineH0,a = C, and we denote by e∅ its basis element (i.e. 1). It represents
the vacuum, the state where no particle is present. We defineF0 =

⊕
n≥0 Hn,a the algebraic

sum of the spaces Hn,a , so that any element α of F0 is a sequence α = (α(n))n≥0 with
α(n) ∈ Hn,a and α(n) = 0 for n large enough. We define the inner product as in the case
of the boson Fock space. The fermion Fock space F is then the completion of F0 for the
norm (3.27) but we will never need elements of F which are not in F0. We will somewhat
abuse notation by considering each Hn,a , and in particular H = H1,a as a subspace of F0.

37 The consequences of Pauli’s exclusion principle are hard to overstate. Following this principle, the electrons
organize into orbitals in atoms, and this is what makes chemistry (and us) possible.
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The fermion Fock space has properties very similar to the boson Fock space, with the
all-important difference that commutators are replaced by anti-commutators. The anti-
commutator of two operators A,B is defined as

{A,B} = AB + BA, (10.71)

so that in particular {A,B} = {B,A}.
Theorem 10.14.1 (The creation and annihilation operators) For ξ in H we can38

define operators A(ξ ) and A†(ξ ) on F0 with the following properties.

For n ≥ 1 , A(ξ ) maps Hn,a into Hn−1,a . (10.72)

For n ≥ 0 , A†(ξ ) maps Hn,a into Hn+1,a . (10.73)

A(ξ )(e∅) = 0 ; A†(ξ )(e∅) = ξ ∈ H = H1,a ⊂ F0. (10.74)

∀ξ ∈ H , ∀α,β ∈ F0 , (A†(ξ )(α),β) = (α,A(ξ )(β)). (10.75)

∀ξ,η ∈ H , {A(ξ ),A†(η)} = (ξ,η)1. (10.76)

∀ξ,η ∈ H , {A(ξ ),A(η)} = {A†(ξ ),A†(η)} = 0. (10.77)

The map ξ �→ A†(ξ ) is linear. The map ξ �→ A(ξ ) is anti-linear . (10.78)

The situation here is much nicer than in the boson case: The operators A†(ξ ) and A(ξ )
are defined everywhere and are adjoint of each other. Indeed, taking η= ξ in (10.76)
implies that

A(ξ )A†(ξ )+ A†(ξ )A(ξ ) = (ξ,ξ )1

whenever ξ ∈ H. Consequently, for any x ∈ F0 we have

(x,A(ξ )A†(ξ )(x))+ (x,A†(ξ )A(ξ )(x)) = (ξ,ξ )‖x‖2.

It then follows from (10.75) that for x ∈ F0

‖A(ξ )(x)‖2 = (A(ξ )(x),A(ξ )(x)) = (x,A†(ξ )A(ξ )(x))

and similarly for A†. Therefore we have

‖A(ξ )(x)‖2 + ‖A†(ξ )(x)‖2 = (ξ,ξ )‖x‖2

and thus the operators A(ξ ) and A†(ξ ) are both of norm ≤ ‖ξ‖.
To describe the construction we will think of an element ofHn,a as a tensor (αi1,...,in )i1,...,in

which is antisymmetric in its indices, and of ξ ∈ H = H1,a as a sequence (ξi)i≥1. The fact
that αi1,...,in = 0 whenever the indices are not all different is of constant use.

38 I am trying to save some space here, but the situation is the same as for the boson Fock space: There is a
unique interesting version of these operators, which is the one we will always use.
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For ξ,η ∈ H and α ∈ Hn,a we define A(ξ )(α) = 0 if n = 0 and otherwise

A(ξ )(α)i1,...,in−1 =
√
n
∑
i≥1

ξ∗i αi,i1,...,in−1, (10.79)

and we define

A†(η)(α)i1,...,in+1 =
1√
n+ 1

∑
�≤n+1

(−1)�+1ηi�αi1,...,̂i�,...,in+1
, (10.80)

where the notation î� means that this term has been removed.
The tensor α is anti-symmetric in its indices, so that this is also the case of the left-

hand side of (10.79). To see that the left-hand side of (10.80) is also anti-symmetric in its
indices, notice first that it suffices to prove that it reverses its sign each time we exchange
two consecutive indices. Look at what happens when you exchange i1 and i2: The first two
terms of the summation get exchanged and their signs reversed, while all the other terms
change sign.

The proof of Theorem 10.14.1 is simple if we calculate in a suitable basis, which by itself
is very interesting. Given a set I = {j1, . . . ,jn} of integers, we consider the element39 |I 〉 =
(αi1,...,in ) of Hn,a such that αi1,...,in = 0 when the indices i1, . . . ,in are not a permutation of
the elements of I , whereas when these indices are a permutation of the elements of I , i.e.
i� = jσ (�) for a certain σ ∈ Sn,

αi1,...,in = αjσ (1),...,jσ (n) =
1√
n!

sign σ .

It is basically obvious that the elements |I 〉 form an orthonormal basis of Hn,a . The physical
interpretation is transparent: The particle comes in different states 1,2, . . ., and |I 〉 repre-
sents an n-particle state, with one particle in each of the states j1, . . . ,jn. Let us say that
k ∈ I has rank m if there are exactly m− 1 elements of I which are < k.

Lemma 10.14.2 Let us set a(k) = A(ek) and a†(k) = A†(ek). Then
(a) If k ∈ I then a†(k)|I 〉 = 0.
(b) If k �∈ I then a†(k)|I 〉 = (−1)m+1|I ∪ {k}〉 where m is the rank of k in I ∪ {k}.
(c) If k �∈ I then a(k)|I 〉 = 0.
(d) If k ∈ I then a(k)|I 〉 = (−1)m+1|I \ {k}〉 where m is the rank of k in I .

Proof During the proof we use the notation |I 〉 = (αi1,...,in ). Using the formula (10.80)
for ηi = δki shows that a†(k)(α)i1,...,in+1 is 0 unless for some � ≤ n+ 1 one has i� = k, and
then

a†(k)(α)i1,...,in+1 =
1√
n+ 1

(−1)�+1αi1,...,̂i�,...,in+1
.

To prove (a) observe that since i1, . . . ,in+1 are distinct, k = i� does not belong to the list
i1, . . . ,̂i�, . . . ,in+1 so this list cannot be a permutation of the elements of I when k ∈ I .

39 One may also use the notation |n1,n2, . . .〉 rather than |I 〉 where ni ∈ {0,1} is 1 if and only if i ∈ I . This
parallels the notation in the boson case.
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When k �∈ I the elements i1, . . . ,i� = k, . . . ,in+1 are obtained as a permutation σ ′ of
the elements of I ∪ {k} if and only if the elements i1, . . . ,i�−1,i�+1, . . . ,in+1 are obtained
as a permutation σ of the elements of I . Furthermore sign σ ′ = (−1)�+m sign σ . To see
this, we recall that sign σ equals (−1)s where s is the number of transpositions one has to
apply to the elements of I to bring them in the order i1, . . . ,i�−1,i�+1, . . . ,in+1. To bring
the elements I ∪ {k} in the order i1, . . . ,in+1 one first brings k, which is in the mth position
in I ∪ {k}, into the �th position, for an extra factor (−1)|�−m| = (−1)�+m. This shows that
sign σ ′ = (−1)�+m sign σ and implies (b).

It follows from (10.79) that

a(k)(α)i1,...,in−1 =
√
nαk,i1,...,in−1 .

This makes (c) obvious. The elements i1, . . . ,in−1 are obtained by a permutation σ ′ of the
elements of I \ {k} if and only if the elements k,i1, . . . ,in−1 are obtained by a permutation
σ from the elements of I , and sign σ ′ = (−1)m+1 sign σ . This implies (d).

To prove the commutation relations of Theorem 10.14.1 it suffices to prove the following

{a(k),a(k′)} = 0 ; {a†(k),a†(k′)} = 0 ; {a(k),a†(k′)} = δkk′1,

which are proved in a tedious but straightforward fashion by computing the value of these
operators when applied to a state |I 〉 using Lemma 10.14.2. For example to prove the third
relation when k = k′ we observe that if k ∈ I then a†(k)a(k)|I 〉 = |I 〉 and a(k)a†(k)|I 〉 = 0
whereas if k �∈ I , a†(k)a(k)|I 〉 = 0 and a(k)a†(k)|I 〉 = |I 〉, so that in any case (a†(k)a(k)+
a(k)a†(k))|I 〉 = |I 〉. The first two relations are proved similarly.

Given η1, . . . ,ηn ∈ H we define

ϕn(η1, . . . ,ηn) = 1√
n!

∑
σ∈Sn

sign σ ησ (1) ⊗ · · · ⊗ ησ (n). (10.81)

As in the case of bosons, the following is proved by reducing to the case of basis vectors
and using (10.79) and (10.80).

Proposition 10.14.3 For η,ξ,η1, . . . ,ηn ∈ H one has

A†(η)(ϕn(η1, . . . ,ηn)) = ϕn+1(η,η1, . . . ,ηn),

A(ξ )(ϕn(η1, . . . ,ηn)) =
∑
�≤n

(−1)�+1(ξ,η�)ϕn−1(η1, . . . ,η̂�, . . . ,ηn).

In particular, repeated applications of n creation operators A†(ηk) to the vacuum (the
state e∅) results in a state consisting of n particles in the corresponding states.

Every unitary operator U on H has a canonical extension to a unitary operator UF on F .
Any time-evolution taking place in H can be extended in a canonical way to the whole of F ,
describing the evolution of non-interacting particles. The argument is entirely similar to the
boson case. In particular, to a Hamiltonian H on H corresponds a Hamiltonian HF on F .
As follows from (3.5) it satisfies the relation
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HF
(∑
σ∈Sn

sign σ xσ (1) ⊗ · · · ⊗ xσ (n)

)
(10.82)

=
∑

k≤n,σ∈Sn

sign σ xσ (1) ⊗ · · · ⊗ xσ (k−1) ⊗H (xσ (k))⊗ xσ (k+1) ⊗ · · · ⊗ xσ (n).

This means that the energy of a non-interacting multiparticle system is the sum of the
energies of the individual particles.

The following is proved as in the boson case.

Proposition 10.14.4 For any vector ξ we have

UFA(ξ )U−1
F = A(U (ξ )) ; UFA

†(ξ )U−1
F = A†(U (ξ )). (10.83)

10.15 Massive Weyl Spinors, Second Attempt

The constructions of Sections 10.4 and 10.6 can be repeated verbatim when one replaces
boson Fock space by fermion Fock space, so we may use the results of this analysis to keep
investigating Lorentz covariant fields. The only difference is that commutators are replaced
by anti-commutators. In particular we have now

{a(p,s),a†(p′,s′)} = δs
′
s (2πh̄)3δ(3)(p − p′)1, (10.84)

with all other anti-commutators being zero, and we obtain the following mirror image of
Theorem 10.7.1.

Theorem 10.15.1 The quantum fieldψk(x) = ψ+k (x)+ψ−k (x) constructed in Sections
10.4 and 10.6 but with fermion Fock space rather than boson Fock space satisfies

{ψk(x),ψk′ (y)} = (Gk,k′ (y − x)+Gk′,k(x − y))1 (10.85)

where Gk,k′ (z) is given by (10.41). Moreover,

{ψk(x),ψ†
k′ (y)} = (G′k,k′ (y − x)+G′′k,k′ (x − y))1, (10.86)

where G′
k,k′ (z) is given by (10.43) and G′′

k,k′ (z) is given by (10.44).

We now want to show that the construction of Section 10.13 produces a physically
relevant field if one uses fermion Fock spaces. We consider the most difficult case, where
the particle is its own anti-particle. In the next statement, we use the notation of Section
10.13, and in particular the vectors f1,f2,f

′
1 = −f2,f

′
2 = f1.

Theorem 10.15.2 The quantum field given by the formulas

ψ+(x) =
∑
s=1,2

∫
d3p√

2ωp(2πh̄)3
exp(−i(x,p)/h̄)u(p,s)a(p,s), (10.87)

ψ−(x) =
∑
s=1,2

∫
d3p√

2ωp(2πh̄)3
exp(i(x,p)/h̄)v(p,s)a†(p,s), (10.88)
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where

u(p,s) = Dp(fs) ; v(p,s) = Dp(J (fs)) = Dp(f ′s ) (10.89)

satisfies

{ψk(x),ψk′ (y)} = 0 ; {ψ†
k (x),ψ†

k′ (y)} = 0 ; {ψk(x),ψ†
k′ (y)} = 0 (10.90)

whenever (x − y)2 < 0.

The formulas defining the field look the same as the formulas40 (10.66) to (10.68), but it
is understood here that quantization is done using fermion rather than boson Fock space.

Condition (10.90) is different from the microcausality condition (10.39). As we explained
at the beginning of Section 10.7, one use of the microcausality condition is to ensure that
Hamiltonians constructed out of products of quantum fields commute at causally separated
points. Condition (10.90) ensures that Hamiltonians constructed out of products of an even
number of such fields commute at causally separated points.41 This is why the fields satis-
fying (10.90) are physically relevant.

Proof Due to the change of sign in (10.85) compared to (10.40), Lemma 10.13.1 implies
the last part of (10.90), and we turn to the proof of the first part of this statement that
{ψk(x),ψk′ (y)} = 0 (the second being similar). This requires again a few lines of com-
putation. It holds that

Tk,k′ : =
∑
s≤2

u(p,s)kv(p,s)k′

=
∑
s≤2

∑
�,�′≤2

Dk,�fs,�Dk′,�′f
′
s,�′

=
∑
�,�′≤2

Dk,�Dk′,�′a�,�′,

where a�,�′ =
∑

s≤2 fs,�f
′
s,�′ =

∑
s≤2 δ

�
s f
′
s,�′ = f ′

�,�′ so that a1,1 = a2,2 = 0 while
a1,2 = −a2,1 = −1. Consequently, T1,1 = T2,2 = 0, while T1,2 = −T2,1 = −1, because
the 2 × 2 matrix (Dk,�) is of determinant 1. The functions Gk,k of (10.41) then satisfy
G1,1 = G2,2 = 0 and G1,2 = −G2,1 = I where I is the function (5.13). It then follows
from (10.85) that {ψ1(x),ψ1(y)} = {ψ2(x),ψ2(y)} = 0 whereas

{ψ1(x),ψ2(y)} = (I (y − x)− I (x − y))1,

Since the function I (z) is even on the domain z2 < 0 this quantity is zero.

We now investigate the “equal-time anti-commutation relations”. In order to prepare for
the results of Section 10.19, we assume that the particle is different from its anti-particle.
In that case (10.67) is replaced by

40 In (10.88) we now have the operator a† rather than b†, since we assume that the particle is its own
anti-particle.

41 It is very simple to check this, assuming of course that all fields commute at a given point.
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ψ−(x) =
∑
s=1,2

∫
d3p√

2ωp(2πh̄)3
exp(i(x,p)/h̄)v(p,s)b†(p,s), (10.91)

where b denotes a creation operator for the anti-particle. Proceeding as in the proof of
Proposition 6.9.1 it is possible to give a precise mathematical meaning to the following
result, but we content ourselves with a formal proof.

Theorem 10.15.3 (Equal-time anti-commutation relations42) We have

{ψk(ct,x),ψk′ (ct,y)} = 0 ; {ψ†
k (ct,x),ψ†

k′ (ct,y)} = 0,

{ψk(ct,x),ψ†
k′ (ct,y)} = 1

mc
δk
′
k δ

(3)(x − y)1. (10.92)

The factor 1/(mc) in the right-hand side of the last equation looks strange, but we must
remember that the quantum field is defined only up to a multiplicative constant. One may
then decide that getting the constant 1 in the right-hand side of (10.92) would be a good
method to normalize this field. This can be done by introducing a factor

√
mc in formulas

such as (10.91).

Proof As in Theorem 10.15.1 we obtain (after a change of variable p→−p in one of the
integrals)

{ψk(ct,x),ψ†
k′ (ct,y)} = 1

∫
d3p

2ωp(2πh̄)3 exp(i(x − y) · p/h̄)Ck,k′ (p),

where

Ck,k′ (p) =
∑
s≤2

u(p,s)ku(p,s)∗k′ +
∑
s≤2

v(−p,s)kv(−p,s)∗k′ .

Now, as follows from Lemma 10.13.2, we have Ck,k′ (p) = 0 if k �= k′ while Ck,k(p) =
2p0/mc, and since p0 = ωp the result follows from (a version of) (1.19). The other case is
similar.

10.16 Equation of Motion for the Massive Weyl Spinor

In the present section we investigate whether the previous quantum field can be seen as a
quantization of a classical field. This section may be skipped at first reading. Let us accept
that when this is the case the quantum and the classical field satisfy the same equations of
motion (as we have seen in the case e.g. in the situation of Exercise 10.12.1). Our strategy
will then be to find an “equation of motion” for the quantum field, and then to look for
a classical field satisfying this equation of motion. We first describe such an equation of
motion.

42 Just as in the case of equal-time commutation relations, some authors use these relations as a road to discover
Weyl spinors, but this road is fraught with dangers as we discuss below.
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We consider the field ψ† given by (ψ†)k = (ψk)†. Thus ψ† is the column vector the kth
row of which is the adjoint of the kth row of ψ . Hence

ψ† = ψ†+ + ψ†− (10.93)

where

ψ†+ =
∑
s=1,2

∫
d3p√

2ωp(2πh̄)3
exp(−i(x,p)/h̄)v(p,s)∗a(p,s) (10.94)

and

ψ†− =
∑
s=1,2

∫
d3p√

2ωp(2πh̄)3
exp(i(x,p)/h̄)u(p,s)∗a†(p,s), (10.95)

where v(p,s)∗ and u(p,s)∗ are the column vectors ofC2 whose components are the complex
conjugates of the components of v(p,s) and u(p,s) defined in (10.89). We recall the Pauli
matrices σμ given by (2.3), and the matrix J of (10.65).

Proposition 10.16.1 In the sense of distributions, the quantum field of Theorem
10.15.2 satisfies the equations of motion

ih̄ρμ∂μψ = mcψ†, (10.96)

where ρμ = Jσμ.

The key point is the following simple fact.

Lemma 10.16.2 For p ∈ Xm we have

JM(P (p))u(p,s) = mcv(p,s)∗ ; JM(P (p))v(p,s) = −mcu(p,s)∗. (10.97)

Proof It is obvious from (4.28) that

DP (p) = D−1
p . (10.98)

Using (9.36) and (10.98) we have M(P (p)) = mcD−2
p , so that, using that Dp is Hermitian

in the second equality and Lemma 8.1.4 in the third we get

M(P (p))Dp = mcD−1
p = mcD†−1

p = mcJ−1D∗pJ, (10.99)

and multiplying on the left by J we obtain

JM(P (p))Dp = mcD∗pJ (10.100)

so that

JM(P (p))Dp(fs) = mcD∗pJ (fs) = mc(DpJ (fs))
∗
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because the components of J (fs) are real. Since by (10.68) we have u(p,s) = Dp(fs) and
v(p,s) = DpJ (fs) this proves the first part of (10.97). Multiplying (10.100) on the right
by J , and since J 2 = −I one gets

JM(P (p))DpJ = −mcD∗p
and this similarly implies the second part of (10.97).

Proof of Proposition 10.16.1 We only perform a formal calculation, as there is no diffi-
culty to turn it into a rigorous proof. From (10.87) we obtain (using that (x,p) = xμpμ)

ih̄ρμ∂μψ
+ =

∑
s=1,2

∫
d3p√

2ωp(2πh̄)3
exp(−i(x,p)/h̄)pμρ

μu(p,s)a(p,s). (10.101)

Now,

JM(P (p)) = J
∑

0≤μ≤3

pμσμ = pμρ
μ,

and (10.97) implies pμρμu(p,s) = mcv(p,s)∗. Consequently (10.101) and (10.94) imply
ih̄ρμ∂μψ+ = mcψ†+. The case of ψ− is similar.

To make the quantum field of Theorem 10.15.2 appear as the quantization of a classical
field, the natural path is to find a Lagrangian yielding the equation of motion (10.96), and
then to quantize the corresponding Hamiltonian. It does not seem possible to construct
such a Lagrangian. Several standard textbooks try to find the quantum fields of interest
by investigating the classical fields arising from natural Lagrangians. Since the method
utterly fails (as it does not lead to the discovery of the present field) they argue that in the
case of spin 1/2, where anti-commutators replace commutators, one should “replace real
numbers by Grassmann numbers” i.e. assume that the components ψk of ψ take as values
anti-commuting objects which satisfy xy = −yx, and write a “Lagrangian” built from such
objects.43 Discovering quantum fields through their invariance properties as done in this
chapter avoids this perilous gymnastics.

10.17 Massless Weyl Spinors

We consider the case where m = 0 (so the little group G0 is given by (9.40)) and where
again the representation S of SL(2,C) is the defining representation on C2. To construct
the annihilation part of the fields we have to look for subspaces of C2 which are invariant
under all the operators S(C) for C in the little group. The only such subspace is the span
G of the first basis vector, and the representation of the little group G0 thus obtained is the
representation π̂−1 of Definition 9.6.2, π̂−1(A) = a for A as in (9.40). Thus the quanta of
the field are massless particles of helicity−1/2. Since the spin is 1/2, quantization will use

43 We let the reader make up her mind as to whether the consideration of Lagrangians built out of Grassmann
numbers really promotes our understanding, or whether it just represents a desperate last-ditch attempt to
force a genuine quantum question into the framework of Classical Mechanics. Why this should be an
attractive program is anyway a mystery to this author.
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fermion Fock spaces. To construct the creation part of the fields, we then have to look for
subspaces of C2 which are invariant under all the operators S∗(C) for C in the little group.
There is a single one-dimensional space with this property, the same space G as above. The
restriction of S∗ to this space and G0 is unitarily equivalent to π̂1, not to π̂−1. That means
that the anti-particle of the quantum of the field is a massless particle with helicity 1/2.
(So in particular we cannot construct the desired quantum field when the particle is its own
anti-particle.) The creation part of the quantum fields are then given by

ψ−k (x) =
∫

d3p√
2ωp(2πh̄)3

exp(i(x,p)/h̄)(Dp)k,1a
†(p) (10.102)

and the annihilation parts of the quantum fields are given by

ψ+k (x) =
∫

d3p√
2ωp(2πh̄)3

exp(−i(x,p)/h̄)(Dp)k,1b(p), (10.103)

where b(p) is the operator which annihilates an anti-particle of momentum p.

Theorem 10.17.1 The quantum field ψ(x) = ψ+(x)+ ψ−(x) satisfies

{ψ(x),ψ(y)} = 0 ; {ψ†(x),ψ†(y)} = 0 ; {ψ(x),ψ†(y)} = 0

whenever (x − y)2 < 0.

As in the case of the massive Weyl spinors, it suffices to prove here that Tk,k′ = (Dp)k,1
(Dp)∗

k′,1 is a first degree polynomial in p0,p1,p2,p3. Recalling (9.39), this is because 2Tk,k′
is the coefficient Bk,k′ of the matrix

B = DpM(p∗)D†
p = M(κ(Dp)(p∗)) = M(p).

Massless Weyl spinors model neutrinos, at least in a theory where these are of mass zero,
which is now known to be only approximately true.

10.18 Parity

We would like to discover physically relevant quantum fields “when there exists a parity
operator”. One way to reach this goal is simply to replace everywhere in the previous
analysis the group SL(2,C) by the group SL+(2,C) of Section 8.9, the group generated
by SL(2,C) and a new element P ′ which represents parity. Lorentz covariance, as defined
in Definition 10.2.1, has a “version with parity”, simply by replacing everywhere SL(2,C)
by SL+(2,C), so that U (c,C) has to be a representation of P∗+ = R1,3 � SL+(2,C). All
our considerations carry over to that setting.

Assuming for the moment m > 0 the little group is now the group SU+(2) generated by
SU (2) and P ′, and in Section 9.9 we have discussed how to obtain representations of P∗+
through the extended Theorem 9.4.2. Condition (10.16) must now be satisfied for the little
group SU+(2) and not only for SU (2).

We will describe two models for fermions constructed by this procedure. As they are
fermions, quantization is based on fermion Fock space. In the next section we examine
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“Dirac fermions”, which are different from their anti-particle. This is a fundamental struc-
ture, as it is in particular the successful model for electrons.

10.19 Dirac Field

In this section and the next Dp ∈ SL(2,C) such that Dp(p∗) = p is positive Hermitian as
provided by Lemma 8.4.6, and by (4.28) it satisfies

DP (p) = D−1
p = D†−1

p . (10.98)

Let us recall the representation S of SL+(2,C) constructed in Section 8.10 (which the reader
might want to review at this stage). Thus, for A ∈ SL(2,C), S(A) is the 4× 4 matrix

S(A) :=
(
A†−1 0

0 A

)
, (10.104)

where, as everywhere in the present section 4×4 matrices are decomposed in blocks of size
2× 2. Recalling the matrices γμ given in (8.49) and in particular

γ0 =
(

0 I

I 0

)
, (10.105)

where I is the 2× 2 identity matrix, then S(P ′) = γ0.
There are two distinguished subspaces of C4 which are invariant under the restriction of

S to the little group SU+(2), i.e. which are invariant under both the action of the restriction
of S to SU (2) and under γ0. Writing x ∈ C4 as a column vector, these are

G = {x ; γ0x = x} ; G′ = {x ; γ0x = −x}. (10.106)

Thus x = (xk)1≤k≤4 belongs to G if and only if x1 = x3 and x2 = x4. We needed such
an invariant space to construct the annihilation part of the fields, and another such invariant
space to construct the creation part of the fields. Thus we have several choices. We may
use the same space for both the annihilation and the creation part, a choice we examine in
Section 10.21. Or we may use one of these spaces for the annihilation part of the fields and
the other one for the creation part. This is what we do in the present section. Since then
S(P ′) is the identity on G and minus the identity on G′, this shows that the fermion and the
anti-fermion are of opposite intrinsic parities (which one is the fermion and which one is
the anti-fermion is a matter of convention).

We consider the vectors

f1 =

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ ; f2 =

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠ ; f ′1 =
⎛⎜⎜⎝

1
0
−1
0

⎞⎟⎟⎠ ; f ′2 =
⎛⎜⎜⎝

0
1
0
−1

⎞⎟⎟⎠
so that f1,f2 form a basis of G and f ′1,f

′
2 form a basis of G′. (These bases are orthogonal

but not orthonormal. This is simply a matter of normalization: We take for V the space G
equipped with a norm which is 1/

√
2 the norm of G.) Let us now consider u(p,s)k given
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by (10.30) and v(p,s)k given by (10.34). Thus, denoting by u(p,s) the column vector with
components u(p,s)k and similarly for v(p,s) we have

u(p,s) = S(Dp)fs ; v(p,s) = S(Dp)f ′s . (10.107)

The components of the Dirac field are then defined by ψk(x) = ψ+k (x)+ ψ−k (x) where

ψ+k (x) =
∑
s≤2

∫
d3p

(2πh̄)3

c
√
m√

2ωp

exp(−i(x,p)/h̄)u(p,s)ka(p,s), (10.108)

ψ−k (x) =
∑
s≤2

∫
d3p

(2πh̄)3

c
√
m√

2ωp

exp(i(x,p)/h̄)v(p,s)kb
†(p,s). (10.109)

The Dirac field is intrinsically defined only up to a multiplicative constant, and the factor
c
√
m in the previous formulas is unimportant and is motivated by the desire to get the correct

dimension, as we will see later. We may rewrite the formulas (10.108) and (10.109) in a
compact way as

ψ+(x) =
∑
s≤2

∫
d3p

(2πh̄)3

c
√
m√

2ωp

exp(−i(x,p)/h̄)u(p,s)a(p,s), (10.110)

ψ−(x) =
∑
s≤2

∫
d3p

(2πh̄)3

c
√
m√

2ωp

exp(i(x,p)/h̄)v(p,s)b†(p,s). (10.111)

Exercise 10.19.1 Write the components of the column vectors u(p,s) and v(p,s)
using Corollary G.1.3 to enjoy explicit formulas like a physicist.

The following exercise is a bit challenging.

Exercise 10.19.2 Check directly that the Lorentz covariance condition corresponding
to (10.9) holds for c = 0,C = P ′. Hint: It helps to use (10.98).

We now use the notation of (10.30), denoting by u(p,s)† the row vector which is the
conjugate-transpose of the column vector u(p,s). The following computation prepares the
proof of microcausality.

Lemma 10.19.3 We have∑
s≤2

u(p,s)u(p,s)† = 1

mc
γ (p)γ0 + γ0 (10.112)

∑
s≤2

v(p,s)v(p,s)† = 1

mc
γ (p)γ0 − γ0. (10.113)

Proof We first prove by direct computation that∑
s≤2

fsf
†
s =

(
I I

I I

)
;
∑
s≤2

f ′s f
′†
s =

(
I −I
−I I

)
.
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We then have in succession∑
s≤2

u(p,s)u(p,s)† = S(Dp)

(
I I

I I

)
S(Dp)†

=
(

(Dp)†−1 0
0 Dp

)(
I I

I I

)(
D−1
p 0

0 D
†
p

)

=
(

(DpD
†
p)−1 I

I DpD
†
p

)
. (10.114)

In Lemma 9.5.7 we proved that if A(p∗) = p then AA† = M(p)/(mc) and (AA†)−1 =
M(P (p))/(mc). Thus (10.114) proves (10.112) and the case of (10.113) is similar.

Theorem 10.19.4 For (x − y)2 < 0 we have

{ψk(x),ψk′ (y)} = 0 ; {ψ†
k (x),ψ†

k′ (y)} = 0 ; {ψk(x),ψ†
k′ (y)} = 0.

Proof The first two equalities are basically trivial because the anti-particle is different from
the particle (just as in the first statement of Theorem 10.7.5). The last equality is proved from
(10.86), using Lemma 10.19.3. The reader should observe the beauty of this structure: The
first term on the right of (10.112) produces an odd contribution toGk,k′ (z), while the second
term produces an even contribution, but this second term has a minus sign in (10.113).

We have also the following more precise version, which is proved exactly as Theorem
10.15.3.

Theorem 10.19.5 (Equal-time anti-commutation relations) It holds that

{ψk(ct,x),ψk′ (ct,y)} = 0 ; {ψk(ct,x),ψ†
k′ (ct,y)} = cδk

′
k δ

(3)(x − y)1. (10.115)

The last relation of (10.115) is a way to normalize the Dirac field (fixing the multiplicative
constant on which it depends).

Our last result is that the Dirac field satisfies the Dirac equation in the sense of distri-
butions. Several textbooks and in particular that of Greiner and Reinhardt [35] recover the
formulas (10.109) and (10.112) from the assumption that the quantum field satisfies the
Dirac equation as well as the anti-commutation relations of Theorem 10.19.5. We denote
by ψ(x) the column vector whose rows are the fields ψk(x). We should not be confused
between the components ψ1,ψ2,ψ3,ψ4 of ψ and the components xμ, 0 ≤ μ ≤ 3 of x. The
following should be compared to Proposition 6.1.3.

Theorem 10.19.6 The quantum field ψ satisfies the Dirac equation (in the sense of
distributions)

ih̄γ μ∂μψ = mcψ . (10.116)

Proof One has to prove that both the creation and the annihilation parts satisfy this relation.
We treat only the case of the annihilation part, at the level of a formal calculation, as it is clear
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how this can be turned into a rigorous argument. Recalling (10.107) and that γ (p) = pμγ
μ,

let us define

U (p,s) := pμγ
μu(p,s) = γ (p)S(Dp)fs .

Using that ∂μ = ∂/∂xμ and that (x,p) = xμpμ we obtain

ih̄∂μ exp(−i(x,p)/h̄) = pμ exp(−i(x,p)/h̄)

and hence, recalling (10.108),

ih̄γ μ∂μψ
+(x) =

∑
s≤2

∫
d3p

(2πh̄)3

c
√
m√

2ωp

exp(−i(x,p)/h̄)U (p,s)a(p,s). (10.117)

Now (8.47) means with our current notation that γ (p)S(A)= S(A)γ (A−1(p)). ForA = Dp,
we have γ (A−1(p)) = γ (p∗) = mcγ0 and thus γ (p)S(Dp) = mcS(Dp)γ0. Therefore since
γ0fs = fs we get

U (p,s) = mcS(Dp)γ0fs = mcS(Dp)fs = mcu(p,s).

Consequently ih̄γ μ∂μψ+(x) = mcψ+(x).

Applying the Dirac operator ih̄γ μ∂μ to (10.116) (and using that the square of the Dirac
operator is given by (P.20)) we obtain h̄2∂μ∂

μψ + m2c2ψ = 0, showing as expected that
each component of ψ satisfies the Klein-Gordon equation.

10.20 Dirac Field and Classical Mechanics

In this section we explain as best we can some material which is ubiquitous in elementary
textbooks.44 It attempts to relate the Dirac quantum field to considerations of Classical
Mechanics, and to make this quantum field appear as the quantization of the classical45

field given by the Dirac equation (10.116). The reader must be warned that all this has to
be taken with a grain of salt, since the project is unsound from the beginning:46 Anything
involving half-integer spins is genuine quantum behavior with no real classical equivalent.47

The classical field to start with is a quadruple of complex-valued functions ψμ over R1,3

that satisfy the Dirac equation

ih̄γ μ∂μψ = mcψ .

This “classical Dirac field” is determined by eight real-valued functions over R1,3. It is not
observed in Nature.

44 In my opinion this material is of questionable value and very confusing, sometimes apparently even for the
people who write about it. I cover it only to attempt to clear some of the confusion. Possibly this material is of
historical importance, but the danger for the innocent reader is that it is presented without any warning about
its potentially dubious quality.

45 The word “classical” simply stresses that this is not a quantum field, but just a collection of functions over
R1,3.

46 Here again I would like to thank G. Folland for making this clear to me.
47 It seems natural that the discoverers of radically new theories such as Quantum Mechanics stretch the rules of

sanity to relate their discoveries to the established theories. But I cannot explain why this contrived material
finds its way into textbooks several generations later.
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To write simple formulas, given a Dirac spinor, that is a column vector ξ ∈ C4 we define
its Dirac adjoint ξ̄ as the row vector ξ†γ0 where ξ† denotes as usual the conjugate-transpose
of ξ . Thus ξ̄ ξ is a number. Given the classical field ψ = (ψμ) we then define its Dirac
adjoint ψ̄ by ψ̄(x) = ξ̄ for ξ = ψ(x).

First, ψ satisfies the Dirac equation if and only if ψ̄ satisfies the adjoint Dirac equation

−ih̄∂μψ̄γ
μ = mcψ̄ . (10.118)

This is proved by taking the adjoint of the Dirac equation i.e.

−ih̄∂μψ
†(γ μ)† = mcψ†,

by multiplying to the right by γ 0 and by observing the relations

(γ μ)† = γ0γ
μγ0, (10.119)

which are apparent from the formulas (8.49) since the Pauli matrices σi are self-adjoint.
The goal now is to write a Lagrangian density that will produce the correct equation

of motion, that is such that the corresponding Euler-Lagrange equations coincide with
the Dirac equation. Let us recall first that the Lagrangian has to be real-valued48 and is
used to produce equations for real-valued functions, in the sense that unknown complex-
valued functions have to be considered as pairs of real-valued functions. We consider the
Lagrangian density

L = ih̄

2
(ψ̄γ μ∂μψ − ∂μψ̄γ

μψ)−mcψ̄ψ . (10.120)

In this very compact notation four complex-valued functions, i.e. eight real-valued functions
over R1,3 give the components of ψ . Using (10.119) we get

(ψ̄γ μ∂μψ)† = ∂μψ
†(γ μ)†γ0ψ = ∂μψ̄γ

μψ,

so that the two numbers ψ̄γ μ∂μψ and ∂μψ̄γ μψ are complex conjugate and the Lagrangian
is real as it should be.

Exercise 10.20.1 Perform dimensional analysis, and explain the normalization of the
Dirac field. Hint: Review Exercise 3.8.3.

It is no fun to write the Euler-Lagrange equations, but matters simplify greatly if we
observe that these equations are just the same as those obtained by pretending that the
unknowns are the four components of ψ , and the four components of ψ̄ , these being
independent of each other.49 We will use even more compact notation to describe the
Euler-Lagrange equations, e.g. by writing ∂L/∂ψ̄ for the vector with four components
corresponding to the partial derivatives of L with respect to each of the components of ψ̄ .
Thus

48 A basic reason why a Lagrangian should be real is that a complex Lagrangian would typically give too many
constraints when writing the Euler-Lagrange equations, as both the real and the complex part of the
Lagrangian would give such an equation.

49 This is basically a change of variables. The idea is that rather than using independent real variables x,y, we
may use independent variables x + iy and x − iy.



290 Basic Free Fields

∂L
∂ψ̄
= ih̄

2
γ μ∂μψ −mcψ ; ∂L

∂(∂μψ̄)
= − ih̄

2
γ μψ

and the corresponding Euler-Lagrange equation ∂L/∂ψ̄ = ∂μ(∂L/∂(∂μψ̄)) simply says
that ψ must satisfy the Dirac equation. Similarly one also finds that ψ̄ satisfies the adjoint
Dirac equation (10.118).

The Lagrangian density (10.120) gives rise to conjugate momenta

π = ∂L
∂(∂ψ/∂t)

= ∂L
c∂(∂0ψ)

= ih̄

2c
ψ̄γ 0 = ih̄

2c
ψ†, (10.121)

π̄ = ∂L
c∂(∂0ψ̄)

= − ih̄

2c
γ 0ψ . (10.122)

Suppose now that we want to argue that “the Dirac field of Section 10.19 is a quantization
of the classical Dirac field satisfying the canonical anti-commutation relations”. Defining
πk = (ih̄/2c)ψ†

k , the second part of (10.115) can be then reformulated as

{ψk(t,x),πk′(t,y)} = ih̄

2
δk
′
k δ

(3)(x − y)1. (10.123)

“Canonical anti-commutation relations” would require not having this factor 1/2 on the
right-hand side of (10.123). This is not a real problem since anyway we are not doing
“canonical quantization” which would require commutators rather than anti-commutators.
Unfortunately several textbooks deal with this factor 1/2 using in cold blood the following
fallacious argument: They consider the “Lagrangian density”

L = ψ̄(ih̄γ μ∂μψ −mcψ), (10.124)

which gives the same equation of motion as (10.120). For this density (which is not real)
the conjugate momentum is π = ih̄ψ†/c, which conveniently removes the factor 1/2 in
(10.123) allowing the author to call this “canonical commutation relations”. Even if one
does not object to complex Lagrangians when they provide the correct equation of motion,
why then is the choice of (10.124) more canonical than the choice L = (ih̄∂μψ̄γ μ +
mcψ̄)ψ which also gives the same equation of motion but gives the very different conjugate
momentum π = 0?50

Let us try now to compute the Hamiltonian corresponding to the Lagrangian (10.120).
It is not possible to compute the “velocity” ∂0ψ as a function of the “momentum” π (since
the expression of π involves only ψ and no derivative).51 Still one may hope (just as in the
formula (H.2)) that the quantity

H := cπ∂0ψ + c∂0ψ̄π̄ − L (10.125)

will represent a Hamiltonian density (observe that the order of the terms is dictated by the
way the matrices multiply). Unfortunately it can be shown that the resulting Hamiltonian

50 I am just here making the point that what is printed in basic physics textbooks need not make sense, yet
another obstacle to self-education. The whole approach is flawed anyway because one needs the theory of
constrained systems for a proper analysis, see e.g. Dirac’s textbook [22].

51 We refer the reader to Section H.1 for an example of a similar situation.
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obtained by integrating this density is not bounded below. This is a very serious problem if it
is supposed to represent an energy. The root of this problem is that the Dirac equation deals
with fermions, and that those have no equivalent in Classical Mechanics, so here (again!) we
are trying to force a true quantum situation into the framework of Classical Mechanics.52

Nonetheless it takes more than that to stop us, so we compute the quantity
∫

d3xH where
H is the quantity (10.125), and when we substitute in H for π and π̄ the values (10.121)
and (10.122) and for ψ and ψ̄ the values ψ(x) and ψ̄(x) given by (10.108) and (10.109).
The computation is simplified by the fact that ψ satisfies the Dirac equation and ψ̄ satisfies
the adjoint Dirac equation, so that after the substitution the value of L is zero and the value
of H reduces to ih̄(ψ†(x)∂0ψ(x) − (∂0ψ

†(x))ψ(x))/2. Our candidate for the Hamiltonian
is then

ih̄

2

∫
d3x(ψ†(x)∂0ψ(x)− ∂0(ψ†(x))ψ(x)), (10.126)

where x = (ct,x) for a certain t , and should be independent of this value of t .
Our next goal is to actually compute the expression (10.126) when we replace ψ(x) by

the Dirac field (as we did for the basic free field in Section 6.11), and for this we need the
following preparatory lemma.

Lemma 10.20.2 We have

u(p,s)†u(p,s′) = v(p,s)†v(p,s′) = 2p0

mc
δs
′
s . (10.127)

Proof Using (9.36) and (9.37) we obtain

S(Dp)†S(Dp) =
(
D−1
p 0

0 D
†
p

)(
D

†−1
p 0
0 Dp

)
= 1

mc

(
M(P (p)) 0

0 M(p)

)
and the result follows easily since u(p,s)†u(p,s′) = f

†
s S(Dp)†S(Dp)fs′ (etc.).

Proposition 10.20.3 At the level of formal computation we have

ih̄

2

∫
d3x(ψ†(x)∂0ψ(x)− ∂0(ψ†(x))ψ(x))

=
∫

d3p

(2πh̄)3 cωp

∑
s=1,2

(a†(p,s)a(p,s)− b(p,s)b†(p,s)). (10.128)

Proof Expressions such as b(p,s)b†(p,s) cannot be defined meaningfully, but let us per-
form this computation seen as encoding a correct computation in the case where the universe
has been put in a box. We have∫

d3xψ†(x)∂0ψ(x) =
∫

d3x(ψ+†(x)+ ψ−†(x))∂0(ψ+(x)+ ψ−(x)), (10.129)

52 The problem of the unbounded negative energy of the Hamiltonian could be solved by writing a Hamiltonian
made up of anti-commuting Grassmann quantities, but this is hardly satisfactory either.
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and we compute each of the corresponding four terms.

ψ−†(x) =
∑
s≤2

∫
d3p

(2πh̄)3

c
√
m√

2ωp

exp(i(x,p)/h̄)u(p,s)†a†(p,s), (10.130)

∂0ψ
−(x) = − i

h̄

∑
s≤2

∫
d3p

(2πh̄)3

c
√
mωp√

2
exp(−i(x,p)/h̄)u(p,s)a(p,s), (10.131)

and using that
∫

d3x exp(i(x,p−p′)/h̄) = (2πh̄)3δ(3)(p−p′) and Lemma 10.20.2 we then
find ∫

d3xψ−†(x)∂0ψ
−(x) = − ic

h̄

∫
d3p

(2πh̄)3 ωp

∑
s=1,2

a†(p,s)a(p,s),

and in a isomorphic computation∫
d3xψ+†(x)∂0ψ

+(x) = ic

h̄

∫
d3p

(2πh̄)3
ωp

∑
s=1,2

b(p,s)b†(p,s).

The other terms are computed in a similar fashion.

We now reach the climax, but you may need to review Section 6.11 and make sure you
understand the formula (5.36) to appreciate it. Despite the fact that the term b(p,s)b†(p,s)
makes no sense, we use the anti-commutation relation

b†(p,s)b(p′,s)+ b(p′,s)b†(p,s) = (2πh̄)3δ(3)(p − p′)1

for p = p′ to argue that modulo an irrelevant infinite constant the Hamiltonian is∫
d3p

(2πh̄)3 cωp

∑
s=1,2

(a†(p,s)a(p,s)+ b†(p,s)b(p,s)).

We expect the Hamiltonian to represent the energy of the system. This is indeed what we
obtain here, the sum of the energies of the particles plus the sum of the energy of the anti-
particles. More precisely the term∫

d3p

(2πh̄)3
cωp

∑
s=1,2

a†(p,s)a(p,s)

expresses the extension to the fermion Fock space of the Hamiltonian “multiplication by
the function cωp” represents the sum of the energy of the particles.53 and the other term
represents the sum of the energy of the anti-particles.

53 You should convince yourself that the sum over s in the previous expression compared to (5.36) occurs
because there are two possible values for the spin.
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10.21 Majorana Field

In Section 10.19 (of which we keep the notation) we used the space G of (10.106) for the
particle and the space G′ for the anti-particle. As explained just below (10.106), we may also
choose the same space G or G′ for both the particle and the anti-particle. The anti-particle
may then be the same as the particle, or may be different. The resulting quantum field
describes fermions (spin 1/2). These, called “Majorana fermions”, are not the same as the
usual fermions (which are called Dirac fermions in this context). The mathematical structure
corresponding to Majorana fermions is just as natural as the structure corresponding to Dirac
fermions. Dirac fermions are ubiquitous. Majorana fermions have not yet been observed.54

Experimentalists are currently trying to determine whether neutrinos (which are now known
to have a tiny mass) are Dirac or Majorana fermions.

For the mathematical construction of the Majorana field, we assume that the particle is
its own anti-particle. There are two versions of the construction, one with intrinsic parity 1
using G and one with intrinsic parity−1 using G′. Let us give the formulas, first in the case
where the intrinsic parity of the fermion is 1. We consider the vectors

f1 =

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ ; f2 =

⎛⎜⎜⎝
0
1
0
1

⎞⎟⎟⎠ ; f ′1 = −f2 =

⎛⎜⎜⎝
0
−1
0
−1

⎞⎟⎟⎠ ; f ′2 = f1 =

⎛⎜⎜⎝
1
0
1
0

⎞⎟⎟⎠ (10.132)

so that f1 and f2 form a basis of G = V . The quantum field is given by the formulas (10.66)
and (10.67) (with b†(s,p) replaced by a†(s,p) because the anti-particle now coincides with
the particle) and where now

u(p,s) = S(Dp)(fs) ; v(p,s) = S(Dp)(f ′s ), (10.133)

and where S is the same representation of SL+(2,C) onC4 as in Section 10.19. (When using
these formulas we keep the normalization of the fields (10.66) and (10.67), which may not
be what the physicists use.) Modifying the formulas (10.132) by changing the signs of the
components in the last two lines, one obtains another version of the construction where the
Majorana fermion is of intrinsic parity −1.

Exercise 10.21.1 Prove that these fields satisfy the microcausality anti-commutation
relations of Theorem 10.19.4.

10.22 Lack of a Suitable Field for Photons

In Section 9.13 we constructed a representation π+0,2 of P∗+ corresponding to photons.
Does there exist a four-component quantum field based on this representation and satisfying

54 Nature sometimes simply does not make use of possible mathematical structures, however beautiful.
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“Lorentz covariance with parity”, as discussed in Section 10.18? Such a field could be
a suitable model for a quantized version of the electromagnetic field, whose quanta are
photons.55 The natural choice for S is the extension of κ to SL+(2,C) defined by (8.42).
In the present section we point out that no suitable field constructed within the previous
framework exists. This is one reason for which the quantization of the electromagnetic field
is not as simple as one wishes.56

The reason for this failure is not deep. Let us denote by G+0 the little group of SL+(2,C)
corresponding to the point (1,0,0,1). The representation π+0,2 is induced (in a sense which
is a rather direct generalization of the way we used this terminology in Theorem 9.4.2) by a
certain representation V + ofG+0 on C2 which is described below. Reproducing the analysis
of Proposition 10.4.2, to be able to construct the annihilation part of the fields one has to find
a subspace G of C4 so that the restriction of S to G andG+0 is equivalent to the representation
V +. It is an exercise to show that no such subspace exists when S is as previously described.

Exercise 10.22.1 (a) Prove that the element Q := P ′J ∈ SL+(2,C) belongs to G+0 ,
where J is the matrix (8.1). Prove that Q2 = −I .
(b) Prove that each element of G+0 is of the type A or AQ for A ∈ G0.
(c) Prove that for each A ∈ SL+(2,C) we have QA∗ = AQ.
(d) Prove that given a unitary representation V of G0 in a finite-dimensional space V
one may define a unitary representation V + of G+0 on V × V by the formula

A ∈ SL+(2,C)⇒ V +(A)(x,y) = (V (A)x,V (A∗)y) ; V +(Q)(x,y) = (y,V (−I )x).

It can be shown that if π is the representation of P∗ induced by the unitary representation
V then π+ (defined in Proposition 9.13.1) is induced by the unitary representation V +.

Exercise 10.22.2 Prove it. If you succeed, you really have mastered this material.
Hint: It helps a lot to use the appropriate version of Theorem 9.8.1 to describe the
induced representations, but this is not so easy to do.

In particular when G = C and V = π̂2 the representation induced by V + is π+0,2.

Exercise 10.22.3 (a) Give an example of a representation S of SL+(2,C) in C8 such
that there is a subspace G such that the restriction of S to G and G+0 is the preceding
representation V + (for V = π̂2).
(b) Prove that when S is the extension of κ to SL+(2,C) (as defined by (8.42)) no
such subspace exists.

Key ideas to remember:

• Conservation of charge almost implies the existence of anti-particles.
• The fruitful multicomponent quantum fields are Lorentz covariant and satisfy the

microcausality condition.

55 It is actually the four-dimensional potential vector of the electromagnetic field which gets quantized.
56 A particularly intriguing approach to such a quantization is detailed in Appendix I.
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• To each such quantum field is associated an elementary particle called the quantum
of the field.

• When the quanta of the fields have a non-integer spin the construction of the quantum
field must use fermion Fock space rather than boson Fock space.

• The anti-particle of a massless particle has opposite helicity.
• The Dirac field is associated to particles of spin 1/2 in a theory that includes parity.





Part III

Interactions

From now on we use a system of units in which h̄ = 1 and c = 1, although at times for
clarity we will write their symbols, as in the formula E = mc2, which looks better than
E = m unless you are a professional physicist.

We should also stress that in Part III we are really doing physics. This is the domain of
approximations and of hand-waving arguments. Therefore any statement called “Theorem”
has to be taken with a grain of salt: It is not intended to be understood as a totally sound
mathematical result, and the “proofs” are not ε-δ proofs in the mathematical sense. The few
occasions where we make a real attempt at mathematical rigor (such as Theorem 12.4.1)
will be apparent enough.





11

Perturbation Theory

Assume that we are given a quantum system governed by a Hamiltonian which we under-
stand well, and that we make a small change to this Hamiltonian (a perturbation). How do we
relate the behavior of the system with and without the perturbation? This is a fundamentally
important question because we can often think of the system of real interest as a small
perturbation of a much simpler system.1 In our approach to Quantum Field Theory, an
interacting system will be viewed as a perturbation of a simpler non-interacting system.

Thus, assuming we know well the “unperturbed” Hamiltonian H0 we want to study its
perturbation H0 + gHI where g is small. The notation HI reflects the way we will mostly
use this: HI represents “the interaction”. The quantity g that governs the intensity of the
perturbation (or the strength of the interaction when HI represents an interaction) is called
the coupling constant. The coupling constant is denoted by the letter g throughout this work.

The basic idea will then be to study whatever quantity we are interested in for the full
Hamiltonian H0+ gHI through an expansion in powers of g. As g is supposed to be small,
terms containing high powers of g should be small too.

Definition 11.1 Working at the kth order in perturbation theory means throwing out
of the computations any term containing a power gn with n > k.

This will typically be done without any knowledge of the actual size of the terms that are
thrown out. Specifically, we may find ourselves approximating g+ 1010000g2 by g. This is
horrendous for a mathematician but it typically works wonderfully in practice.2

11.1 Time-independent Perturbation Theory

The “time-independent Schrödinger equation” is simply the eigenvalue equation for the
Hamiltonian. Time-independent perturbation theory studies how the eigenvalues and the
eigenvectors of the Hamiltonian change under a small change of this Hamiltonian. A typical
application of this result would be the study of how much the energy levels of the electron
of a hydrogen atom are modified by a small magnetic field.

1 Very few problems in physics can be solved exactly. They are called exactly solved models. For the others one
has to make approximations.

2 Typically but not always. In the study of strong interactions the coupling constant is of order unity and
perturbation theory is of limited use.
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Matters need not be simple. Recalling the Pauli matrices (2.3), the vector
(1

1

)
is an eigen-

vector of σ0 = I but is not close to an eigenvector of σ0 + gσ3 however small g is. Here
we are in a special situation: The eigenspace of σ0 we start from has dimension > 1. This
situation is important in physics, but we shall not study it.

Let us assume instead that all goes well: The unperturbed Hamiltonian H0 has an eigen-
vector v0 with eigenvalue λ0 while the perturbed Hamiltonian H0+gHI has an eigenvector
vg with eigenvalue λg , both depending smoothly on g, in such a way that we have an
expansion

λg = λ0 + a1g + a2g
2 +O(g3) ; vg = v0 + gw1 + g2w2 +O(g3), (11.1)

for numbers a1,a2 and vectors w1,w2. There are of course theorems to the effect that these
expansions hold, but our approach in this chapter is heuristic. Assuming that the expansions
hold, our arguments assume only that H0 and HI are symmetric. We assume moreover that
vg has been normalized so that3

(v0,vg) = 1. (11.2)

Taking g = 0 we obtain in particular (v0,v0) = 1.
We wish to compute the coefficients of the expansions (11.1).4 In such an expansion it is

the first non-zero coefficient that has the greatest importance. The “generic case” where the
first-order coefficient is not zero has countless applications in Quantum Mechanics. Here,
however we have in mind a specific application in Section 11.5 to a situation where a1 = 05

and for this reason we focus on the computation of a2. First we observe that

1 = (v0,vg) = 1+ g(v0,w1)+ g2(v0,w2)+O(g3),

so that

(v0,w1) = (v0,w2) = 0. (11.3)

Let us now write

(H0 + gHI )(vg) = λgvg = (λ0 + a1g + a2g
2)(v0 + gw1 + g2w2)+O(g3)

and also

(H0 + gHI )(vg) = (H0 + gHI )(v0 + gw1 + g2w2)+O(g3).

Equating the coefficients of g and g2 respectively yields

a1v0 + λ0w1 = HIv0 +H0w1 (11.4)

and

λ0w2 + a1w1 + a2v0 = H0w2 +HIw1. (11.5)

3 This leads to simpler calculations than the more natural choice (vg,vg) = 1.
4 In the absence of concrete error bounds, this does not tell us for which values of g the expansions (11.1) are

useful. In physics however, the procedure is to use the approximation and see if the corresponding prediction
matches experiments. Rigorous bounds on the error terms are anyway typically far too pessimistic to be of use.

5 Our goal is to motivate the fundamental fact that “interactions change the observed mass of the particle”.
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Taking the inner product of (11.4) with v0, and since (v0,v0) = 1 and (v0,H0w1) =
(H0v0,w1) = λ0(v0,w1) = 0 we obtain

a1 = (v0,HI v0). (11.6)

Taking the inner product of (11.5) with v0 we obtain similarly

a2 = (v0,HIw1). (11.7)

We observe that the projection P on the orthogonal complement of Cv0 is given by
Pu = u− v0(v0,u). Now, using (11.4) in the first equality below and (11.6) in the second
one,

(H0 − λ0)w1 = −(HI − a1)v0 = −(HIv0 − (v0,HI v0)v0) = −PHIv0. (11.8)

Since w1 belongs to the orthogonal complement of v0, on which H0 − λ0 is (hopefully…)
invertible, we should be able to compute w1 from (11.8) and then a2 from (11.7). It is
instructive to write the resulting formulas the way physicists do. Assume for this that H0

has an orthonormal basis (vn)n≥0 of eigenvectors, with corresponding eigenvalues λn, and
assume λn �= λ0 for n ≥ 1. Observe that

(vn,H0w1) = (H0vn,w1) = λn(vn,w1),

and

(vn,PHIv0) = (Pvn,HIv0) = (vn,HI v0),

so that taking the inner product of (11.8) with vn we obtain

(vn,w1) = (vn,HI v0)

λ0 − λn
. (11.9)

We note for further use that this means

w1 =
∑
n≥1

vn
(vn,HI v0)

λ0 − λn
(11.10)

and thus

‖gw1‖2 =
∑
n≥1

|(vn,gHIv0)|2
(λ0 − λn)2 . (11.11)

Moreover, since

(v0,HIw1) = (HIv0,w1) =
∑
n≥1

(HIv0,vn)(w1,vn)

and since (w1,vn) = (vn,w1)∗ we obtain from (11.7) and (11.9) that

a2 =
∑
n≥1

|(vn,HI v0)|2
λ0 − λn

. (11.12)

One remarkable aspect of this formula is how it depends on the whole structure of H0, and
in particular on the eigenvalues which may be quite different from λ0. One may picture the
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eigenvalues larger than λ0 as pushing a2 down and those smaller than λ0 as pushing it up. In
particular if λ0 is the smallest eigenvalue, then a2 ≤ 0. This is to be expected: The minimum
of (x,H0x) over the set of unit vectors is obtained at x = v0 and when a1 = 0, we have
(v0,HI v0) = 0 and the small perturbation gHI should decrease this minimum.6

By definition “the shift at the first order of perturbation theory of the eigenvalue λ0”
is defined as the quantity a1g of (11.1). When it is zero “the shift at the second order of
perturbation theory of the eigenvalue” is defined as a2g

2. According to (11.12) we may
state:

Proposition 11.1.1 When the shift of an eigenvalue is zero at the first order of per-
turbation theory, this shift is given at the second order of perturbation theory by7

∑
n≥1

|(vn,gHIv0)|2
λ0 − λn

. (11.13)

The next exercise provides a simple application of the present theory. A far more complex
application will be given in Section 11.5.

Exercise 11.1.2 In this exercise we use the notation of Section 2.18. We take
H0= a†a and HI = γ a† + γ ∗a where γ ∈C. The smallest eigenvalue of H0 is
zero.
(a) Writing H0 + gHI = (a† + gγ ∗1)(a + gγ1) − g2|γ |21, prove that the small-
est eigenvalue of H0 + gHI is −g2|γ |2. Hint: Prove that for an operator B, all the
eigenvalues of B†B are ≥ 0.
(b) Prove that in this case the shift of the smallest eigenvalue of H is zero at the
first-order perturbation theory, and that at second-order perturbation theory (11.13)
provides the exact value of the shift.

We end this section with a side story. We examine the specific problem of finding an upper
bound for the smallest eigenvalue of H0+gHI . A general method to bound from above the
ground state energy (= smallest eigenvalue) of a self-adjoint operator U is to observe that
for any non-zero vector z (assuming for simplicity that U has a basis of eigenvectors), U
has an eigenvalue ≤ (z,Uz)/(z,z).8 Of course one has to make a smart choice for z to get a
useful bound.

To use this method in the present setting, consider a self-adjoint operator H0, its smallest
eigenvalue λ0 and a unit vector v0 with H0v0 = λ0v0. To lighten notation, without loss of
generality we may assume that λ0 = 0 by replacingH0 byH0−λ01. Consider a perturbation
gHI of this operator, and assume that

(v0,HI v0) = 0, (11.14)

6 Think of what happens when making the small perturbation f + gh of the function f (x) = x2, where
h(0) = 0. Unless h′(0) = 0, the minimum decreases.

7 We focus on this case rather than on the generic case where the shift at first order is not zero not because it is
more important but because it is needed for the examples we have in mind in Section 11.5.

8 If U does not have a basis of eigenvectors, one uses spectral theory to conclude that the infimum of the
spectrum of U is ≤ (z,Uz)/(z,z).
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so that we are “in the situation of second-order perturbation theory” (as opposed to first-
order perturbation theory).

Let us then consider a vector z with (v0,z) = 0, so that (H0v0,z) = (v0,H0z) = 0. Then,
using these relations we obtain

(v0 + z,(H0 + gHI )(v0 + z)) = (z,(H0 + gHI )z)+ 2Re (v0,gHI z), (11.15)

so that a bound from above of the ground state energy of H0+gHI is given by the quantity

1

‖v0 + z‖2

(
(z,(H0 + gHI )z)+ 2Re (v0,gHI z)

)
. (11.16)

Any choice of z provides an upper bound for the ground state.

Exercise 11.1.3 Convince yourself that the perturbation method at the second order
amounts to choosing z in (11.16) such as to minimize the quantity

(z,H0z)+ 2Re (v0,gHI z), (11.17)

to pretend that ‖v0 + z‖ = 1 and then to neglect the term (z,HI z). This makes clear
that when ‖z‖ is not small the method lacks credibility.

11.2 Time-dependent Perturbation Theory and the Interaction Picture

Now, in the same setting, we want to compare the time-evolutions under the unperturbed
Hamiltonian H0 and the full Hamiltonian H0 + gHI . It will be useful to consider more
generally a perturbation of H0 of the type H0 + g(t)HI . This allows us in particular to
consider the case of perturbations that oscillate with a given frequency, and will also allow
us to turn on and off the perturbation in a smooth way. Still more generally we consider a
perturbation ofH0 of the typeH0+H1(t), where, as the notation indicates, the operatorH1(t)
now depends on the time t . A solid mathematical framework would assume for example that
H0 is self-adjoint, and that H1(t) is self-adjoint and bounded. Then the operator H0+H1(t)
is self-adjoint with the same domain asH0. Unfortunately, the cases we will really need will
be quite more pathological, so the forthcoming manipulations are pretty formal.

First we have to explain what is the time-evolution of a system under the time-varying
HamiltonianH (t) = H0+H1(t). It is given9 by the unitary operatorU (t) such thatU ′(t) :=
dU (t)/dt = −iH (t)U (t). If we want to prove rigorous theorems the domain of validity of
this equation is an issue, but we are not concerned with such issues here. (In the good case
where H1(t) is bounded this equation holds in the domain of H0.)

At this stage, the reader might want to brush up on the Schrödinger and the Heisenberg
pictures of Section 2.16.

The basic idea is that we know the time-evolution10 U0(t) = exp(−itH0) and that we
want to study the unknown time-evolution U (t). Presumably these time-evolutions will not
be much different from each other, so that we will study their “difference”:

9 Keeping in mind that our system of units is now such that h̄ = 1.
10 The important case in practice is that not only we know it, but also that it is pretty simple, much more so than

the evolution under H0 +H1(t).
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V (t) := U0(t)−1U (t) = U0(−t)U (t) (11.18)

from which we can reconstruct

U (t) = U0(t)V (t) (11.19)

since we assume that U0(t) is known. We observe that by Lemma 2.14.6 we have
U ′0(t) = −iH0U0(t) = −iU0(t)H0. Then,

V ′(t) = −U ′0(−t)U (t)+ U0(−t)U ′(t)
= iU0(−t)H0U (t)− iU0(−t)H (t)U (t)

= −iU0(−t)H1(t)U (t)

= −iU0(−t)H1(t)U0(t)V (t),

and finally

V ′(t) = −iH̃1(t)V (t), (11.20)

where

H̃1(t) := U0(−t)H1(t)U0(t). (11.21)

The situation where we time-evolve the operators A according to

A(t) = U0(−t)AU0(t) (11.22)

and the states according to

x(t) = V (t)(x) = U0(−t)U (t)x, (11.23)

is called the interaction picture.11 It is intermediate between the Schrödinger picture (where
A(t) = A and x(t) = U (t)x) and the Heisenberg picture (where A(t) = U (−t)AU (t) and
x(t) = x) and it is consistent with these, since at time t the average value of A(t) for a
system in state x(t) is given by

(x(t),A(t)x(t)) = (U0(−t)U (t)x,U0(−t)AU (t)x) = (U (t)x,AU (t)x),

see (2.84). One should be cautious here that the operators V (t) do not form a one-parameter
group. The evolution of a state between times s and t is given by V (t)V (s)−1 which need
not be the same as V (t − s).

Exercise 11.2.1 This exercise presents another way to reach the interaction picture,
closer to what is found in traditional physics texts. We want to solve the Schrödinger
equation

i
∂

∂t
|ϕ(t)〉 = H (t)|ϕ(t)〉

11 This is one more of the contributions of Paul Dirac.
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where H (t) = H0 + H1(t). The idea is to “factor out” the time-evolution due to H0

by defining |ψ(t)〉 = exp(itH0)|ϕ(t)〉 = U0(−t)|ϕ(t)〉. Prove that |ψ(t)〉 satisfies the
equation

i
∂

∂t
|ψ(t)〉 = H̃1(t)|ψ(t)〉

where H̃1(t) is given by (11.21).

How does one solve (11.20)? You may think at first that

V (t)
?= exp

(
− i

∫ t

0
dθH̃1(θ )

)
, (11.24)

but this is completely wrong because the operators H̃1(θ ) do not commute with each other.
Rather, we integrate (11.20) to get

V (t) = 1− i
∫ t

0
dθH̃1(θ )V (θ ). (11.25)

We then get a zeroth-order approximation V (t) � 1. Setting V0(t) ≡ 1 and replacing V (θ )
by this zeroth-order approximation in the integral yields a first-order approximation

V1(t) = 1− i
∫ t

0
dθH̃1(θ ). (11.26)

Of course the expression “first-order approximation” is somewhat optimistic as we have no
bound for the error term. Using in turn the first-order approximation in the integral rather
than the exact value of V (t) we get the second-order approximation

V2(t) = 1− i
∫ t

0
dθH̃1(θ )+ (−i)2

∫ t

0
dθ1H̃1(θ1)

∫ θ1

0
dθ2H̃1(θ1). (11.27)

Here the intermediate variables θ1,θ2 are labeled12 so that θ2 < θ1.
We can continue this process and obtain the kth order approximation

Vk(t) = 1+
∑
n≤k

Wn(t), (11.28)

where

Wn(t) = (−i)n
∫ t

0
dθ1

∫ θ1

0
dθ2 . . .

∫ θn−1

0
dθnH̃1(θ1) · · · H̃1(θn). (11.29)

We can then write in a purely formal way

V (t) = 1+
∑
n≥1

Wn(t), (11.30)

12 When using time-ordering I try to consistently number the points in decreasing order.
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a series that is called the Dyson series. (In particular we make no claim here as to the
convergence of that series.) Recalling (11.19) we obtain from (11.30)

U (t) = U0(t)+
∑
n≥1

Un(t), (11.31)

where Un(t) = U0(t)Wn(t), so that since

U0(t)H̃1(θ ) = U0(t − θ )H1(θ )U0(θ ),

we obtain

U1(t) = −i
∫ t

0
dθU0(t − θ )H1(θ )U0(θ ), (11.32)

and similarly

U2(t) = (−i)2
∫∫

0≤θ2≤θ1≤t
dθ1dθ2U0(t − θ1)H1(θ1)U0(θ1 − θ2)H1(θ2)U0(θ2), (11.33)

etc. It helps the intuition to form the following picture: For (11.32) the system evolves
freely (i.e. according to U0) until time θ , where it is hit by the interaction, and then freely
again from time θ to time t . For (11.33), the system is hit twice by the interaction at times
0 < θ2 < θ1 < t and in between evolves freely.

It is unpleasant to deal with the complicated domain of integration in (11.29). A simple
and very important trick simplifies this domain. To understand this trick in the simplest case
we observe the equality∫∫

0≤θ2≤θ1≤t
dθ1dθ2f (θ1,θ2) = 1

2

∫∫
0≤θ1,θ2≤t

dθ1dθ2g(θ1,θ2)

where g(θ1,θ2) = f (θ1,θ2) if θ2 < θ1 and g(θ1,θ2) = f (θ2,θ1) if θ1 < θ2.

Definition 11.2.2 The time-ordered13 product T H̃1(θ1) · · · H̃1(θn) is the product
H̃1(θσ (1)) · · · H̃1(θσ (n)) where the permutation σ of {1, . . . ,n} satisfies θσ (n) ≤ . . . ≤
θσ (1).14

An equivalent expression for the time-ordered product (still not caring about lower-
dimensional sets) is given by

T H̃1(θ1) · · · H̃1(θn) =
∑
σ∈Sn

1{θσ (n)≤...≤θσ (1)}H̃1(θσ (1)) · · · H̃1(θσ (n)).

In (11.29) the domain of integration is the set {0 ≤ θn ≤ θn−1 ≤ . . . ≤ θ1 ≤ t} so that
we can rewrite this equality as

Wn(t) = (−i)n

n!

∫ t

0
dθ1 . . .

∫ t

0
dθnT H̃1(θ1) · · · H̃1(θn). (11.34)

13 This definition is appropriate for bosons, the only case we will consider from now on.
14 This permutation is not unique if the numbers θj are not distinct, but we do not care about what happens on

lower-dimensional sets.
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This is because (neglecting lower-dimensional sets) the domain of integration can be split
into n! sets on each of which the permutation giving the time-ordering is constant, and
each of these domains has the same contribution. This multiple counting is compensated
by the n! in the denominator. You can see from this formula that when the operators H̃1(θ )
commute with each other (and assuming one can sum the Dyson series), the formula (11.24)
is correct.

Suppose now that H1(t)≡ g(t)HI for some function g(t). Then setting HI (t) =
U0(−t)HIU0(t), (11.34) takes the form

Wn(t) = (−i)n

n!

∫ t

0
dθ1 . . .

∫ t

0
dθng(θ1) · · · g(θn)T HI (θ1) · · ·HI (θn). (11.35)

When g(t) = g is constant this becomes

Wn(t) = (−ig)n

n!

∫ t

0
dθ1 . . .

∫ t

0
dθnT HI (θ1) · · ·HI (θn). (11.36)

Let us then summarize the situation for further use. Recalling (11.18) and (11.30) we have

V (t) = U0(−t)U (t) = 1+
∑
n≥1

(−ig)n

n!

∫ t

0
dθ1 . . .

∫ t

0
dθnT HI (θ1) · · ·HI (θn). (11.37)

Even though we have no real data about the size of the multiple integral, the presence of
the small coefficient gn creates a near-irresistible temptation to feel that the terms of the
series are getting small and that one should get useful results by considering only the first
few terms of this series. We will yield to that temptation in the next chapter. The resulting
computations are the cornerstone of Quantum Field Theory.

Exercise 11.2.3 Generalize (11.37) as follows: If s < t then

V (t)V (s)−1 = 1+
∑
n≥1

(−ig)n

n!

∫ t

s

dθ1 . . .

∫ t

s

dθnT HI (θ1) · · ·HI (θn). (11.38)

Hint: V (t)V (s)−1 = U0(−s)V (t − s)U0(s).

11.3 Transition Rates

Let us now assume that we know an eigenbasis (en)n≥0 of H0 so that H0en = Enen

for the corresponding eigenvalues En. Then the time-evolution of en under U0(t) is given
by U0(t)en = exp(−itEn)en: In the Schrödinger picture the state en evolves only by a
phase.15 Thus if the system is in state en at time zero it is in state exp(−itEn)en at time t .
According to Section 2.9, if m �= n, the probability that at time t we measure the state em is
|(em, exp(−itEn)en)|2 = |(em,en)|2 = 0. When there is an interaction this is no longer true.
The interaction produces transitions between the states ek and for small t we are going to
compute “to the lowest order” in t the probability that they have already occurred at time t .

15 Let us recall that a phase is simply a complex number of modulus 1.
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We consider first the case where H1(t) ≡ gHI so that the full Hamiltonian is H0+ gHI .
Using the first-order approximation U (t) � U0(t) + U1(t) and (11.32) to compute U1(t),
we obtain

(em,U (t)en) � −ig
∫ t

0
dθ (em,U0(t − θ )HIU0(θ )en). (11.39)

Since

(em,U0(t − θ )HIU0(θ )en) = (U0(t − θ )†em,HIU0(θ )en)

= exp(−i(t − θ )Em − iθEn)(em,HI en)

= exp(−itEm) exp(iθ (Em − En))(em,HI en)

we obtain from (11.39)

cn,m(t) := |(em,U (t)en)|2 � an,m
| exp(it(Em − En))− 1|2

(Em − En)2 , (11.40)

where

an,m := g2|(em,HI en)|2. (11.41)

According to Section 2.9, cn,m(t) is the probability that when we measure at time t a system
that was in state en at time zero, we find it in state em. We may say then in flowery language
that this is the probability that the transition from state en to state em has already taken place
at time t .

A quantity such as (em,HI en) will be called a matrix element of HI . These matrix
elements determine HI . Let us consider the function

f (α,t) := | exp(iαt)− 1|2
α2 = sin2(tα/2)

(α/2)2 ,

so that (11.40) takes the form

cn,m(t) � an,mf (Em − En,t). (11.42)

Let us stress that the computation is heuristic: We do not know how small t should be for
the previous approximations to be valid.16

Now, using here the standard integral (N.6), it holds that∫ ∞
−∞

dαf (α,1) = 2
∫ ∞
−∞

dx
sin2 x

x2 = 2π .

16 If we wanted to know it, among the many problems one would have to solve is the following one. The
probability (11.40) is proportional to the quantity |(em,HI en)|2, and captures only the possibility of a “direct
transition from en to em”. It could very well happen that this probability is very small for these particular
values of m and n, and that a direct transition from en to em is much less likely than a transition through a
certain intermediate state ek . This may be the case if both |(ek,HI en)|2 and |(em,HI ek)|2 are very much
larger than |(em,HI en)|2. Such issues concern mathematicians much more than physicists. A sensible
physicist will have no qualms about the method as long as it is not contradicted by experiments.
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Thus, as t →∞, for any function ξ ∈ S we have

lim
t→∞

1

2πt

∫ ∞
−∞

dαf (α,t)ξ (α) = lim
t→∞

1

2π

∫ ∞
−∞

dβ
f (β/t,t)

t2
ξ (β/t)

= lim
t→∞

1

2π

∫ ∞
−∞

dβf (β,1)ξ (β/t) = ξ (0), (11.43)

as is seen by making the change of variable α = β/t and since f (β/t,t)/t2 = f (β,1). You
may wonder what the condition t → ∞ means in physics. It simply means that t is much
larger than the timescale at which the process you are studying takes place. We will make
much use of this fact.

It will greatly help to follow our forthcoming heuristic arguments to picture the function
α �→ f (α,t) as taking its significant values for |α| of order 1/t , while having an integral
2πt . We may then write

f (α,t) � 2πtδ(α). (11.44)

Despite the fact that classical textbooks such as that of Messiah [54] perform a thorough
and correct analysis of the present situation, more recent textbooks unfortunately use the
approximation (11.44) into (11.42). This simply makes no sense when Em and En are fixed
numbers because the delta function is not defined point-wise, but only when integrated
against a test function.

On the other hand there is a natural situation where such approximations make sense. To
describe it, let us fix a given en. Let us then consider the total transition probability from en

to any other state. This is the norm of the projection of U (t)(en) on the span of the em for
m �= n. The square of this norm is given by∑

m�=n
|(em,U (t)(en))|2 =

∑
m�=n

cn,m(t),

and at the first order (and if all goes well) using (11.42) this equals∑
m�=n

an,mf (En − Em,t). (11.45)

In many situations of physical interest we will be able to simplify this expression. For
this let us assume that the energy levels17 Em are labeled as an increasing sequence. Let us
also make further regularity assumptions, which should hold at least in an interval around
the energy En of our given state:

• The energy levels Em are extremely close to each other.
• They are also very evenly spaced.18 That is, there is an extremely small scale ε such

that the differenceEm+1−Em is about ε/ρ(Em) for a smooth function ρ. Equivalently
when x is close to En the number of energy levels contained in a small interval of
length α  ε around x is about αρ(x)/ε.

17 This expression is used here as a shorthand for “the eigenvalues of the Hamiltonian H0”.
18 Such as the case considered in the next section of the energy levels of a particle contained in a macroscopic

box.
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• The dependence on m of the numbers an,m is nice. Since by (11.41) we have∑
m an,m = g2‖HIen‖2, then, at least for Em close to En, an,m should be of order ε.

It is then reasonable to assume that an,m � εhn(Em) for a nice function hn.19

Under these conditions,

an,mf (En − Em,t) � εhn(Em)f (En − Em,t) �
∫ Em+1

Em

dxhn(x)ρ(x)f (En − x,t),

(11.46)

where the error is of order ε2. By summation over m, with an error of order ε the transition
probability is about ∫

dxhn(x)ρ(x)f (En − x,t).

At that level it makes sense to perform the approximation (11.44), and to write∫
dxhn(x)ρ(x)f (En − x,t) � 2πthn(En)ρ(En). (11.47)

Thus, within these approximations, the probability that the transition has taken place before
time t is proportional to t . The coefficient of t is called the rate of transition per unit of time.
Here, it is simply 2πhn(En)ρ(En).

Let us stress the conditions under which these approximations are valid. For (11.47) to
be valid, t has to be large enough so that both functions hn and ρ vary little on an interval
of length about 1/t . For (11.46) to be valid, 1/t has to be much larger than ε, so that t
cannot be too large either. When ε is extremely small, there is plenty of room to satisfy both
conditions.

Another reason for which t should not be too large is that the right-hand side of (11.47)
is supposed to be a probability so it has to be≤ 1 and our approximations cannot be correct
for t too large. Thus we expect the approximation to be valid in a certain interval of values of
t and to be unreliable outside this interval. As the boundaries of the interval are ill defined,
a mathematician might feel uncomfortable but there are many situations of interest where
the whole approach works beautifully.

11.4 A Side Story: Oscillating Interactions

Although we will not need it for our main line of work, let us consider now the case where
the time-dependence of the interaction is given by H1(t) = g(t)HI where for some ω > 0
we have g(t) = 2 cosωt = exp iωt + exp(−iωt).20 This case is important in physics, but
physicists often write formulas that cannot be taken at face value. In that situation (11.39)
becomes

19 There is no reason whatsoever that an,m should have a simple expression in terms of Em, but expressing the
dependence on m of an,m in that form simplifies our exposition.

20 This normalization is chosen to yield the same result as the case g(t) = exp iωt usually considered in the
literature. The case of periodic g(t) is the second most important after the constant case.
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(em,U (t)en) � −i
∫ t

0
dθg(θ )(em,U0(t − θ )HIU0(θ )en)

and (11.40) becomes

cn,m(t) � an,m|A+ B|2, (11.48)

where

A = exp(it(En − Em + ω))− 1

En − Em + ω
; B = exp(it(En − Em − ω))− 1

En − Em − ω
.

The situation of typical interest is completely different from the situation of (11.45) we
considered earlier. Here we are interested in transitions between two specific energy levels
En �= Em. For example, we are looking for transitions between the energy levels of an
electron in a given atom. In that case the term |A+B| can be large only if one of the terms
|A| or |B| is large, and this can happen only if the corresponding denominator is small. If,
say, Em > En, then

|En − Em − ω| = Em − En + ω ≥ |En − Em|
and only the denominator of the term A can be small (when ω � Em −En). Thus only the
term A can be large, and then |A+ B|2 � |A|2, so that (11.48) becomes

cn,m(t) � an,mf (En − Em + ω,t). (11.49)

Despite what Weinberg himself writes on page 186 of his textbook [88], one again has to
be cautious here to use the approximation (11.44), since δ(α) is a distribution and makes no
sense for a given value of α.

Writing explicitly the dependence of the left-hand side on ω, this approximation means

cn,m(t,ω) � 2πan,mtδ(En − Em + ω), (11.50)

in the sense that we expect that when integrating both sides against a test function we get
near equality.21 The reason why the approximation is correct from a physical point of view
is that it is never true in physics that g(t) is exactly of the type gω(t) := 2 cosωt , which
would represent a “truly monochromatic perturbation”.22 There is always some “spectral
width” which means that the perturbation is a mixture of perturbations gω(t) for ω varying
in a small interval, and it is averaging over these values which validates the approximation
by the delta function. With the same approximations, physicists write the rate of transition
�(n→ m) per unit of time between energy levels En and Em as

�(n→ m) = 2πan,mδ(En − Em + ω). (11.51)

This is known as Fermi’s golden rule.

21 You are certainly aware that here the near equality does not hold uniformly over all test functions. Rather,
given a fixed test function, as our approximations get better, the integrals of both sides of (11.50) against this
test function get close to each other.

22 This physicists’s terminology simply means that there is a single frequency, here ω, in the perturbation.
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Exercise 11.4.1 Assume now that the energy levels (En) are very close to each other.
Using the same approximations and notation as before, prove that the rate of transition
from energy level n per unit of time is 2πhn(En + ω)ρ(En + ω).

11.5 Interaction of a Particle with a Field: A Toy Model

This section attempts to give a flavor (of a small part) of Section XXI.13 of Messiah [54].
The model, a very simplified version of the interaction of electrons and photons, is arguably
of marginal interest23 and will never be used in the sequel, but it allows us to make a truly
fundamental point: The interaction of a particle with a field changes the apparent mass
of the particle. The model will also let us use the methods of Sections 11.1 and 11.3 in a
reasonably simple but non-trivial situation, to compute how the interaction with “photons”
shifts the energy levels of an “electron”, and at what rate this interaction induces transi-
tions between these energy levels. At the same time, we will be able to test the limits of
these methods.

What we would really like to understand is how an electron interacts with photons, the
quanta of the electromagnetic field. The electron might be free, or, say, part of a hydrogen
atom. As this is a very difficult problem, we will replace both the electron and the elec-
tromagnetic field by simpler objects. We replace the electron by a non-relativistic particle;
this particle cannot be destroyed. In the model there exists one (and only one) such particle.
We put the spatial universe in a large box B = [−L/2,L/2]3, and the state space of the
particle is the space L2

B of square-integrable functions on B, which we met before (3.63).
The Hamiltonian is

H = P2

2M
+ V, (11.52)

where P is the momentum operator−i∂/∂x andM the mass of the particle. (In full,H (f ) =
(−1/2M)

∑
i≤3 ∂

2f/∂x2
i + Vf .) When the potential V is zero the “electron” is free. We

assume that there exists an orthonormal basis (ξn)n≥0 of eigenvectors of H , with Hξn =
Enξn, and we assume E0 ≤ E1 ≤ . . . . When the potential is not zero, it is typically the
first eigenvectors, representing bound states of the particle, which are of interest (so, think
of these as modeling the various energy states of an electron in a hydrogen atom). As we
sometimes use Dirac’s notation in this section we also denote the function ξn by |n〉.

Besides the particle, our model includes identical “corpuscles”. These can be created or
destroyed. Their common rest mass μ > 0 is different from the rest mass M of the particle.
Even though the corpuscle is a simplified version of the photon, we give it the positive rest
mass μ because the case of massless particles is technically genuinely more difficult. One
single corpuscle is modeled by another copy of L2

B , which we denote by L2
C . As we learned

in Section 3.4, the corresponding boson Fock space B is then the appropriate state space to
describe a varying number of corpuscles.

23 Still, it does carry a flavor of the real thing.
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To pursue the description of the model we need an appropriate basis for the boson Fock
space B, and we construct it now. We recall the set K of elements k ∈ R3 such that all the
coordinates of k are of the type 2πn/L for n ∈ Z. For k ∈ K the functions

fk(x) = 1

L3/2
exp(ix · k) (3.63)

form an orthogonal basis ofL2
C , and fk is an eigenvector of eigenvalue kj for the momentum

operator −i∂/∂xj . Each of the functions fk describes a certain state of a single corpuscle,
and quite naturally we will describe corpuscles in state fk as “corpuscles of momentum k”.
Since the functions fk form an orthonormal basis of L2

C , as explained in (3.10), we obtain
from these functions an orthonormal basis of the corresponding boson Fock space B. We
denote the elements of this basis by |(n�)〉. In this notation (n�)�∈K is a sequence of integers
indexed by K, all of which but a finite number are zero. The number n� should be interpreted
as the number of corpuscles in the state described by f� i.e. of corpuscles of momentum �.
Let us call ω� the energy of a corpuscle of momentum �. (Although the precise value of
ωk does not really matter, we may as well assume for consistency that as usual ωk :=√
μ2 + k2.) Then, when these corpuscles do not interact with each other, according to

(3.43), the Hamiltonian Hc governing the evolution of the corpuscles is given by

Hc|n�〉 = E(n�)|n�〉, (11.53)

where

E(n�) :=
∑
�∈K

n�ω�. (11.54)

In words, the energy of the system where several corpuscles are present is simply the sum
of the energies of the individual corpuscles.

The system where both the particle and the corpuscles are present is modeled by the state
space H = L2

B ⊗ B. The states |n,(n�)〉 := |n〉 ⊗ |(n�)〉 form an orthonormal basis of this
space.24 On this space consider the Hamiltonian H0 such that

H0|n,(n�)〉 = (En + E(n�))|n,(n�)〉 =
(
En +

∑
�∈K

n�ω�

)
|n,(n�)〉, (11.55)

which is the Hamiltonian on L2
B ⊗ B describing the system where the particle and the

corpuscles do not interact, the particle evolving according to the Hamiltonian (11.52) and
the corpuscles according to the Hamiltonian (11.53). The ground state, that is the state with
the lowest possible energy, is the state where n = 0 and n� = 0 for each �.

To model the interaction of the particle with the corpuscles we will use a quantum field
whose quanta are the corpuscles. Since we have put space in a box, such a field is given by
the formula (5.31). Here however we can expect trouble with the infinite summation

∑
k∈K

and we will have to somehow suppress the terms with large values of k2. In any case it does
not make too much sense to consider corpuscles of high energy ( M = Mc2) since a

24 Make sure you understand that n means that the particle has energy En whereas n� denotes the number of
corpuscles.
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realistic model would allow creation of new particles at these high energies. To cut off the
large values we consider a function 0 ≤ θ ≤ 1 on R, which we assume to satisfy

k2 ≤ M2 ⇒ θ (k2) = 1√
2ωk

. (11.56)

This simply means that the cutoff acts only on large values of k2. We also assume that θ
decreases fast enough at infinity to make everything we need converge (for example by
taking θ (k2) equal to zero for k2 large enough). Instead of (5.31) let us then rather use as
quantum field the following function on R3, with values in the operators on B:

ϕ(x) =
∑
k∈K

θ (k2)(fk(x)ak + fk(x)∗a†
k
), (11.57)

where

ak = A(fk) ; a†
k = A†(fk), (11.58)

and where A†(γ ) and A(γ ) denote respectively for γ ∈L2
C the creation and annihilation

operators on B constructed in Definition 3.4.1. Thus ak and a†
k

are operators on B, whose
action on the basis elements |(n�)〉 is given by (3.36) and (3.37).

To construct the interaction we first observe that H=L2
B ⊗ B identifies with the space

L2(B,B) of square-integrable functions on B valued in B as follows: The function corre-
sponding to an element f ⊗ b is the function x �→ f (x)b. So, an element of L2

B ⊗ B can
be considered a function ψ : B → B, and for each x ∈ B, ψ(x) ∈ B. Thus given two such
functions ψ1 and ψ2 their inner product is given by the formula

(ψ1,ψ2) =
∫
B

d3x(ψ1(x),ψ2(x)), (11.59)

where the inner product in the integral is the inner product in B.
Recalling the formula (11.57) we consider the interaction Hamiltonian HI such that for

ψ ∈ L2(B,B), HI (ψ) ∈ L2(B,B) is given by

HI (ψ)(x) = ϕ(x)(ψ(x)). (11.60)

The formula makes sense because ϕ(x) is an operator on B, and here we simply compute the
value of this operator on the elementψ(x) ∈ B. The full Hamiltonian will then beH0+gHI

for a coupling constant g describing the strength of the interaction between the particle and
the corpuscles.

At first this formula seems very strange, but it makes sense under closer examination. At
some imprecise level, the quantum field ϕ(x) creates and destroys corpuscles located at x,
while the wave function ψ(x) is related to the probability of the particle being located at x.
Thus (11.60) looks like it has to do with corpuscles interacting with the particle by being
created or destroyed precisely where the particle is located.

Our next goal is to study “the transition rates of the electron between the different energy
levels due to the interaction with photons”. As we saw in Section 11.3, these rates are
governed by the matrix elements

〈m,(m�)|HI |n,(n�)〉 (11.61)
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and we first compute these. Replacing ϕ by its value (11.57) in (11.60) yields

HI =
∑
k∈K

θ (k2)(HI,k +H
†
I,k), (11.62)

where for any function ψ : B → B one has

HI,k(ψ)(x) = fk(x)ak(ψ(x)) ; H †
I,k(ψ)(x) = fk(x)∗a†

k(ψ(x)). (11.63)

The element |n,(n�)〉 of H = L2
B ⊗ B corresponds to the specific function ψ : B → B

given by ψ(x) = ξn(x)|(n�)〉 so that HI,k|n,(n�)〉 corresponds to the function ψ2(x) =
ξn(x)fk(x)ak|(n�)〉. Using then (11.59) for ψ1(x) = ξm(x)|(m�)〉 yields the matrix element

〈m,(m�)|HI,k|n,(n�)〉 = 〈(m�)|ak|(n�)〉
∫
B

d3xξm(x)∗ξn(x)fk(x). (11.64)

Let us now define the quantities

C(m,n,k) :=
∫
B

d3xξm(x)∗ξn(x)fk(x). (11.65)

Lemma 11.5.1 The matrix element 〈m,(m�)|HI |n,(n�)〉 is zero unless one of the
following happens:

∃k , ∀� ∈ K , � �= k ⇒ m� = n� , mk = nk − 1 (11.66)

∃k , ∀� ∈ K , � �= k ⇒ m� = n� , mk = nk + 1. (11.67)

In the first case we have

〈m,(m�)|HI |n,(n�)〉 = θ (k2)
√
nkC(m,n,k), (11.68)

and in the second case it holds that

〈m,(m�)|HI |n,(n�)〉 = θ (k2)
√
nk + 1C(m,n, − k). (11.69)

Observe that in the case (11.66) a corpuscle of momentum k is destroyed while in the
case (11.67) such a corpuscle is created.

Proof We use (11.64). We compute 〈(m�)|ak|(n�)〉 using (3.37). It is zero unless (11.66)
occurs, and then it is

√
nk . We proceed in the same way for H †

I,k
.

To better understand the physics of the situation, we look at the case of the free particle,
where the potential V is zero. In that case we may use the functions fn (rather than the
functions ξn) as a basis of eigenvectors of H , so that C(m,n,k) has to be replaced by

C(m,n,k) :=
∫
B

d3xfm(x)∗fn(x)fk(x). (11.70)

From (3.63) it holds that fkfn = L−3/2fk+n. Thus the integral in (11.70) is zero unless
m = k + n, and then it is L−3/2. According to the previous lemma, there are exactly two
cases where the matrix element 〈m,(m�)|HI |n,(n�)〉 is not zero (and where therefore the
interaction creates transitions from the state |n,(n�)〉 to the state |m,(m�)〉). The first case
is given by (11.67) where m = n + k. The particle gains momentum k, and a corpuscle
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of momentum k is being destroyed. Similarly, the situation of (11.68) corresponds to the
case where a corpuscle of momentum k is being created and the momentum of the particle
decreases by k. This again makes sense according to the next exercise.

Exercise 11.5.2 In the previous situation write down a “total momentum operator”
that measures the momentum of the particle and the corpuscles together. Show that this
operator commutes with the Hamiltonian, and explain why momentum is conserved.

Going back to the case where there is a potential V , let us illustrate how to compute the
transition rate from the state where the particle is at energy level m and where no corpuscle
is present to the state where the particle is at energy state n and a single corpuscle of
momentum k is present, that is, from the state |m,(0)〉 to the state |n,(δk

� )〉.25 The probability
c(m,n,k,t) that this transition has taken place before time t is given at the first order by the
formula (11.42) which here is

c(m,n,k,t) = g2θ (k2)2|C(m,n,k)|2f (Em − En − ωk,t). (11.71)

The probability that before time t the particle has emitted a corpuscle of any momentum is,
at the first order, the sum of these probabilities over the various values of k.

To sum the quantities (11.71) over k we recall that each k ∈ K corresponds to a little
box of volume (2π/L)3 so (since L is the size of the box representing the entire universe)
we may replace the sum by the integral

g2
∫

d3p

(2π )3
θ (p2)2|D(m,n,p)|2f (Em − En − ωp,t),

where

D(m,n,p) :=
∫
B

d3xξm(x)∗ξn(x) exp(ip · k).

At that level we may make the approximation (11.44) to obtain the transition rate per unit
of time

g2
∫

d3p

(2π )3 θ (p2)2|D(m,n,p)|2(2π )δ(Em − En − ωp).

In any reasonable situation we have Em −En < M (= Mc2) so that when ωp = Em −En

we have p2 ≤ M2 and thus θ (p2)2 = 1/2ωp. Therefore we have reached the following:26

Proposition 11.5.3 The transition rate per unit of time from the state |m,(0)〉 to a
state of the form |n,(δk

� )〉 where n is given and k is arbitrary is

g2
∫

d3p

(2π )22ωp
|D(m,n,p)|2δ(Em − En − ωp). (11.72)

The right-hand side of (11.72) may be computed, and this is the purpose of the next
exercise.

25 That is, the particle drops from energy level Em to energy level En by emitting a corpuscle of momentum k.
26 Although the force of habit leads us to use words such as “proved”, let us repeat that we are doing physics in the

whole of Part III, which contains very few rigorous results in the sense a mathematician would understand it.
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Exercise 11.5.4 (a) Show that for a well-behaved function ξ on R3 one has∫
d3pξ (p) = 4π

∫∫
r≥0

drdρr (p)r2ξ (p)

where dρr is the uniform probability on the sphere of radius r .
(b) Conclude that the quantity (11.72) equals

∫∞
0 drη(r)δ(h(r)), where h(r) = Em −

En −
√
r2 + μ2 and

η(r) = g2

2π
√
μ2 + r2

∫
dρr (p)|D(m,n,p)|2.

(c) Conclude that the quantity (11.72) equals

g2
√

(Em − En)2 − μ2

2π

∫
dρ(p)|D(m,n,p)|2

where dρ is the uniform probability measure on the sphere of radius√
(Em − En)2 − μ2.

Exercise 11.5.5 When the potential is zero, show that the rate of transition per unit
time from a state of momentum m (with no corpuscles present) to any other state is
given (when |m| is not too large) by

g2
∫

d3p

(2π )22ωp
δ
(m2

2M
− (m− p)2

2M
− ωp

)
.

In Section 11.1 we studied how the eigenvalues of an operator are modified by a per-
turbation. Our next goal is to use these results to compute the shift �n in the eigenvalue
En corresponding to the eigenvector |n,(0)〉 due the interaction Hamiltonian. At the first
order of perturbation theory this shift �n is ga1 where a1 = 〈n,(0)|HI |n,(0)〉 is given by
the formula (11.6). This is zero according to Lemma 11.5.1, so that we will compute the
shift �n “at the level of the second-order perturbation theory”, i.e. by the formula (11.13)
(assuming that we can use this formula here). Here λ0 = En and the summation over n ≥ 1
in (11.13) becomes the summation over all m ≥ 0 and (m�) for (m,(m�)) �= (n,(0)), so that

�n = g2
∑

(m,(m�))�=(n,(0))

|〈m,(m�)|HI |n,(0)〉|2
En − (Em +

∑
�∈Km�ω�)

.

Use of the formula (11.69) then gives

�n = g2
∑
m,k

θ (k2)2|C(m,n, − k)|2
En − Em − ωk

= g2
∑
m,k

θ (k2)2|C(m,n,k)|2
En − Em − ωk

, (11.73)

where the summation does not include the case m = n,k = 0. We know how to deal
with the summation over k by replacing it by an integral, but it is a harder issue to handle
the summation over m. A first problem is that the quantities En − Em − ωk may be of
different signs, so there might be cancellation between the different terms. We put this aside
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by considering only the case n = 0, so that then En − Em − ωk < 0. One then has to
understand which values ofm really contribute to the summation, an issue which is clarified
by the next lemma.

Lemma 11.5.6 Given any values of n and k we have∑
m

|C(m,n,k)|2 = 1

L3 (11.74)

and ∑
m

(
Em − En − k2

2M

)2|C(m,n,k)|2 ≤ 1

L3M2
‖k · Pξn‖2. (11.75)

We will use this by arguing that in our non-relativistic situation, the right-hand side
of (11.75) is very much smaller than the right-hand side of (11.74) so that most of the
contribution to the sum in (11.74) is from terms for which Em � En + k2/2M .

Proof Consider the function

η(x) := ξn(x)fk(x) = L−3/2ξn(x) exp(ik · x),

and note that

(ξm,η) = C(m,n,k) ; ‖η‖2 = 1

L3
, (11.76)

which already implies (11.74) since (ξm) is an orthonormal basis. Next, using Leibniz’s rule,

P 2η = P 2(ξnfk) = (P 2ξn)fk + 2fkk · P ξn + k2fkξn.

Moreover since the operator V is just multiplication by the function V (x) we have V η =
fk(V ξn). Consequently the Hamiltonian H of (11.52) satisfies

Hη = fk

(
Hξn + k2

2M
ξn

)
+ fk

k · Pξn
M

= aη + fk
k · Pξn
M

where a := En + k2/2M . Therefore, if ψ := fkk · Pξn/M then

Em(ξm,η) = (Hξm,η) = (ξm,Hη) = a(ξm,η)+ (ξm,ψ),

and thus (Em−a)(ξm,η) = (ξm,ψ). Since ξm form an orthonormal basis and since (ξm,η) =
C(n,m,k), taking as m varies the sum of the squares of the moduli in this equality yields∑

m

(Em − a)2|C(n,m,k)|2 ≤ ‖ψ‖2 = 1

L3M2 ‖k · Pξn‖2,

where we use in the last equality that |fk(x)| = L−3/2.

To use this result, let us bound the right-hand side of (11.75) when n = 0. We first use the
bound ‖k · Pξ0‖2 ≤ k2‖Pξ0‖2. Since in Classical Mechanics the momentum is the product
of the mass and the speed, the quantity ‖Pξ0‖/M should be of the same order as the velocity
the particle in state ξ0. It is believable that the kinetic energy of the particle in state ξ0 should
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be of the same order as |E0| (despite the fact that E0 is the sum of the kinetic and potential
energies, which are of opposite signs). Thus the square of the speed of the particle should be
of order |E0|/M . Since we are in the non-relativistic case |E0| = αM with α much smaller
than 1.27 Therefore the right-hand side of (11.75) should be of order αk2/L3.

Let us now set n = 0 and estimate �0. Comparing (11.75) with (11.74) means that the
contribution to this sum comes mostly from terms such that Em − En � k2/2M , so in
(11.73) we simply replace Em − En by k2/2M , and with an error which becomes small
with α we may write, using (11.74) in the equality,

�0 � −g2
∑
m,k

θ (k2)2|C(m,n,k)|2
ωk + k2/2M

= − g
2

L3

∑
k

θ (k2)2

ωk + k2/2M
. (11.77)

As usual we can replace the sum by the integral

�0 � −g2
∫

d3p

(2π )3

θ (p2)2

ωp + p2/2M
. (11.78)

Exercise 11.5.7 If you enjoy ε-δ proofs, write a rigorous version of the previous
argument, letting α→ 0 and L→∞.

Quite interestingly the downward shift in E0 is independent of the potential V (at this
level of accuracy). A fishy feature though is that the quantity (11.78) depends on how we cut
off the large values of p. This unfortunately is a recurring feature of quantum field theory,
and it is a highly difficult problem to avoid.

When the mass μ of the corpuscles is less than the mass M of the particle, the integral
in (11.78) is at least of order M . To see this we estimate the contribution of the region
M/2 ≤ |p| ≤ M to this integral. The volume of integration is of order M3. Recalling
(11.56) the integrand is 1/(2ωp(ωp + p2/(2M))) and is of order 1/M2 in that region. So,
the downward shift of the ground state is predicted by perturbation theory to be at least of
order g2M .

Now let us evaluate the credibility of perturbation theory in the present calculation. With
the notation of Section 11.1, we used the eigenvector v0 + gw1 + · · · which is supposed
to be a small perturbation of v0. According to (11.11) the square of the norm of the vector
gw1 is given here by

g2
∑
m,k

θ (k2)2|C(m,n,k)|2
(E0 − Em − ωk)2

(11.79)

where the summation does not include the case m = 0 and k = 0. Just as before we
approximate this quantity by

g2
∫

d3p

(2π )3

θ (p2)2

(ωp + p2/2M)2 .

27 In non-relativistic Quantum Mechanics as here, the energy of a particle does not include the energy
M(= Mc2) of its rest mass, in contrast with the relativistic setting of (4.30).
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In the limit of zero-mass corpuscles we have ωp = |p|, and recalling (11.56) this is at least

g2
∫
|p|≤M

d3p

(2π )3

1

2|p|(|p| + p2/2M)2 .

This infinite quantity is hardly the square of the norm of the supposedly small vector gw1,
and consequently the credibility of perturbation theory in computing this precise downward
shift is minimal.28 Perturbation theory may well break down. This will not prevent us from
ruthlessly using similar methods.

Exercise 11.5.8 Convince yourself that crude choices of z in (11.16) would actually
prove29 that in our toy situation the downward shift �0 of the ground state is indeed
of order g2M at least for small g. (Thus, perturbation theory fares well after all!)

Coming back to the real world of photons and electrons, the shifts of the energy levels
of an electron due to its interactions with the electromagnetic field cannot be experimen-
tally measured, for the simple reason that it is impossible to “turn off” this interaction.
Denoting by E′0, . . . ,E

′
n, . . . the actual energy levels of the electron in a potential (the

prime example being the potential created by a single proton) spectroscopy measures the
differences E′m − E′n. Naive computation of the energy levels E′n (for example by solving
Schrödinger’s equation) does not account for the measured values. This difference persists
even when one uses improvements of Schrödinger’s equation such as Dirac’s equation,
because these equations do not reflect the interaction of the electrons with photons. It takes
a surprising amount of effort to really explain the measured values.30 The previous methods
are powerless for this, but nonetheless overall point in the correct direction.

A subtle point is that the mass of the electron, as it is measured in the lab, need not be the
same as the numberM occurring in the HamiltonianH0. We will discuss later in more detail
this mysterious fact. It is, however, essential to understand that in Quantum Field Theory we
may write a Hamiltonian with some parameters which we call mass, charge, etc., but that
may not be what we measure in the lab. And only what we measure in the lab is “real”. In
the present situation one may argue (as Folland does [31]) that since the interaction with the
field lowers the ground state energy, and since the only energy a particle at rest may have is
the energy of its rest mass, the interaction with the field lowers the apparent rest mass of the
particle.31 It would be more satisfactory to give a precise definition of the apparent mass
of the particle, based on how one might actually measure it in the lab, and to show that it
is different from the parameter M of the Hamiltonian. Such a definition would presumably
be obtained by studying the relation between the energy of the particle and its momentum.
It is not obvious how to do this, in particular because the energy and momentum operators
have no common eigenvectors.

28 It can be shown in the present situation that nonetheless perturbation theory still provides the correct order of
magnitude for this downward shift.

29 I admit I did not really check this, leaving you a chance to get a refund for this book.
30 A famous example of this is the Lamb shift.
31 As this is not a relativistic theory, one may also say “mass” rather than “rest mass”.
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Key ideas to remember:

• A complex system is often studied as a small perturbation of a simpler system.
• The interaction picture allows thinking of the time-evolution of the complicated

system as a perturbation of the time-evolution of the simpler system. This time-
evolution is expressed through the Dyson series.

• Perturbations of a system induce transitions between the energy levels.
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Scattering, the Scattering Matrix and Cross-Sections

We remind the reader that from Chapter 11 on we have chosen a system of units such that
h̄ = 1 and c = 1.

The majority of our data concerning the particle world comes from scattering exper-
iments, and the theoretical analysis of these is of fundamental importance. In a typical
scattering experiment, two particles start far away from each other. They then get close
to each other, interact and the products of the interaction, which may consist of several
particles, again get far from each other. The important point is that at the beginning and
at the end of the experiment the particles do not interact with each other. In a similar but
simpler experiment a particle is thrown from far away at a scattering potential,1 and after
interacting with the potential moves again to infinity. How do we describe the situation
mathematically? The analysis has two parts. In the first part, the properties of the scattering
are encoded in an object called the S-matrix. The computation of the S-matrix is a main
objective of Quantum Field Theory. The second part of the analysis is to relate the S-matrix
to quantities that can actually be measured in our laboratory, the so-called cross-sections.

In the present chapter we explain heuristically, through the analysis of situations of
increasing complexity, what the S-matrix is, but we do not try yet to compute it. We then turn
to the relation between the S-matrix and cross-sections. This non-trivial task is not central to
Quantum Field Theory. The fine points of this analysis are unimportant as long as one gets
the correct formula, which one may discover with a few lines of heuristics as in Folland’s
book [31, page 137]. The author, finding this simplified analysis unfulfilling,2 tried to learn
more in standard textbooks such as that of Sakurai and Napolitano [72]. This attempt ran
into the usual deep differences of language and perspective from a mathematical point of
view.3 It seems therefore useful to provide a detailed analysis in mathematical language on
how the S-matrix relates to cross-sections. We obtain rather precise statements, requiring
no higher mathematics than taking limits over two different parameters in the correct order.
Understanding the details of this analysis is certainly not required for the sequel, so you
may skip the proof of Theorem 12.4.1 and the entire Section 12.6 if these arguments do not
thrill you.

1 The precise setting will be explained soon and the meaning of these words will become transparent.
2 One of the steps of the analysis is to make an average over the whole universe, not the most natural method to

study the interaction taking place in your lab.
3 Interestingly, the older book of J. Taylor [82], a model of writing excellence, is far more accessible.
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12.1 Heuristics in a Simple Case of Classical Mechanics

Let us think of the motion of a classical particle feeling only the influence of a potential of
limited range (that is, the potential is identically zero outside a bounded region). Its equation
of motion is then given by (6.26), that ismẍ = −∇xV , but we make no attempt to solve this
equation. The particle comes from far away. Before it feels the influence of the potential,
it moves in a straight line like a “free particle” (that is, a particle which does not feel any
external influence). It then enters the region where the potential acts and its trajectory bends.
The particle may get captured by the potential, or it may become free again and move far
away. When it gets far away from the potential it behaves like a free particle again. The
problem is to describe the way the action of the potential has modified the trajectory of the
particle, and more precisely to describe it in a way which will easily generalize to far more
complex situations. This requires some effort, although the basic idea is obvious: Knowing
how the trajectory looked in the far past, we have to describe how it looks in the far future.
However the simplest descriptions one might consider, say by giving the angle by which
the trajectory bends,4 do not easily generalize. The reasons behind the approach we outline
in the present section will be understood only at the beginning of the next section, when we
move to Quantum Mechanics.

Let us denote by xt and vt the position and velocity of the particle at time t , respectively.
A free particle has a motion of the type xt = x + tv, vt = v so that in the far past our
scattered particle has a motion of this type, while in the far future it has a motion of the same
type x′ + tv′, where x′ and v′ are entirely determined by x and v.5 The pair (x,v) entirely
describes the motion of the particle in the far past and the pair (x′,v′) entirely describes this
motion in the far future. The map

S : (x,v)→ (x′,v′) (12.1)

describes how the trajectory in the far future is determined by the trajectory in the far past.
It encodes a lot of the properties of the scattering action. It need not be defined everywhere,
since some particles may get trapped by the potential.

Consider now the case of a potential with an infinite range, but which becomes weaker
fast enough far from the origin. Then we should expect that the particle6 has asymptotes as
t →±∞. That is, if vt denotes the velocity of the particle, the limits

v = lim
t→−∞ vt

and

x = lim
t→−∞ xt − tv

4 Conservation of energy implies that the kinetic energy of the particle is the same before and after the
interaction, so that the speed, i.e. the modulus of the velocity is unchanged by the interaction, but the direction
of the velocity is typically changed.

5 We think of course of the potential as given and fixed.
6 It is always assumed in such a statement that the particle feels the influence of the potential. A particle which

does not feel this influence is referred to as a free particle.
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should exist,7 so that for large negative t one has xt � tv + x, and again the motion of the
particle as it gets in the interaction (i.e. for large negative t) is entirely determined by x and
v. Moreover it is likely that the pair (x,v) entirely determines the trajectory of the particle.
When the particle escapes the potential we define v′ = limt→∞ vt , x′ = limt→∞ xt − tv′,
and we define again S by (12.1), and again this operator describes how the way the trajectory
looks in the far future is determined by the way it looked in the far past.

To generalize this simple idea it helps to state it in a more abstract way. We denote by P
the space of pairs (x,v) where x is a position and v is a velocity. One may like to think of
P as the “state space” describing a moving particle at a given time.8 We define an operator
Ω+ from P to P as follows. Starting with the free particle of position x and velocity v at
time zero, we run time backward until a large negative time −t0 (so that the position of the
particle is then x− t0v and its velocity is still v). We then turn the potential on and run time
forward t0, reaching time zero again. The position and velocity of the particle at this time
zero then define a point of P , which depends both on (x,v) and on t0.9 Hopefully the limit
of this point as t0 →∞ exists and we call it Ω+(x,v).

One also uses the notation

Ω+(x,v) = (x,v)in.

Thus (as you will read many times in the sequel), (x,v)in represents the state at time t = 0 of
the particle whose motion in the far past resembled the motion of a free particle of position
and velocity (x,v) at time 0.

One defines similarly an operator Ω− by starting with the free particle of position x

and velocity v at time zero, running time forward until a large positive time t0, turning the
potential on, running time backward until we reach time zero again, and taking the limit
as t0 → ∞.10 One uses also the notation (x,v)out = Ω−(x,v). The scattering operator S,
on the domain where this makes sense, is then the transformation (x,v) → (x′,v′), where
(x,v) and (x′,v′) are related by (x,v)in = (x′,v′)out, i.e. Ω+(x,v) = Ω−(x′,v′).11 Thus
one may reformulate the definition of S as

S = Ω−1
− Ω+.

12.2 Non-relativistic Quantum Scattering by a Potential

We consider the analog of the previous section in non-relativistic Quantum Mechanics: The
scattering of a particle of mass m by a potential V . When no potential is present we call

7 These limits exist if the potential vanishes fast enough at infinity. In the case of the electrostatic potential, the
limit v exists, but the limit x is infinite. Many potentials of interest for particle interactions decrease faster
than the electrostatic potential so the present heuristic is not misleading.

8 It would be more appropriate to use momentum rather than velocity and to call P the phase space, but this
could be confusing for the reader having no exposure to Classical Mechanics.

9 Thus, equivalently, this point is obtained by running time of a length t0, starting at position x − t0v with
velocity v.

10 Please observe that Ω+ corresponds to t →−∞. This is the standard notation and I do not want to go against
it.

11 So, the motion of a particle such that (x,v)in = (x′,v′)out in the far past resembles the motion of a free
particle which at time zero has position x and velocity v, whereas in the far future it resembles the motion of a
free particle which at time zero has position x′ and velocity v′.
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the particle a free particle. In position state space H = L2(R3) the Hamiltonian of the free
particle is given by

H0 = P 2

2m
:= − 1

2m

∑
i≤3

∂2

∂x2
i

. (12.2)

Before we bring in the potential we will explain a phenomenon known as “the spreading
of the wave function”. This phenomenon has no classical equivalent. Heuristically, if we
start at time zero with the free particle in a given state, and let it evolve, as time passes its
localization becomes more and more uncertain. Intuitively the reason for this phenomenon
is that at time zero the momentum of the particle is not precisely known. The spreading
of the wave function makes it very difficult to give a meaning to the quantum equivalent
of classical statements such as “consider a particle coming from infinity…”, because if we
start with a well-localized particle very far away, by the time it reaches the location of the
scattering center, its localization will be so spread out that the likelihood that it gets close
to the scattering center will be very small, and most likely it will not be scattered at all. To
bypass the difficulty, we control the localization of the particle when it reaches the region of
the scattering center. That is, the starting point of our scattering experiment is a particle in
a given state which we should think of as being localized in the same region of space as the
scattering center. We run time backward for a large duration T . The particle we obtain is the
starting point of our scattering experiment. Its location is not welldefined, but it will be when
time runs forward by the same duration T . This is exactly what motivates the construction
of the operator Ω+.

Let us now be more precise. An element of the position state space H is a function
ϕ on R3 and the standard terminology is to call it the wave function, or sometimes the
wave packet.12 One thinks of the wave function as depending on t through time-evolution
U0(t) = exp(−itH0), so that we consider ϕ(x,t) := U0(t)(ϕ)(x). The “spreading of the
wave function” is the fact that as t →∞, the function x �→ ϕ(x,t) has a tendency to spread
out, to be less and less localized. In the next lemma we compute exactly what happens for
some specific wave functions. We recall the notation x2 =∑

i≤3 x
2
i .

Lemma 12.2.1 Consider a ∈ R3 and α > 0. Define

ϕα,a(x) := exp(−(x − a)2/2α) (12.3)

then

U0(t)(ϕα,a)(x) =
( mα

it +mα

)3/2
exp

(
− (x − a)2

2(α + it/m)

)
, (12.4)

where the power 3/2 of the complex number is determined by continuity starting with
t = 0. Consequently, if a ∈ R3, we have

|U0(t)(ϕα,a)(x)| ≤ (1+ t2/(mα)2)−3/4. (12.5)

12 The reason for the terminology “packet” is to distinguish this situation from a “plane wave” exp(ix · p) that is
not an element of H, but what physicists call “a non-renormalizable state” and which, as they say, is
“unphysical” but nonetheless ubiquitous in their considerations.
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Thus, for large t , U0(t)(ϕα,a) has a small supremum norm, and represents a state without
precise localization.

Proof It suffices to show that the function ϕ(x,t) given by the right-hand side of (12.4)
satisfies the Schrödinger equation i∂ϕ/∂t = H0ϕ, which is really straightforward.

Corollary 12.2.2 For each a ∈ R3, each α > 0 and each ψ ∈ H we have

lim
t→∞(ψ,U0(t)(ϕα,a)) = 0. (12.6)

Proof If ϕ ∈ H we have

(ψ,ϕ) =
∫

d3xψ(x)∗ϕ(x) ≤ sup
x
|ϕ(x)|

∫
d3x|ψ(x)|.

Using this inequality for ψ = U0(t)(ϕα,a) in (12.5) proves (12.6) when
∫

d3x|ψ(x)| <∞.
The subset of elements of H with this property is dense in H, and the set of ψ ∈ H for
which (12.5) holds is closed.

Exercise 12.2.3 (a) Using the Fourier transform and the fact that in momentum state
space,U0(t) is simply multiplication by exp(itp2/2m), explain how one may discover
the formula (12.4). (Warning: One must be fluent with Gaussian integrals.)
(b) More generally prove the formula

U0(t)(ϕ)(x) =
∫

d3yK(t,x,y)ϕ(y)

for a certain kernel K(t,x,y). Hint: This is rather challenging but can be found in
many textbooks, and in particular in Hall’s book [39, Section 4.2].

Lemma 12.2.1 is significant because there are many functions of the type ϕα,a , as the
following shows.

Lemma 12.2.4 H = L2 := L2(R3,d3x) is the closed linear span of the functions of
the type13 ϕα,a for α > 0 and a ∈ R3.

Proof Let us stay informal. Since for a ∈ R3 the functions ϕα,a(x) are well peaked around
a for α small, every test function is well approximated in L2 by a mixture of such functions,
and the space of test functions is dense in L2. Consequently every state function can be well
approximated in L2 by a linear combination of the functions ϕα,a .

Exercise 12.2.5 (a) Prove that for any wave function ϕ and any ε > 0 for t large
enough the function U0(t)(ϕ) is within ε distance (for the L2 norm) of a function
which is uniformly bounded by ε.

(b) Construct a uniformly bounded14 normalized wave function, and a sequence
(tn) of positive times such that U0(tn)(ϕ)(0) ≥ 2n. Hint: Look for ϕ of the type ϕ =∑

n≥1 U0(−tn)(ϕn) where ϕn(0) is very large while the L2 norm of ϕn is very small.

13 As is easily seen these are the wave functions of particles of average momentum zero. This does not mean
however that all particles have average momentum zero because the momentum operator is not continuous.

14 That is |ϕ(x)| ≤ C for all x and a number C independent of x.
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Consider now a potential V , that is a function on R3. Denoting also by V the oper-
ator “multiplication by the function V (x)”, under suitable regularity conditions on the
potential V , the formula

H = H0 + V (12.7)

defines a self-adjoint operator,15 which is the Hamiltonian of the particle submitted to the
potential V . We may then consider the unitary operator U (t) = exp(−itH ). We would like
to describe the way the interaction with the potential modifies the “trajectory” of a particle,
a phenomenon which we will describe as scattering by a potential. The key for doing this
is a suitable definition of the operators Ω+ and Ω−.

Proposition 12.2.6 Assume that

‖V ‖2 :=
∫

d3xV (x)2 <∞. (12.8)

Then for each ϕ in the state space H the limits16

Ω+(ϕ) = lim
t→−∞U (t)−1U0(t)(ϕ) (12.9)

Ω−(ϕ) = lim
t→∞U (t)−1U0(t)(ϕ) (12.10)

exist.

The hypothesis on the potential in Proposition 12.2.6 is rather restrictive, making the
result of limited use. Our intention is simply to give a flavor of the methods through the study
of as simple as possible an example of a really non-trivial situation. We refer the reader to
Reed and Simon’s book [69] for far more general conditions on the potential V which imply
similar results.

We may as in the previous section interpret Ω+(ϕ) as the state at time zero of the motion
(with the influence of the potential V ) which asymptotically at time t → −∞ resembles
the motion of the free particle which at time zero is in state ϕ. In Dirac’s notation people
often write

|ξ 〉in := Ω+|ξ 〉 ; |ξ 〉out := Ω−|ξ 〉. (12.11)

Exercise 12.2.7 Prove (heuristically) that |ξ 〉in is the state which in the interaction
picture evolves at t = −∞ into |ξ 〉. Hint: Use (11.23).

The use of the operator U (t)−1U0(t) certainly reminds us of the considerations of
Section 11.2, but we will study the connection with these only later.

15 More accurately, it defines an essentially self-adjoint operator, which can then be extended into a self-adjoint
operator. Results in this direction may be found in Reed and Simon’s book [69]. A typical condition on V is
V ∈ L2 + L∞, V is the sum of a bounded function and a square-integrable function. Sharper results can be
found in Kato’s paper [46].

16 Again here: Ω+ corresponds to t →−∞.
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Proof of Proposition 12.2.6 The set of ϕ for which the right-hand side of (12.9) converges
is a linear space, and it is closed for the distance induced by the L2 norm, as one sees
using Cauchy’s convergence criterion and the fact that U (t) and U0(t) are norm-preserving.
Therefore using Lemma 12.2.4 it suffices to prove convergence when ϕ = ϕα,a . Let us then
define

ψ(t) := d

dt
U (t)−1U0(t)(ϕα,a)

= iU (t)−1(H −H0)U0(t)(ϕα,a)

= iU (t)−1VU0(t)(ϕα,a), (12.12)

where we have used that dU (t)/dt = −iHU (t) = −iU (t)H and thatU is unitary,U (t)−1 =
U (t)† = U (−t), and similar relations for U0. Consequently, for u < 0,

U (u)−1U0(u)(ϕα,a) = ϕα,a −
∫ 0

u

dtψ(t). (12.13)

Moreover, since U (t) is unitary,

‖ψ(t)‖ = ‖VU0(t)(ϕα,a)‖ ≤ ‖V ‖(1+ t2/(mα)2)−3/4,

where we use (12.5) together with the simple fact that for ϕ ∈ H

‖V ϕ‖ ≤ ‖V ‖ sup
x∈R3

|ϕ(x)|.

Consequently
∫

dt‖ψ(t)‖ < ∞ and this implies the result in the case of Ω+. The case
of Ω− is similar.

In the rest of this section, limits of operators will be for the strong topology. That is, if
W (t) and W are operators we say that W (t) → W (say, as t → ∞) if W (t)(ϕ) → W (ϕ)
for each ϕ ∈ H. Thus (12.9) means that U (t)−1U0(t)→ Ω+ as t →−∞.

Let us note right away the following important property.

Lemma 12.2.8 We have

HΩ+ = Ω+H0 ; HΩ− = Ω−H0. (12.14)

Proof We prove only the first part since the second one is similar. For any number τ we
have

Ω+ = lim
t→−∞U (t)−1U0(t) = lim

t→−∞U (t + τ )−1U0(t + τ )

= lim
t→−∞U (τ )−1U (t)−1U0(t)U0(τ )

= U (τ )−1Ω+U0(τ ), (12.15)

so that U (τ )Ω+ = Ω+U0(τ ) and taking the derivative at τ = 0 of the equality yields the
results.
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The intuitive content of this result is that Ω+ transforms states of a given energy for H0

into states of the same energy for H .
Both Ω+ and Ω− are isometries on their respective ranges R+ and R−. How do we

describe these spaces? Let us start with a simple observation.

Lemma 12.2.9 Any eigenvector ψ of H is orthogonal to R+ and R−.

This result connects to the discussion on page 62: Typically the eigenvectors correspond
to negative eigenvalues and represent “bound states”. A particle in a bound state never gets
away from the potential. The lemma holds because the motion in the far past of a particle in
a bound state does not look like the motion of free particle (which would be far away from
the potential).

Proof Recalling the definition (12.3), and according to Lemma 12.2.4, it suffices to show
that (ψ,Ω+(ϕα,a)) = 0. Now, calling E the eigenvalue corresponding to ψ for any t we
have

(ψ,U (t)−1U0(t)(ϕα,a)) = (U (t)(ψ),U0(t)(ϕα,a)) = exp(iEt)(ψ,U0(t)(ϕα,a)).

As a consequence of (12.6) the last inner product goes to 0 as |t | → ∞. The same argument
works in the case of R−.

Let us stress that in this lemma we assume ψ to be an element of H, so we cannot use it
when ψ is an “improper state”.

It is not true in general that R+ = R−. Points in R+ \R− are the quantum equivalent
of a particle that, coming from infinity, gets trapped by the potential. Its motion in the far
future does not resemble the motion of a free particle.

The important and difficult theorem is as follows. Let us denote by B the closed lin-
ear span of the eigenvectors of H and by B⊥ its the orthogonal complement. Then if the
potential V is nice enough we have

R+ = R− = B⊥. (12.16)

This condition is called asymptotic completeness. Here nice enough means that V decreases
fast enough at infinity and is not too singular at the origin. Proving asymptotic completeness
is a very difficult task which we do not attempt.17 Assuming these conditions, we define
next the scattering operator which, in a sense, describes how the scattering changes the
trajectory of the particle.

Definition 12.2.10 Assuming asymptotic completeness, the scattering operator S is
defined by

S = Ω−1
− Ω+. (12.17)

It is unitary and satisfies

H0S = SH0. (12.18)

17 One further reason for not giving any proof is that there are very few rigorous results in Quantum Field
Theory where one succeeds to prove a suitable version of asymptotic completeness.
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The definition makes sense becauseΩ+ is unitary betweenH andR+ andΩ−1
− is unitary

from R− = R+ to H. The last assertion follows from (12.14), since

SH0 = Ω−1
− Ω+H0 = Ω−1

− HΩ+ = H0Ω
−1
− Ω+ = H0S.

With the notation (12.11) one writes

〈η|S|ξ 〉 = 〈η|Ω†
−Ω+|ξ 〉 =out〈η|ξ 〉in.

Here of courseout〈η| is the vector |η〉out seen as a linear functional on H, or in other words,

out〈η|ξ 〉in is the inner product of the vectors |η〉out and |ξ 〉in.
We have Ω− = limt→∞ U (t)−1U0(t) so that Ω−1

− = limt→∞ U0(t)−1U (t) = limt→∞
U0(−t)U (t). Since Ω+ = limt→−∞ U (t)−1U0(t) = limt→−∞ U (−t)U0(t) we deduce
from (12.17) that

S = lim
t1→∞,t2→−∞

U0(−t1)U (t1 − t2)U0(t2), (12.19)

a formula which will be fundamental later in computing S.

12.3 The Scattering Matrix in Non-relativistic Quantum Scattering

Having defined the scattering operator in the previous section, in the same setting we define
the scattering matrix, or S-matrix. We use the Fourier transform to view the scattering opera-
tor as an operator from momentum state space to itself, which we still call S.18 Heuristically
the S-matrix is simply the matrix of the operator S using the customary continuous basis of
improper states |p〉 for the momentum state space. In case you are allergic to this formalism,
let us attempt a rigorous definition. Consider two Schwartz functions ξ,η ∈ S3

R
, the space

of real-valued Schwartz functions on R3. (We consider first only real-valued functions to
avoid problems with anti-linearity.) We define the quantity19

�(ξ,η) := (ξ,Sη) = (Ω−ξ,Ω+η). (12.20)

The formula (12.20) defines a bilinear functional on S3
R

, which is a distribution in one of the
variables ξ or η when the other variable is fixed. A result of Laurent Schwartz (“Schwartz
Kernel Theorem” [33]) then asserts that there exists a tempered distribution � on R6 such
that for any choice of ξ and η one has

�(ξ,η) = �(ξ ⊗ η),

where ξ ⊗ η(x,y) := ξ (x)η(y). This distribution � is called the S-matrix.
We pretend as usual that � is a function rather than a distribution

(ξ,Sη) = �(ξ ⊗ η) =
∫∫

d3p1

(2π )3

d3p2

(2π )3 ξ (p1)η(p2)�(p1,p2), (12.21)

18 If you think as a physicist, for whom the state space is independent of any representation you do not need this
step.

19 This definition does not require the asymptotic completeness condition, but to do correct physics S has to be
unitary anyway.
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and then we define the S-matrix as the “function �(p1,p2)”. Then, allowing now ξ and η
to be complex valued,

(ξ,Sη) = �(ξ ⊗ η) =
∫∫

d3p1

(2π )3

d3p2

(2π )3
ξ (p1)∗η(p2)�(p1,p2). (12.22)

Observe here that the S-matrix entirely determines the scattering operator. Looking again
at the same question from the point of view of a physicist, we witness yet another triumph
of Dirac’s formalism. The scattering operator acts on the state space, which we think of as
independent of any kind of representation. Considering two states |α〉 and |β〉, we use twice
the completeness relation

1 =
∫

d3p

(2π )3 |p〉〈p|

to write

〈α|S|β〉 =
∫∫

d3p1

(2π )3

d3p2

(2π )3 〈α|p1〉〈p1|S|p2〉〈p2|β〉. (12.23)

When a mathematician uses the function η in momentum state space to describe a state
|β〉 this means that 〈p|β〉 = η(p), and 〈β|p〉 = η(p)∗. Consequently (12.23) has exactly
the same meaning as (12.21), except that the S-matrix is now written as 〈p1|S|p2〉 rather
than �(p1,p2).

In the sequel we shall use physics notation 〈p1|S|p2〉, but we keep in mind that despite
this notation, this quantity is a distribution and makes sense only when integrated against a
test function.

Continuing to describe the situation the way a physicist might do, we denote by |p〉 the
(improper, non-normalizable and unphysical) state (2π )3δ

(3)
p (in momentum state space) of

wave function exp(ip · x) (in position state space), and we “define”

|p〉in = Ω+|p〉 (12.24)

(the precise meaning of which will be explained below). Since |p〉 is an eigenvector of H0,
(12.14) shows that |p〉in is an eigenvector for H . The physicists say that

|p〉in is the state of Hwhich as time t →−∞ approaches the state |p〉. (12.25)

They are well aware that they are walking on eggshells while making such a statement
because it is false as it stands: Since U (t)|p〉in is proportional to |p〉in because |p〉in is an
eigenvector of H , it never gets close to |p〉 whatever the value of t .

The statement (12.25) is true only in the distributional sense, as is explained in more
detail below. In a similar manner, one defines |p〉out = Ω−|p〉, the state “which approaches
|p〉 as t →∞”. Using the second equality in (12.20) one has

〈p1|S|p2〉 = out〈p1|p2〉in, (12.26)

a formula which is often given as a definition of the S-matrix.
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Let us now explain more precisely the meaning of (12.24). The three-dimensional version
of the formula (2.37) i.e.

|ϕ〉 =
∫

d3p

(2π )3 |p〉〈p|ϕ〉, (12.27)

allows one to view the “states” |p〉 as a continuous basis of the state space. These states are
eigenvectors of H0 but not of H . On the other hand, the states |p〉in also form a continuous
basis (but not of the whole of H), which is far more appropriate to the study of H because
they are eigenvectors of H , and whenever one has (12.27) application of (12.24) also yields

Ω+|ϕ〉 =
∫

d3p

(2π )3 |p〉in〈p|ϕ〉, (12.28)

which actually defines the states |p〉in in a kind of distributional sense: These states |p〉in
make mathematical sense only when integrated against a function as in (12.28). They satisfy
the normalization condition

in〈p1|p2〉in = (2π )3δ(3)(p1 − p2), (12.29)

which is a simple consequence of the similar relation for the states |p〉 and of the fact that
Ω+ is an isometry. Also in consequence of this fact, the states |p〉in form a “continuous
basis” of R+. Here we should stress how tricky it can be to use “improper states”. The
improper states |p〉in are eigenvalues of H and belong to Ω+H = R+ despite the result of
Lemma 12.2.9 (but, as we pointed out, this lemma holds only for true states).

The continuous basis |p〉in is appropriate for the study of what happens in the far past,
because we know how to compute there the evolution of a mixture of such states. Indeed,
when t ! 0, by the very definition of Ω+ one has

U (t)
∫

d3p

(2π )3
|p〉in〈p|ϕ〉 � U0(t)

∫
d3p

(2π )3
|p〉〈p|ϕ〉 = U0(t)|ϕ〉.

The states |p〉out are another continuous basis, this time adapted to what happens in the
far future. In much more general situations it will still be true that the S-matrix relates a
continuous basis adapted to the past to a continuous basis adapted to the future. More about
the states |p〉in may be found in Appendix J.

What can we say a priori about the S-matrix? A first observation is that when there is no
interaction,

〈p1|S|p2〉 = (2π )3δ(3)(p1 − p2), (12.30)

so that when there is interaction it is natural to consider the difference

〈p1|S|p2〉 − (2π )3δ(3)(p1 − p2). (12.31)

Also, a consequence of (12.18) is that the distribution (12.31) is supported on the set
{p2

1 = p2
2}. The physicist’s proof of this is to use H0|p〉 = (p2/2m)|p〉 to write

p2
1

2m
〈p1|S|p2〉 = 〈p1|H0S|p2〉 = 〈p1|SH0|p2〉 =

p2
2

2m
〈p1|S|p2〉
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so that 〈p1|S|p2〉 = 0 unless p2
1 = p2

2. What is less obvious is that in many circumstances
we will have a relation

〈p1|S|p2〉 = (2π )3δ(3)(p1 − p2)+ iδ(p2
1 − p2

2)�(p1,p2), (12.32)

where � is a continuous (or even smooth) function of p1 and p2. The factor i is conven-
tional.20 To understand this formula it might help you to read Appendix K. To clarify the
meaning of the distribution δ(p2

1 − p2
2)�(p1,p2), it can be computed as follows: Given a

test function η(p1,p2), then∫∫
d3p1

(2π )3

d3p2

(2π )3 δ(p2
1 − p2

2)�(p1,p2)η(p1,p2)

= lim
ε→0

1

2ε

∫∫
{|p2

1−p2
2|≤ε}

d3p1

(2π )3

d3p2

(2π )3
�(p1,p2)η(p1,p2). (12.33)

In somewhat imprecise terms, this distribution is carried by the manifold p2
1 = p2

2 and is
simply given by integration against a smooth function on this manifold.

As this book is not a treatise of Quantum Mechanics we will not provide conditions for the
formula (12.32) to hold. Rather, we behave as physicists, assuming in our analysis that the
simplest possible structure holds until proven wrong.21 In the case which really concerns us,
the S-matrix in Quantum Field Theory, we will eventually be able to find concrete formulas
(order by order in perturbation theory) which will vindicate our regularity assumptions.

12.4 The Scattering Matrix and Cross-Sections, I

The purpose of a physical theory is to predict the behavior of the physical world. The
purpose of Quantum Field Theory is specifically to predict how particles interact. In the
next chapter we will learn how to use Quantum Field Theory to compute the S-matrix.
To check the validity of our theory, we perform scattering experiments. How then do we
relate the S-matrix to the results of these experiments?

Our goal in the present section is to relate, in the simpler framework of Quantum Mechan-
ics, and in a simple case, the abstract S-matrix with quantities which can be measured in
an actual scattering experiment, although our experiment will be very idealized. In this
experiment a device22 accelerates and focuses a beam of particles that is sent in the direction
of the z-axis from the negative to the positive direction toward a scattering potential located
in a very small region around the origin.23 Detectors placed above the origin measure the
momentum of the scattered particles. Knowing the S-matrix, we want to calculate the rate
at which the detector gets triggered, so that we can compare it with experimental results to
validate our theory.

20 The standard way to write this formula is different from ours. It includes numerical factors in the last term.
These factors are not introduced here as they can be motivated only with foresight.

21 In contrast with negative-minded mathematicians always wondering what could go wrong.
22 It will be referred to in this section as “the device”.
23 Think of the potential as being generated by a single particle, and of the range of this potential as being of the

order of the size of an atom, extremely smaller than the distance between the origin and the detectors.
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Before we get into that, let us describe a related entirely classical experiment. We are
shooting bullets in the direction of the z-axis toward a target located near the origin, but
whose exact position and shape is unknown. In our model of this situation the bullets are
punctual and the target is a compact subset of R3. Let us denote by D the projection of
the target on the (x,y) plane, and let us describe the trajectory of the bullet by its inter-
section u = (u1,u2) with the (x,y) plane. Thus the bullet will hit the target if and only if
u = (u1,u2) ∈ D. It is easier to hit the target if the area A of D is large. This area is called
the cross-section of the target. In order to try to hit the target, a sensible strategy is to choose
(u1,u2) uniformly at random within a distance R of the origin, where R is large enough that
every point of D is within distance R of the origin. The probability of hitting the target is
then A/(πR2). This becomes vanishingly small as R becomes large, and to compensate for
this it is better to shoot about πR2 bullets24 (one per unit of surface in the disc ‖u‖ ≤ R)
and then the mean number of bullets hitting the target will be A.

Let us now modify the previous experiment. Instead of a target, there is a scattering center
near the origin, but whose exact position and properties are unknown. We keep throwing
bullets at this scattering center, in the direction of the z-axis. The trajectory of the bullets
(before they approach the scattering center) is again described by a point (u1,u2) of the
(x,y) plane. If this point (u1,u2) is far from the origin, the influence of the scattering center
will not be much felt. So if we want to study how often the bullets are scattered in a given
direction,25 it still makes sense to choose (u1,u2) uniformly at random within distance R of
the origin and to shoot about πR2 bullets. Then we expect that the mean number of bullets
scattered in a given direction will have a finite limit as R→∞. The setting is described in
Figure 12.1.

Going back to the our Quantum Mechanical scattering experiment, the scattering matrix
S encodes in a rather indirect way the information about the scattering operator, that is how
the scattering potential alters the trajectory of particles. This information is described in
the sense of distributions by the collection of numbers 〈p1|S|p2〉. These quantities have to
be integrated against test functions. This is not a matter of hair-splitting search for rigor.
Notwithstanding the heuristic arguments which may be found in some textbooks, it makes
no sense to assume that the incoming particles are in an “improper state” of given momen-
tum because such particles have no localization whatsoever and thus cannot interact with
the scattering potential. To perform a sensible analysis we have to assume that the incoming
particles are described by true elements of the state space, by wave packets as the physicists
say, and then only take a limit as the momenta of the incoming particles become more
localized. This is what makes the analysis non-trivial.

We have to model both the detector and the beam of particles, keeping in mind that the
art of building models is to capture the essential features while at the same time keeping
matters simple. We must also be aware that when relating a mathematical model with the
physical world we may have to make statements which make physical sense but are hard to
precisely formulate mathematically.

24 The random choices of the corresponding u’s being of course independent for different particles.
25 Or more accurately in a given set of directions.
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xO

z

p0

Figure 12.1 The detector is placed so that a particle of momentum p0 leaving from near the
origin will enter it.

Let us first model the detector. Given a value of p0, we try to model a detector, which, at
the time a particle enters it “measures if its momentum is equal to p0”. Let |ψ〉 be the state
of the particle as it enters the detector26 (and assume that it is normalized, 〈ψ |ψ〉 = 1), so
that the probability density of the momentum of this particle is the function p �→ |〈p|ψ〉|2.

An ideal detector could measure for any setA the probability that the momentum belongs
to A, that is the integral over A of the function |〈p|ψ〉|2. We must account, (and this is
absolutely essential) for the fact that a real-life detector has a finite accuracy. It is then
natural to assume that the probability that the detector answers “yes” to the question “is the
momentum of the particle equal to p0?” is given by an expression∫

d3p

(2π )3 θ (p)|〈p|ψ〉|2, (12.34)

where 0 ≤ θ ≤ 1 is a smooth function which is equal to 1 in a small neighborhood of p0 and
to 0 outside a somewhat larger neighborhood of p0. In the limit case where the particle has
exactly momentum p, the content of (12.34) is that the detector is triggered with probability
θ (p). This equals 1 if p is close to p0, equals 0 if p is far from p0, and is in between in the
intermediate region. The function θ models the fact that the detector has a finite accuracy
and plays a crucial role in the analysis.

Let us stress again that we are doing physics in this section, not mathematics. In physics
it is fundamental to keep in mind the scale at which we are studying Nature and to make
suitable approximations. For example in nuclear physics a typical “strong interaction” lasts
not much longer than the time it takes for light, traveling at 3 · 108 m/s, to cross a nucleon

26 Here is the first occurrence of a statement which is hard to make mathematically precise. Let us note that
when the particle reaches the detector it is a free particle and, as we will make precise, “its momentum does
not change”, so precision is not essential here.
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of 10−15 m of diameter, that is about 10−23 s. This time is very much smaller than the time
it will take for the nucleon (even traveling at near the speed of light) to reach the detector.
For this reason the problems of taking limits as t → ±∞ concern only mathematicians
but not physicists.27 In our situation both the device and the detector are situated at least
centimeters away from the potential, whose effective range is maybe of order 10−10 m
if not much less. In particular in our analysis here we do not have to be concerned that
the definition (12.19) of the scattering operator involves taking certain limits. Let us then
assume that at the time t = 0 an incoming particle leaves the device and its state is |ϕ〉.28

Then for all practical purposes for t ≤ 0 we have U (t)|ϕ〉 = U0(t)|ϕ〉 because then the
particle is in a region of space where it does not feel the potential yet.29 Then if the particle
takes time T to reach the detector, and if |ψ〉 = U (T )|ϕ〉 then for all practical purposes for
t ≥ T we have U (t)|ψ〉 = U0(t)|ψ〉 because the particle is moving away from the potential
past the detector and no longer feels the potential in this region of space. Then we should
understand that in (12.19) the limits are actually obtained for t2 = 0 and t1 = T so that,
using again that U (T )|ϕ〉 = |ψ〉,

S|ϕ〉 = U0(−T )U (T )|ϕ〉 = U0(−T )|ψ〉.
The particle is in state |ψ〉 = U (T )|ϕ〉 as it enters the detector, so the probability that it
triggers the detector is given by

�(|ϕ〉) :=
∫

d3p

(2π )3
θ (p)|〈p|ψ〉|2 =

∫
d3p

(2π )3
θ (p)|〈p|S|ϕ〉|2, (12.35)

because

|〈p|ψ〉| = |〈p|U0(T )S|ϕ〉| = |〈p|S|ϕ〉|,
since in momentum state space U0(T ) is simply multiplication by exp(−iTp2/2m).

A quantity such as (12.35) is a probability. To measure it30 we must perform the scattering
experiment many times. To do this we have to know how to reliably produce an incoming
particle which is exactly in state |ϕ〉 at the time it leaves the device. It is rather questionable
whether this can be done, but, remarkably, our analysis will not depend on this.

Next we have to model the fact that the incoming particle belongs to a beam perpendicular
to the (x,y) plane which is extremely wide at the scale of the scattering potential.31 For this
we consider lateral shifts of the position of this incoming particle in directions contained
in the (x,y) plane. These shifts are parameterized by a point u = (u1,u2) ∈ R2, and the
fact that the incoming beam is cylindrical centered on the z-axis and of radius R is reflected

27 So, however horrifying it may be at first for a mathematician, physicists are perfectly correct to blankly take
t = ∞ at times.

28 Again it might be difficult to precisely formulate mathematically or even physically what this exactly means,
but the incoming particles do have to enter the picture at some stage, and we have to know something about
them when they do, so what else may we assume?

29 This is an idealization, which ignores what happened to the particle while it was accelerated by the device.
This however is another story, which does not concern the scattering experiment. For the purposes of the
scattering experiment, the particle just comes from far and happens to be in state |ϕ〉 at time t = 0.

30 We will not be able to measure (12.35) itself, but only a related quantity, as is explained later.
31 For example the radius of the beam of the Large Hadron Collider is of the order 10 microns = 10−5 m in the

collision areas, much larger than the order of the size of a nucleon, 10−15 m. The value of R is still very small
at our scale, but for the purpose of the present analysis it is∞.
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by the fact that ‖u‖ ≤ R. Thus one may think of u as a random variable which models the
position of the incoming particle within the beam.32 Given u ∈ R2 let u = (u1,u2,0). Given
a state |ϕ〉 let us then consider the state |ϕ〉u after the shift by u. It is defined by

〈x|ϕ〉u = 〈x − u|ϕ〉, (12.36)

or, equivalently

〈p|ϕ〉u = exp(−iu · p)〈p|ϕ〉. (12.37)

We state informally the main result of this section, using as is traditional for this result
the notion of solid angle. Solid angle dΩ is just the natural surface measure on the unit
sphere S2 of R3, so that Ω(S2) = 4π .33

Theorem 12.4.1 Let us assume that the scattering operator S satisfies the condition
(12.32). That is

〈p1|S|p2〉 = (2π )3δ(3)(p1 − p2)+ iδ(p2
1 − p2

2)�(p1,p2), (12.32)

for a continuous function �. Let us recall the function � of (12.35) and make the
further assumption that the function θ occurring there is equal to zero when the
momentum p is in a neighborhood of the direction of the z-axis.34 Consider a given
p̃ of the type (0,0,p̃) with p̃ > 0. Then, given ε > 0 there exists a neighborhood V of
p̃ such that if ϕ satisfies the condition

p �∈ V ⇒ 〈p|ϕ〉 = 0 (12.38)

then

∣∣∣∣ lim
R→∞

∫
‖u‖≤R

d2u�(|ϕ〉u)− 1

(8π2)2

∫
S2

dΩ(v)θ (p̃v)|�(p̃v,p̃)|2
∣∣∣∣ ≤ ε. (12.39)

In words, we compute the limit of the quantity
∫
‖u‖≤R d2u�(|ϕ〉u) as first R → ∞35

and then “the momenta of the incoming particles getting close to p̃”. This later property is
required in a strong sense: 〈p|ϕ〉 has to be zero outside a small neighborhood of p̃.36 This
order of limits is certainly required by Heisenberg’s uncertainty principle: If we know that
the first two components of the momentum of the incoming particle are nearly zero, we
cannot say much about the first two coordinates of the position of the particle.

The use of the uniform measure on the disc ‖u‖ ≤ R in the quantity
∫
‖u‖≤R d2u�(|ϕ〉u)

reflects the fact that the lateral position of the incoming particles is uniformly distributed in

32 These choices being independent for different particles.
33 Thus the uniform probability on S2 is dΩ/(4π).
34 The function θ models the accuracy of the detector. The hypothesis that this function is zero when the

direction of p is in a neighborhood of the direction of the z-axis physically means that within the accuracy of
the detector, the direction of p̃ is different from the direction of the z-axis.

35 Please keep in mind that this simply means that R is much larger than the “size of the scattering center”,
which is certainly satisfied for R = 10−5m.

36 As the momenta of the incoming particles concentrate around p̃, “the incoming wave packets become close to
plane waves”. But as we pointed out, it makes no sense to assume that the incoming particles are plane waves.
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that disc, but (just as in the classical case discussed earlier) this quantity does not contain
the factor 1/(πR2) which would express that we average over the lateral position of the
particle. This would not be the proper normalization: One single particle somewhere in a
wide beam is likely to miss the scattering potential and to produce no interaction. Rather
our normalization expresses that our wide beam contains on average one single particle per
unit area. Thus the quantity

1

(8π2)2

∫
S2

dΩ(v)θ (p̃v)|�(p̃v,p̃)|2 (12.40)

represents (in the iterated limit discussed above) the expected number of particles detected
if one sends an average of πR2 particles in the beam.37

Finally, the hypothesis that θ (p) is zero for p close to the z-axis implies that this result
is of use only to study scattering in directions which are different from the direction of the
incoming particles.

Exercise 12.4.2 Prove that the conclusion of Theorem 12.4.1 cannot hold unless
θ (p)|〈p|ϕ〉|2 is zero almost everywhere. This justifies the need of a strong hypothesis
as (12.38).

A fundamental point of the theorem is that the right-hand side does not depend on the
precise “shape” of |ϕ〉, but only on the fact that the corresponding momentum concentrates
around p̃. Equally fundamental is the following:

The probability that the detector gets triggered is entirely
determined by the scattering matrix. (12.41)

How does this single-particle experiment result relate to what happens when a beam of
particles is thrown at the potential? Consider a beam of particles of radius R, and assume
that during any second there is an average number ρ of particles per unit area which passes
into a horizontal plane. The different particles inside the beam do not interact with each
other and each performs the scattering experiment independently. Let us make the (highly
unrealistic) assumption that we can pretend that each of these particles performs the same
single-particle experiment, with the same value of |ϕ〉 and with u uniformly distributed over
a circle of radius R. The particle beam is very wide compared to the range of the potential,
and the incoming particles having traveled together a long time in the particle accelerator
should have a rather well-defined momentum. Then it is reasonable to assume that each
incoming particle will trigger the detector with probability about 1/(πR2) times the right-
hand side of (12.39). Since there is a total of πR2ρ particles per second, the average number
of times 〈n〉 the detector is triggered each second will be ρ times the right-hand side of
(12.39) i.e.

〈n〉 = ρ
1

(8π2)2

∫
S2

dΩ(v)θ (p̃v)|�(p̃v,p̃)|2. (12.42)

37 Again, the reason that the number of particles detected stays bounded as R→∞ is that most of the particles
pass too far from the scattering center to be scattered toward the detector.
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What then of our highly unrealistic assumption that each particle corresponds to the same
|ϕ〉? It is here that the keypoint that the right-hand side does not depend on |ϕ〉 matters. We
will have to consider different types of |ϕ〉 and we simply cross our fingers38 and hope that
the averaging phenomenon described by Theorem 12.4.1 takes place for each of these types
and that it remains true that the average number of times the detector is triggered per second
is given by (12.42).

To bring forward the physical content of this fact we observe that 〈n〉 is dimensionless
since it represents an average number. Since ρ is the number of particles per unit area it has
the dimension of the inverse of an area, the right-hand side of (12.39) has the dimension
of an area. It is called the cross-section that the detector is triggered. The reason for this
name is that the mean number of particles which trigger the detector is the same as the
number of (classical39) particles which would hit an area of this size placed perpendicularly
to the beam.

To interpret the relation (12.42) let us consider a unit vector v with a direction different
from the direction of p̃. Let us consider a small neighborhood U of v on S2 such that
the function w �→ �(p̃w,p̃) is almost constant on U . Pretending now that we can build
detectors of arbitrary accuracy, consider θ such that θ (p̃w) = 1 if w ∈ U and θ (p̃w) = 0 if
w �∈ U . Then the average number of times the detector is triggered per second is nearly
given by ρdΩ|�(p̃v,p̃)/(8π2)|2 where dΩ is the solid angle corresponding to U . The
coefficient |�(p̃v,p̃)/(8π2)|2 of ρdΩ is called in physics the differential cross-section.
Thus when the direction of the unit vector v is different from the direction of p̃ we have
reached a remarkably simple formula. When the length of the incoming momentum is p̃,
the differential cross-section in the direction of v is given by∣∣∣∣�(p̃v,p̃)

8π2

∣∣∣∣2 . (12.43)

The numerical constants here are sensitive to the way we have normalized the measure in
momentum space. The coefficient 8π2 can be removed by redefining the function � of
(12.32). This is the standard way this result is presented in the literature, refer to J. Taylor’s
book [82]. In the case where the situation is rotationally invariant, the differential cross-
section depends only of course on p̃, the momentum of the particles being scattered, and on
the angle of scattering.

Some of the hypotheses of the theorem are perfectly sensible, but the fact that we throw
the particles at a single scattering center is totally unrealistic: Rather, in an actual experiment
the beam is directed either at a whole piece of material (such as a very thin gold sheet in
Rutherford’s historical experiment) containing many such centers, or at another beam of
particles coming in the opposite direction. Fortunately however using this more realistic
hypothesis does not really change the analysis so we do not give the details. Still it is another
matter to determine if the theorem can be applied for a given experiment.

38 Or try to work much harder.
39 I.e. non-quantum.
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Proof of Theorem 12.4.1 We stay informal but the argument can be made rigorous. The
core of the proof consists in establishing that provided

θ (p) �= 0⇒ 〈p|ϕ〉 = 0 (12.44)

we have the identity

lim
R→∞

∫
‖u‖≤R

d2u�(|ϕ〉u) =
∫

d3p′

(2π )3W (p′)|〈p′|ϕ〉|2, (12.45)

where W is a certain explicit continuous function. Let us first complete the proof assuming
this has been proved. Since W is continuous, given ε > 0 there exists a neighborhood V of
p̃ such that p ∈ V ⇒ |W (p)−W (p̃)| ≤ ε. By decreasing V if necessary we may assume
that p ∈ V ⇒ θ (p) = 0 because by assumption the set {p;θ (p) = 0} is a neighborhood
of p̃.

Let us now assume that 〈p|ϕ〉 = 0 for p �∈ V . Since
∫ d3p′

(2π )3 |〈p′|ϕ〉|2 = 1, we then get∣∣∣∣∫ d3p′

(2π )3W (p′)|〈p′|ϕ〉|2 −W (p̃)

∣∣∣∣≤ ε. (12.46)

Furthermore, (12.44) holds by construction of V , so that (12.45) holds, and we have
shown that ∣∣∣∣ lim

R→∞

∫
‖u‖≤R

d2u�(|ϕ〉u)−W (p̃)

∣∣∣∣ ≤ ε.

To prove Theorem 12.4.1 it thus suffices to prove the identity (12.45) as well as the fact
that the actual value of W (p̃) is given by (12.40). This is obtained through calculation.
Unfortunately, this computation has a technical aspect: Having reached in a rather straight-
forward manner the multiple integral (12.52) containing many delta functions, we have to
use these delta functions to reduce the number of variables we integrate. This is all there is
in the argument. If this does not thrill you, please skip this part as well as Section 12.6. The
only thing which really matters for the sequel is (12.41): The probability that the detector
is triggered depends only on the S-matrix.

We start the argument with (12.35) used for |ϕ〉u. Exchanging the order of integration
we obtain the identity ∫

‖u‖≤R
d2u�(|ϕ〉u) =

∫
d3p

(2π )3 θ (p)fR(p), (12.47)

where

fR(p) :=
∫
‖u‖≤R

d2u|〈p|S|ϕ〉u|2,

and we proceed to compute fR . First, using (12.37) in the second equality,

〈p|S|ϕ〉u =
∫

d3p1

(2π )3 〈p|S|p1〉〈p1|ϕ〉u =
∫

d3p1

(2π )3 〈p|S|p1〉〈p1|ϕ〉 exp(−ip1 · u),
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so that

|〈p|S|ϕ〉u|2 = 〈p|S|ϕ〉u〈p|S|ϕ〉∗u
=
∫∫

d3p1

(2π )3

d3p2

(2π )3
〈p|S|p1〉〈p|S|p2〉∗〈p1|ϕ〉〈p2|ϕ〉∗ exp(i(p2 − p1) · u), (12.48)

and thus

fR(p) =
∫
‖u‖≤R

d2u

∫∫
d3p1

(2π )3

d3p2

(2π )3 〈p|S|p1〉〈p|S|p2〉∗〈p1|ϕ〉〈p2|ϕ〉∗ exp(i(p2 −p1) · u).

(12.49)

To pursue the computation we will use that 〈p|S|p1〉 = (2π )3δ(3)(p − p1) + iδ(p2 − p2
1)

�(p,p1) from (12.32), and similarly for 〈p|S|p2〉. This produces four terms. The first term
is obtained by replacing 〈p|S|p1〉 by (2π )3δ(3)(p−p1) and 〈p|S|p2〉 by (2π )3δ(3)(p−p2)
in (12.49). The δ functions let us compute the integrals in p1 and p2 to obtain

|〈p|ϕ〉|2
∫
‖u‖≤R

d2u,

which does not contribute to (12.47) because we assume through (12.44) that
θ (p)|〈p|ϕ〉|2= 0. A second term is obtained by replacing 〈p|S|p1〉 by (2π )3δ(3)(p − p1)
and 〈p|S|p2〉 by iδ(p2 − p2

2)�(p,p2). We can then use the delta function to perform the
integral in p1, yielding

−i
∫
‖u‖≤R

d2u

∫
d3p2

(2π )3 δ(p2 − p2
2)�(p,p2)∗〈p|ϕ〉〈p2|ϕ〉∗ exp(i(p2 − p) · u)

and this term again does not contribute to (12.47) because the product θ (p)〈p|ϕ〉 is identi-
cally zero by (12.38). A third similar term does not contribute either and consequently we
have shown that (12.47) holds with now

fR(p) (12.50)

=
∫∫

d3p1

(2π )3

d3p2

(2π )3 δ(p2 − p2
1)δ(p2 − p2

2)�(p,p1)�(p,p2)∗〈p1|ϕ〉〈p2|ϕ〉∗AR(p1,p2),

where AR(p1,p2) := ∫
‖u‖≤R d2u exp(i(p2 − p1) · u). Now, denoting p11,p12,p13 the

components of p1 (etc.),

lim
R→∞

AR(p1,p2) = lim
R→∞

∫
‖u‖≤R

d2u exp(i(p2 − p1) · u)= (2π )2δ(p21− p11)δ(p22 − p12),

so that we have reached the identity

lim
R→∞

∫
‖u‖≤R

d2u�(|ϕ〉u) =
∫

d3p

(2π )3 θ (p)f (p), (12.51)

where

f (p) =
∫∫

d3p1

(2π )3

d3p2

(2π )3�(p,p1)�(p,p2)∗〈p1|ϕ〉〈p2|ϕ〉∗δ, (12.52)
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and where

δ := δ(p2 − p2
1)δ(p2 − p2

2)(2π )2δ(p21 − p11)δ(p22 − p12).

This expression contains four delta functions, three of which involve p2. These three
delta functions will let us eliminate the three components of p2 and perform the integral
in p2 in (12.52) at p and p1 fixed. We start this procedure now. Integrating in p21 and p22

simply means that we fix p21 = p11 and p22 = p12. To integrate in p23 we have to perform
an integral of the type ∫

dp23

2π
δ(p2

23 − a)w(p23), (12.53)

for a certain function w, where a = p2 − p2
11 − p2

12. We may assume that p2 = p2
1, for

otherwise the contribution is zero due to the factor δ(p2 − p2
1) in δ. Then a = p2

1 − p2
11 −

p2
12 = p2

13, so that the integral (12.53) is∫
dp23

2π
δ(p2

23 − p2
13)w(p23).

We proceed as in (4.40) to find that this is

1

2π

1

2p13
w(p13),

where we have taken into account the fact that the function w(p23) is not zero only when
p2 � p̃ (because of the term 〈p2|ϕ〉 in (12.52)) and in particular only when p23 > 0, so
that w(−p13) = 0. In words, to perform the integration in p2, we replace the factor δ by a
factor δ(p2 − p2

1)/(4πp13) and we set p2 = p1 in the integrand. That is, we have

f (p) = 1

2π

∫
d3p1

(2π )3 δ(p2 − p2
1)

1

2p13
|�(p,p1)〈p1|ϕ〉|2,

and therefore ∫
d3p

(2π )3
θ (p)f (p) =

∫
d3p1

(2π )3
W (p1)|〈p1|ϕ〉|2, (12.54)

where the continuous function W is given by

W (p1) = 1

2π

1

2p13

∫
d3p

(2π )3
θ (p)δ(p2 − p2

1)|�(p,p1)|2.

We have proved (12.45), and it remains only to compute W (p̃). For this we move to polar
coordinates. We make the change of variable p = rv where r ≥ 0 and v ∈ S2, the unit
sphere of R3, so that p2 = r2. The normalization of the solid angle is such that d3p =
r2drdΩ(v), so that

W (p̃) = 1

(2π )4

1

2p̃

∫
r≥0

drr2δ(r2 − p̃2)
∫
S2

dΩ(v)θ (p̃v)|�(p̃v,p̃)|2.

Performing the integral in r as we have done multiple times yields the formula (12.39).
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12.5 Scattering Matrix in Quantum Field Theory

Let us now move back to Quantum Field Theory. The setting is somewhat different, particles
do not interact with a scattering potential, but with each other. The definition of the S-matrix
is far more difficult. We do not even begin to address the main difficulty in the present
section: The interaction of a particle with itself in a sense changes the nature of single-
particle states, a question we will examine in Chapter 14. We do not examine either the
problem of constructing Hamiltonians governing the scattering process.

Our focus instead is finding the proper tool, the S-matrix, to describe the results of
scattering experiments. Let us examine again the physics we are trying to model. We may
not be able to probe exactly what happens during the interaction, but a long time before it,
and a long time after it, our system consists of well-separated particles, and as such they do
not interact with each other. Here “long time” means at the time-scale of the interactions,
and again we will never have to worry about taking limits.

The state space Hpart describing a collection of non-interacting particles is our familiar
boson Fock space, or a tensor product of such spaces if there are several particle types. For
example, if we have two particles of types 1 and 2, then Hpart = H1 ⊗H2 where H1 and
H2 are the boson Fock spaces of Chapter 3 modeling indistinguishable particles of the same
type. One would naively think at first that the same state space would describe interacting
particles, but there is no reason to believe that, while interacting, particles can still be seen
as distinct individuals, so the state space H should be more complicated than that. Here
we hit a difficulty in generalizing (12.9) and (12.10): U0(t) operates on Hpart whereas U (t)
operates on the whole state space H.

At the heuristic level though the meaning is clear. The only states with which we can
experiment look like collections of free particles long before and long after the experi-
ment. Given states |ψ〉,|ϕ〉 ∈ Hpart which describe collections of non-interacting particles,
〈ψ |S|ϕ〉 is the amplitude that a state which “looks like |ϕ〉” before the interaction “looks
like |ψ〉” after the interaction. Here “looks like” means being composed of the same particle
types with the same distribution of momenta.

Trying to be more precise, we assume that there is a unitary operator Ω+ from Hpart

to H, which expresses that |ϕ〉in := Ω+|ϕ〉 is the element of the state space which in the
far past looks like the collection |ϕ〉 of free particles.40 The hypothesis that Ω+ is unitary
and hence onto contains the strong assumption that each state is of the type |ϕ〉in, that is, it
looks in the far past like a collection of free particles. We assume that Ω+H0 = HΩ+ (as
in (12.14)). Similarly there is a unitary operator Ω− which describes what happens in the
far future, with HΩ− = Ω−H0 and we define |ϕ〉out = Ω−|ϕ〉. The S-matrix is defined
for |ϕ〉 and |ψ〉 in Hpart by

〈ψ |S|ϕ〉 =out〈ψ |ϕ〉in. (12.55)

In other words S = Ω−1
− Ω+ is a unitary operator on Hpart which will completely describe

the effect of the interactions (as we have already claimed and will explain further).

40 In the sense that as t →−∞ the collection U (t)|ϕ〉in of interacting particles looks more and more like the
collection U0(t)|ϕ〉 of free particles.
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You might object that the present paragraph just repeats in jargon what was said informally
in the previous one without explaining what is really meant by “look in the far past like…”
There are at least two good reasons why most textbooks stop at the present level of hand-
waving:41 First, it is really difficult to go beyond it. Second, these considerations might be
important to construct a sound general theory, but they are completely irrelevant to what
we will do. We will work in perturbation theory, or, equivalently, in the interaction picture.
There we will implicitly pretend that Hpart ⊂ H. We will also implicitly pretend that U (t)
operates on Hpart.42 Most of the previous difficulties then just disappear, and we will never
be concerned about elements of H \Hpart.

How then do we describe the S-matrix, and what general form might it have? To describe
the family of numbers 〈ψ |S|ϕ〉 for |ψ〉,|ϕ〉 ∈ Hpart, we first need to describe the elements of
Hpart. This is best done using a “continuous basis” of improper states. A natural continuous

basis to describe one-particle states is denoted by a†
i (p)|0〉. Here p ∈ R3 and the index i

accounts for the particle type, its spin, etc., but to keep matters simple we consider only the
case of spinless particles. The element a†

i (p)|0〉 represents a particle of type i and given
momentum p. This quantity is an improper state which makes mathematical sense only
when integrated against a test function. To describe incoming two-particle states, we will
similarly use a continuous basis denoted a†

i1
(p1)a†

i2
(p2)|0〉,43 which similarly represents the

two-particle state where a particle of type i1 and momentum p1 and a particle of type i2 and
momentum p2 are present.

Thus, if e.g. |ϕ〉 = |a†
1(p1)a†

2(p2)|0〉 and |ψ〉 = a
†
5(p5)a†

4(p4)a†
3(p3)|0〉 the quantity

〈ψ |S|ϕ〉 equals

〈0|a3(p3)a4(p4)a5(p5)|S|a†
1(p1)a†

2(p2)|0〉. (12.56)

This quantity is the amplitude44 that starting with a state which, in the far past, looks like it
is made up of the two particles of types 1 and 2 and momenta p1 and p2 we end up in the
far future with a state which looks like it is made of the three particles of types 3,4,5 and
respective momenta p3,p4,p5. This statement is true only in a distributional sense, and the
quantity (12.56) itself makes sense only as a distribution.45

The S-matrix is then the collection of all quantities of similar type as (12.56) for various
choices of incoming and outgoing particles. Let us investigate the consequences of conser-

41 You are probably also wondering how much credit should be given to claims which involve that much
hand-waving. You are right, but for the time being we will stop there and delay further examination of these
matters until Chapter 13.

42 As we will show in Section 13.4 these assumptions are mathematically untenable, but it takes more than that
to stop us, doesn’t it?

43 In physics textbooks one often finds the following notation: If α is a label that describes particle types and
their momenta, there corresponds to α an element |α〉 of Hpart, and |α〉in and |α〉out are the states “made of
the same particles as α in the far past and the far future” respectively. This makes sense only in the
distributional sense.

44 Let us recall that inner products in the state space are often called amplitudes (see page 46) and that their
squares represent probabilities.

45 To avoid the minor complications created by the fact that identical particles cannot be distinguished from each
other we consider only the case of particles of different types i1 = 1,i2 = 2.
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vation of four-momentum on the S-matrix. Denoting by mi the mass of the particle of type
i the initial four-momentum is

pin =
(√

p2
1 +m2

1 +
√

p2
2 +m2

2,p1 + p2

)
,

and the final momentum pout is defined similarly,

pout =
(√

p2
3 +m2

3 +
√

p2
4 +m2

4 +
√

p2
5 +m2

5,p3 + p4 + p5

)
.

Conservation of four-momentum46 implies that the quantity (12.56) will be zero unless
pin = pout. In other words, the distribution (12.56) is supported by the set {pin = pout}, so
that we should be able to write47

〈0|a3(p3)a4(p4)a5(p5)|S|a†
1(p1)a†

2(p2)|0〉 = i(2π )4δ(4)(pin − pout)M((pi)i≤5) (12.57)

for a certain quantity M . The factor i is conventional. In the good cases it will happen that
M is a continuous function of p1, . . . ,p5. Our choice of incoming particles and outgoing
particles of a different nature was not accidental, but helps to make this hypothesis plausible.
If we had, say, two outgoing particles of types 1 and 2, we would have to take into account
the possibility that these are the same as the incoming particles, with no interaction having
taken place, and in M there would be terms with delta functions to express this.48

12.6 Scattering Matrix and Cross-Sections, II

In this section we show how to relate the quantity M of (12.57) with cross-sections that can
be measured (at least in principle) in the spirit of (12.43). Our sample result assumes that M
is a continuous function. The same type of arguments can be used in more complex situations
but we simply try to show that besides technicalities, everything works as in Section 12.4.
One simply has to display even more agility when computing integrals with many delta
functions in the integrand. If you are already convinced of the importance of the S-matrix
it is harmless to skip this section.

We perform the following experiment. A beam of particles of type 1 intersects a beam
of particles of type 2. Some particles of type 1 interact with a particle of type 2. We are
interested only in the case where this results in the production of a triple of particles of
types 3, 4, 5 respectively. Given the function M we try to compute how often this happens.

The first step is to precisely understand how we work with elements of Hpart. For this we
assume that our operators ai(p) are normalized as usual,

ai(q)a†
i (p) = a

†
i (p)ai(q)+ (2π )3δ(3)(q − p)1, (12.58)

with all the other commutators being zero. An element of Hpart consisting of three particles
of types 3, 4, 5 respectively is then of the form

46 Conservation of four-momentum is a fundamental physical principle. When we will actually compute the
S-matrix, the delta function enforcing this conservation will automatically appear in our calculations.

47 Mathematically this argument is wishful thinking. For example, the derivative δ′ of the delta function “is zero
outside the origin”, and there is no way to write δ′ = δM for a meaningful M . However, in the cases where
we will be able to compute the S-matrix, order by order in perturbation theory, it will often have the form
(12.57), where M is continuous.

48 Just as the first term in the right-hand side of (12.32) takes into account the possibility that no interaction took
place between the particle and the potential.
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|ψ〉 =
∫∫∫ ∏

i=3,4,5

d3pi

(2π )3
ψ(p3,p4,p5)a†

3(p3)a†
4(p4)a†

5(p5)|0〉, (12.59)

whereψ ∈ L2(R9,
∏

i=3,4,5 d3pi/(2π )3). The normalization (12.58) ensures that 〈ψ |ψ〉 =
‖ψ‖2

2, the square of the L2 norm of ψ .
We next have to model our detector. This amazing top-of-the line detector will not be

triggered unless it detects exactly three particles, one of each of the types 3,4,5. We try to
build it so that it gets triggered exactly when these three particles are of given momenta, but
however much money we spend on it, it cannot do this exactly. Rather, the probability that
it will be triggered by a state of the type (12.59) is of the type∫∫∫ ∏

i=3,4,5

d3pi

(2π )3
θ (p3,p4,p5)|ψ(p3,p4,p5)|2, (12.60)

for a certain smooth function θ .
We then have to model incoming pairs of particles. As these come from different beams

they are not entangled,49 so that it suffices to consider elements of Hpart which are of the
type

|ϕ1ϕ2〉 =
∫∫ ∏

i=1,2

d3pi

(2π )3 ϕ1(p1)ϕ2(p2)a†
1(p1)a†

2(p2)|0〉 (12.61)

where ϕ1,ϕ2 ∈ L2(R3,d3p/(2π )3) are of norm 1.
To lighten the exposition we use creative notation: pout = (p3,p4,p5) and

doutpout =
∏

i=3,4,5

d3pi

(2π )3
; 〈out| = 〈0|a3(p3)a4(p4)a5(p5)|. (12.62)

Then, following the analysis of (12.35) the probability that the detector gets triggered
when the incoming pair of particles is described by |ϕ1ϕ2〉 is given by∫

doutpoutθ (pout)|〈out|S|ϕ1ϕ2〉|2. (12.63)

The whole analysis depends on the cancellations produced by modeling the fact that the
incoming particles of types 1 and 2 belong to a wide beam. We lighten the exposition by
pretending rather that a particle of type 2 is just sitting at the origin (and plays the role of
the scattering center of Section 12.4) modeling that the particle of type 1 belongs to a wide
beam by random lateral displacements of these in the (x,y) plane. We know the actions of
translations on one-particle state are expressed by the representation of the Poincaré group:
A translation by a four-vector w amounts to multiplication of the state by exp(i(w,p)).
For u= (u1,u2)∈R2 we consider the four-vector yu= (0,u1,u2,0) and the vector u =
(u1,u2,0). Since the time-component of yu is zero, (yu,p) = y0

up
0 − u · p = −u · p,

and lateral displacement of u amounts to multiplication of the state by exp(i(yu,p)) =
exp(−iu · p), and replaces the state |ϕ1ϕ2〉 of (12.61) by the state

|ϕ1ϕ2〉u :=
∫∫ ∏

i=1,2

d3pi

(2π )3
exp(−iu · p1)ϕ1(p1)ϕ2(p2)a†

1(p1)a†
2(p2)|0〉. (12.64)

49 In the precise Quantum Mechanical sense.
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To lighten notation further, let us set

M(p1,p2,pout) := M(p1,p2,p3,p4,p5)

and note that then (12.57) takes the form

〈out|S|a†
1(p1)a†

2(p2)|0〉 = i(2π )4δ(4)(pin − pout)M(p1,p2,pout). (12.65)

The next theorem is the main result of the present section. It corresponds to (12.39): We
compute how the probability that our detector is triggered depends on the function M .50

To simplify notation, we use the relativistic relation p/p0 = v between the velocity v of a
relativistic particle and its four-momentum (p0,p), a relation which is proved in (N.3), so
that e.g. ṽ13 = p̃13/p̃10 for p̃1 = (p̃10,p̃11,p̃12,p̃13).

Theorem 12.6.1 Assume that (12.65) holds, where the function M is continuous. As
R → ∞ and then the supports of ϕ1 and ϕ2 concentrate around values p̃1 and p̃2,
the quantity ∫

‖u‖≤R
d2u

∫
doutpoutθ (pout)|〈out|S|ϕ1ϕ2〉u|2 (12.66)

converges to∫
doutpoutθ (pout)

1

|ṽ13 − ṽ23| (2π )4δ(4)(p̃in − pout)|M(p̃1,p̃2,pout)|2. (12.67)

The ε-δ meaning of the expression “the support of ϕ1 concentrates around the value p̃1” is
that given a neighborhood V of p̃1 and ε > 0, we may require that the integral of |〈p|ϕ2〉|2
on the complement of V be ≤ ε. This condition is quite weaker than the corresponding
condition in Theorem 12.4.1, where we required that 〈p|ϕ2〉 be zero outside V . This is made
possible by the fact that in the right-hand side of (12.65) we do not have the troublesome
first term on the right-hand side of (12.32).

To prove Theorem 12.6.1 we proceed as in Theorem 12.4.1. We will show that the
quantity

L(ϕ1,ϕ2) := lim
R→∞

∫
‖u‖≤R

d2u

∫
doutpoutθ (pout)|〈out|S|ϕ1ϕ2〉u|2 (12.68)

is of the form

L(ϕ1,ϕ2) =
∫∫

d3p1

(2π )3

d3p2

(2π )3
W (p1,p2)|ϕ1(p1)|2|ϕ2(p2)|2 (12.69)

where the continuous function W (p1,p2) is given by

W (p1,p2) =
∫

doutpoutθ (pout)
1

|ṽ13 − ṽ23| (2π )4δ(4)(p̃in − pout)|M(p1,p2,pout)|2.

(12.70)

50 There are special features in our sample result. When some of the outgoing particles are of the same type as
the incoming particles, it is always necessary to assume that the direction of scattering of these outgoing
particles is different from the direction of the incoming particles, for otherwise other terms of the S-matrix
would be involved.
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When the supports of ϕ1 and ϕ2 concentrate around p̃1 and p̃2 respectively, then L(ϕ1,ϕ2)
approaches W (p̃1,p̃2), proving Theorem 12.6.1.

Lemma 12.6.2 We have

lim
R→∞

∫
‖u‖≤R

d2u|〈out|S|ϕ1ϕ2〉u|2 =
∫∫

d3p1

(2π )3

d3p2

(2π )3Z(p1,p2) (12.71)

where

Z(p1,p2) = 1

|ṽ13 − ṽ23| (2π )4δ(4)(p̃in − pout)|M(p1,p2,pout)|2|ϕ1(p1)|2|ϕ2(p2)|2.

To prove (12.69) we substitute (12.71) into (12.68). To prove the lemma we compute first

lim
R→∞

∫
‖u‖≤R

d2u|〈out|S|ϕ1ϕ2〉u|2 = lim
R→∞

∫
‖u‖≤R

d2u〈out|S|ϕ1ϕ2〉u〈out|S|ϕ1ϕ2〉∗u.

(12.72)

For this we observe that

〈out|S|ϕ1ϕ2〉u

=
∫∫

d3p1

(2π )3

d3p2

(2π )3 exp(−iu · p1)ϕ1(p1)ϕ2(p2)〈out|S|a1(p1)†a2(p2)†|0〉. (12.73)

We substitute in (12.72), and write the product of the two double integrals as a quadruple
integral. We use (12.65) and the relation

lim
R→∞

∫
‖u‖≤R

d2u exp(−iu · (p1 − p′1)) = (2π )2δ(p11 − p′11)δ(p12 − p′12),

where p1 = (p11,p12,p13) and similarly for p′1. Using (12.65) we then obtain that the
quantity (12.72) is ∫∫∫∫

d3p1

(2π )3

d3p2

(2π )3

d3p′1
(2π )3

d3p′2
(2π )3

Aδ, (12.74)

where

A = M(p′1,p
′
2,pout)

∗M(p1,p2,pout)ϕ1(p′1)∗ϕ2(p′2)∗ϕ1(p1)ϕ2(p2)

and

δ = (2π )10δ(4)(pin − pout)δ
(4)(p′in − pout)δ(p11 − p′11)δ(p12 − p′12). (12.75)

Lemma 12.6.3 With the previous notation,∫∫
d3p′1
(2π )3

d3p′2
(2π )3Aδ

= 1

|v13 − v23| (2π )4δ(4)(pin − pout)|M(p1,p2,pout)|2|ϕ1(p1)|2|ϕ2(p2)|2. (12.76)

Substitution in (12.74) proves (12.71) and finishes the proof of Theorem 12.6.1.
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Proof This is the part which is a bit technical and demanding. The main idea is that
the vectors p′1 and p′2 have six components between the two of them, and in the term
(2π )6δ(4)(p′in−pout)δ(p11−p′11)δ(p12−p′12) there are six delta functions which determine
these components (counting a four-dimensional delta function as four one-dimensional delta
functions). This allows performing the integration in these variables p′1 and p′2.

As a first step we observe that due to the factor (2π )4δ(4)(pin − pout) in (12.75) we may
assume pin = pout so that (2π )4δ(4)(p′in−pout) = (2π )4δ(4)(p′in−pin). This quantity is the
product of the four one-dimensional delta functions

δ(ν) := 2πδ(p′1ν + p′2ν − p1ν − p2ν), (12.77)

for ν = 0,1,2,3. In the left-hand side of (12.76) let us first perform the integration in p′11
and p′21. The term 2πδ(p11−p′11) in (12.75) means that integrating in p′11 simply amounts
to fixing p′11 = p11. The quantity δ(1) of (12.77) then becomes 2πδ(p′21 − p21), so that
integrating in p′21 simply amounts to fixing p′21 = p21. The same pattern occurs when
integrating in p′12 and p′22, and after these four integrations the left-hand side of (12.76) is
of the type ∫∫

dp′13dp′232πδ(p′13 + p′23 − p13 − p23)δ(0)B, (12.78)

where B is a function of p′13 and p′23. Taking the integral in p′13 amounts to fixing p′13 =
p13 + p23 − p′23. It remains then to take the integral in p′23. We observe that

p′10 =
√
m2

1 + p2
11 + p2

12 + (p′13)2 =
√
m2

1 + p2
11 + p2

12 + (p13 + p23 − p′23)2

p′20 =
√
m2

2 + p2
21 + p2

22 + (p′23)2

so that p′10 + p′20 = ξ (p′23) where

ξ (x) =
√
m2

1 + p2
11 + p2

12 + (p13 + p23 − x)2 +
√
m2

2 + p2
21 + p2

22 + x2.

In a similar manner we havep10+p20 = ξ (p23). The quantity δ(0) is thus 2πδ(ρ(p′23)) where
ρ(x) = ξ (x)− ξ (p23). Thus ρ−1(0) = ±p13. Moreover the derivative ρ′ of ρ satisfies

|ρ′(p23)| =
∣∣∣ p13√

m2
1 + p2

1

− p23√
m2

2 + p2
2

∣∣∣, (12.79)

which, using the relation p/p0 = v we may write as

|ρ′(p23)| = |v13 − v23|,
and using (4.40) the integral (12.78) becomes

1

|v13 − v23|B(p13,p23),

since as in Section 12.4 we only have to consider the contribution of p23 but not of −p23.



350 Scattering, the Scattering Matrix and Cross-Sections

In summary, to compute an integral like (12.78) we fix p′13 = p13 and p′23 = p23 and
we replace the delta functions by the factor 1/|v13 − v23|. That is, we have shown that
computing the left-hand side of (12.76) amounts to fixing p′1 = p1, p′2 = p2 and replacing
the factor (2π )6δ(4)(p′in−pout)δ(p11−p′11)δ(p12−p′12) by 1/|v12− v23|, which is exactly
the meaning of the formula (12.76).

Key ideas to remember:

• The S-matrix encodes the effect of interactions.
• In Quantum Field Theory the S-matrix relates how a collection of far-away particles

looked before the interaction to the way it looks after the interaction.
• The S-matrix entirely determines the results of scattering experiments.



13

The Scattering Matrix in Perturbation Theory

In this chapter we learn how to compute the S-matrix in perturbation theory. Similar compu-
tations (in a far more elaborate form than is presented here) form the bulk of many Quantum
Field Theory textbooks. This chapter marks a transition, as we are now gradually going to
drift further and further from respectable mathematics. Do not worry then if you find that the
arguments are getting fuzzier and the computations more formal than ever.1 These methods
are justified by their tremendous practical success.

In the first five sections we examine the overall method and its mathematical sanity.
The consideration of actual models starts in Section 13.6. We consider spinless massive
particles with really simple interaction Hamiltonians. This situation is far simpler than the
models that actually describe Nature, but it has already many features of these. Up to Section
13.16 we gradually build the tools to systematically express scattering amplitudes (at a given
order of perturbation theory) as the sum of the values of certain diagrams, the celebrated
Feynman diagrams. The values of these diagrams are expressed as integrals, which often
diverge when the diagrams contain loops. This is the main technical difficulty of Quantum
Field Theory. From Section 13.17 to Section 13.20 we study in considerable detail one of
the simplest cases of such divergences, certain diagrams with one loop in φ4 theory. In the
last four sections we attack the far more difficult case of two loops, which already touches
the central issues of renormalization.

13.1 The Scattering Matrix and the Dyson Series

Let us go back to the situation of Section 11.2 (which the reader should review now), of an
unperturbed Hamiltonian H0 and of a Hamiltonian H defined by the formula

H = H0 + gHI, (13.1)

where g is the coupling constant controlling the strength of the interaction and HI is an
“interaction term”. Crossing our fingers, let us consider the “scattering operator”

S = lim
t1→∞,t2→−∞

U0(−t1)U (t1 − t2)U0(t2). (13.2)

1 Think positively: this prepares you for the next chapter!

351
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Let us recall from (11.37) the formal expansion

U0(t2 − t1)U (t1 − t2) = 1+
∑
n≥1

(−ig)n

n!

∫ t1−t2

0
dθ1 . . .

∫ t1−t2

0
dθnT HI (θ1) · · ·HI (θn),

(13.3)

where HI (t) = exp(itH0)HI exp(−itH0) = U0(−t)HIU0(t) is the evolution in the interac-
tion picture of the operator HI and T is time-ordering. We observe the identity

U0(−t2)(T HI (θ1) · · ·HI (θn))U0(t2) = T HI (θ1 + t2) · · ·HI (θn + t2).

Multiplying (13.3) to the left by U0(−t2) and to the right by U0(t2), making changes of
variables to obtain integrals from t2 to t1 and letting t1 → ∞ and t2 → −∞ we obtain
from (13.2) the fundamental formula:

S = 1+
∑
n≥1

Sn ; Sn = (−ig)n

n!

∫
dt1 . . .

∫
dtnT HI (t1) · · ·HI (tn), (13.4)

which will be the basis of every computation. This formula applies to each operator S of
the type (13.2), and in particular to the operator S of (12.19) (scattering by a potential), as
we use in the next section. The series S = 1+∑n≥1 Sn is called the Dyson series.

We will further pretend that we are also permitted to use the Dyson series (13.4) for the
S-matrix in the setting of Section 12.5.2

Let us repeat that writing (13.4) involves no claim about the convergence of the series,
which we consider as a formal series in powers of g. Let us also recall the following.

Definition 13.1.1 Performing computations at the kth-order in perturbation theory
means replacing S by 1 +∑

1≤n≤k Sn, and more generally ignoring any term with a
coefficient gk+1 in the computations.

This has strictly nothing to do with the convergence of the series and is being done
without any estimate of the size of the terms being thrown away. Furthermore, as we will
soon realize, the terms thrown away have a tendency to be infinite. Even when these “infi-
nite” terms are properly “normalized”, i.e. replaced by a proper suitable finite quantity as
we will learn to do, in the cases of real interest it does not seem that the Dyson series
is convergent.3 The use of the method is justified by the following empirical fact: Using
the very first few terms of the Dyson series yields predictions that wonderfully agree with
experiments.4

2 This means that in particular we pretend that both time-evolutions U (t) and U0(t) operate on the state space.
3 It seems that the most optimistic hypothesis one can make for the theories of real interest is that the Dyson

series is an “asymptotic series”. A real-valued function f (g) defined for g > 0 has the series
∑

n ang
n as an

asymptotic series if given any integer N > 0 then |f (g)−∑0≤n≤N ang
n| < gN for g small enough

(depending on N ). However, g does not tend to 0. Its value is provided by Nature. The knowledge of an
asymptotic series for the function f is only of theoretical interest. For the actual value of g, it does not say that
any of the partial sums of the series is a good approximation of f (g).

4 An interesting point here is that up to now using more terms in the Dyson series has led to better agreement
with experiments, but if the series is indeed divergent, at some point using more terms will produce worse
predictions!
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13.2 Prologue: The Born Approximation in Scattering by a Potential

Before we start computing the S-matrix in Quantum Field Theory, let us give a much
simpler example of use of the formula (13.4). For this we go back to the setting and the
notation of Section 12.2, the HamiltonianH0 = P 2/2m := −(1/2m)

∑
i≤3 ∂

2/∂x2
i , and the

HamiltonianHI “multiplication by the function V (x)”, and we compute “at the first order in
perturbation theory” the corresponding S-matrix. In other words we use the approximation
S � 1− igA where

A =
∫
R

dtHI (t). (13.5)

The computation of A is best done in a basis where H0 is diagonal, “the continuous basis
of states |p〉 of given momentum” because H0|p〉 = (p2/2m)|p〉. We will write things as
a physicist would write them, using both states |p〉 of given momentum and states |x〉 of
given position, but it is not difficult here to write the same calculation in a more formal way
in momentum space. Thus

〈p1|A|p2〉 =
∫
R

dt〈p1| exp(itH0)V exp(−itH0)|p2〉

=
∫
R

dt exp(it(p2
1 − p2

2)/2m)〈p1|V |p2〉

= 2πδ((p2
1 − p2

2)/2m)〈p1|V |p2〉. (13.6)

Now, 〈x|V |y〉 = V (y)〈x|y〉 = V (y)δ(3)(x − y), and thus

〈p1|V |p2〉 =
∫∫

d3xd3y〈p1|x〉〈x|V |y〉〈y|p2〉

=
∫∫

d3xd3y exp(ip2 · y − ip1 · x)δ(3)(y − x)V (x)

=
∫

d3x exp(−i(p1 − p2) · x)V (x)

= V̂ (p1 − p2), (13.7)

where V̂ is the Fourier transform of V . Thus, at the first order of perturbation theory,

〈p1|S|p2〉 = (2π )3δ(3)(p1 − p2)− 2π igδ((p2
1 − p2

2)/2m)V̂ (p1 − p2). (13.8)

This is called the Born approximation. It will help us to recognize interactions involving the
potential V . It is not an easy matter to develop intuition about the meaning of this formula,
because information is encoded in an indirect way. Again, |p〉 represents a particle with
given momenta, so it is not localized in space and is unlikely to feel the influence of the
scattering center. However, this formula leads to a differential cross-section which can be
experimentally tested.

Exercise 13.2.1 What is the differential cross-section predicted by the Born
approximation?
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13.3 Interaction Terms in Hamiltonians

We now go back to Quantum Field Theory. We have already built good models for systems
consisting of non-interacting particles of a given type. For example, in the case of a single
type of massive, spinless particle the state space is the boson Fock space B constructed on
the space L2 = L2(Xm,dλm), with Hamiltonian H0 given by (5.36).5 In order to bring in
some physics, besides the Hamiltonian H0 describing the free particles, we consider a term
HI representing the interaction between these particles.

A fruitful method to construct such interaction terms is to use a Hamiltonian density
H(x), an operator-valued distribution on R1,3. Denoting by U0(t) the time-evolution of the
free particles under the Hamiltonian H0, the Hamiltonian density is chosen as to have the
property

U0(−t) ◦H(0,x) ◦ U0(t) = H(t,x), (13.9)

The interaction Hamiltonian is then defined by the formula

HI =
∫

d3xH(0,x). (13.10)

When writing this formula we assume that it makes sense to consider H(0,x) so that H(x) is
indeed a special type of operator-valued distribution. We also assume that the integral makes
sense.6 In the interaction picture, the Hamiltonian HI (t) is given by the formula (11.21) i.e.
HI (t) := U0(−t)HIU0(t). Combining (13.9) and (13.10) we then obtain

HI (t) =
∫

d3xH(t,x), (13.11)

and combining with (13.4) suggests the very nice formula

Sn = (−ig)n

n!

∫
d4x1 . . .

∫
d4xnT H(x1) · · ·H(xn). (13.12)

Presumably this means that given x1, . . . ,xn the time-ordering of the operators H(xk) is
performed accordingly to the time-components of these points. This does not always make
sense. In general the meaning of T H(x1)H(x2) when H(x) is a distribution is not so clear.
Here, however, we will consider only the case where H(x) is a product of free fields. These
are well defined at a given value of t . The time-ordered product T H(x1)H(x2) is then well
defined unless x1 and x2 have the same time-component.7 But since free fields commute at
equal times as shown by the equal-time commutation relations (6.63), the time-ordering is
well defined in all cases.8

5 When we consider several particle types, we simply take a tensor product of such spaces as will be detailed
later.

6 Generally speaking, and for reasons that will become apparent soon, we will no longer worry about such
mundane matters, or about exchanging orders of integrations, etc.

7 And assuming that the product of the distributions H(t1,x1) and H(t2,x2) makes sense.
8 However there are situations where this is not the case, when one considers “derivative couplings”, i.e. if H(x)

is a product of terms some of which are of the type ∂t ϕ(x), and this creates an additional source of
complications, see (6.62). We will not meet such situations.
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Exercise 13.3.1 Use the expansion S = ∑
n≥0 Sn to compute formally S†S as a

formal series in g. Prove that the coefficients of g, g2 and g3 are zero. The last case
is harder. A proof that the general coefficient is zero is even harder.

13.4 Prickliness of the Interaction Picture

When one modifies the Hamiltonian H0 by introducing an interaction term HI , it is not
obvious what a natural choice of state space is, and how one defines the full Hamiltonian
as a self-adjoint operator on the state space. Unfortunately, it is not only un-obvious how to
achieve these minimal goals, it is just mathematically impossible to achieve them, at least
while preserving all the desirable properties one would expect from such a construction. As
everything in the present section is at the level of hand-waving, our description of the basic
obstacle will be at the same level. Together with the free Hamiltonian H0 is a free field ϕfree

(as defined in Chapter 5), which, as shown in Section 6.9, has a well defined value ϕfree
t at

a given value of t , i.e. ϕfree
t (x) := ϕfree(t,x). It satisfies the evolution equation (2.85)

ϕ̇free
t := ∂

∂t
ϕfree
t = i[H0,ϕ

free
t ]. (13.13)

On the other hand, there should exist an “interaction quantum field ϕt”, which will sim-
ply be the Heisenberg evolution of the field ϕ0=ϕfree

0 according to the full Hamiltonian
H =H0 + gHI , reflecting the fact that at time t = 0, the Schrödinger, Heisenberg and
interaction picture all coincide. The interaction quantum field satisfies the corresponding
evolution equation

ϕ̇t = i[H,ϕt ]. (13.14)

In particular (13.14) implies that

ϕ̇0 = i[H,ϕ0] = i[H,ϕfree
0 ] = ig[HI,ϕ

free
0 ]+ i[H0,ϕ

free
0 ] = ig[HI,ϕ

free
0 ]+ ϕ̇free

0 .

In the usual cases we have

[HI,ϕ
free
0 ] = 0 (13.15)

and then ϕ̇0= ϕ̇free
0 . In Appendix M we state a theorem of Haag that shows that this con-

dition, together with the condition ϕ0 = ϕfree
0 implies that ϕ is itself (provided it behaves

nicely) a free field of mass m. This in turn (heuristically) means that the interactions are
trivial. This is certainly not the case in general. Something went terribly wrong.

To get a better feeling of what went wrong, we can look at a very simple case. We proved
in Proposition 6.11.3 that a Hamiltonian density for the free field of mass m is given by the
formula

:
1

2

(
ϕ̇free(x)2 +

∑
1≤ν≤3

(∂νϕ
free(x))2

)
+ 1

2
m2ϕfree(x)2: , (13.16)
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where we recall that the funny notation : : means normal ordering, writing all operators a†

to the left of the operators a. Let us choose

H(x) = 1

2
:ϕfree(x)2: (13.17)

as the Hamiltonian density for the interaction termHI . If we add g times the quantity (13.17)
to the quantity (13.16), this amounts to replacing in (13.16) the quantity m2 by m2+g. This
means that the Hamiltonian H0 + gHI is the Hamiltonian of a free field of mass m′ with
m′2 = m2 + g. This Hamiltonian is perfectly well defined (and we studied it in Section
6.11). Next, let us check that (13.15) is satisfied. We have 2HI =

∫
d3y :ϕfree

0 (y)2:. Going
back to (5.30), let us write

ϕ+(y) =
∫

d3p

(2π )3
√

2ωp

exp(iy · p)a(p) ; ϕ−(y) =
∫

d3p

(2π )3
√

2ωp

exp(iy · p)a†(p)

the annihilation and creation parts of ϕfree
0 (y), so that ϕfree

0 (y) = ϕ+(y) + ϕ−(y). Pro-
ceeding rather formally, we have :ϕfree

0 (y)2:= ϕ−(y)2 + 2ϕ−(y)ϕ+(y) + ϕ+(y)2 so that
:ϕfree

0 (y)2: −ϕfree
0 (y)2 = [ϕ−(y),ϕ+(y)] and according to (3.34) such a commutator is

a multiple of the identity. Consequently to compute [HI,ϕ
free
0 ], in the expression HI =

(1/2)
∫

d3y :ϕfree
0 (y)2: we may replace :ϕfree

0 (y)2: by ϕfree
0 (y)2. It then follows from the

equal-time commutation relation (6.63) and the identity [AB,C] = A[B,C]+ [A,C]B that
[HI,ϕ

free
0 ] = 0.

However, as shown by Haag’s theorem, Theorem M.2.1, it cannot be true that the free
field ϕt of massm′ and the free field ϕfree

t of massm satisfy both ϕ0 = ϕfree
0 and ϕ̇0 = ϕ̇free

0 .9

Even though H and H0 both make perfect sense, it is the (implicit) assumption that they
operate on the same state space that does not.

Disregarding these problems we shall pretend that the interaction picture exists and pro-
ceed accordingly. If a mathematician really corners us into explaining what is the meaning
of what we are doing, we will argue that these obstacles are an artifact of continuous
models, and that what we really mean is that we have put the universe in a box, and that we
have used an ultraviolet cutoff10 to remove the remaining diverging series. (The difficult
part would then be to prove that we obtain results independent of this cutoff.) But when
no mathematician is in sight we will keep as always making formal computations in the
continuous model, keeping our eyes open for the infinite series that might occur then in the
form of divergent integrals. Putting the universe in a box also takes care of another problem
which will become glaring when we write actual formulas for the Hamiltonian density H.
These formulas involve products of quantities that are distributions, and, even though one
can formally compute with them, what they really mean is far from obvious.

9 This statement actually follows from Corollary M.3.6, a special case of Haag’s theorem, which is much easier
than the general theorem, and which we prove in complete detail.

10 Let us recall that using an ultraviolet cutoff to make sense of a diverging series simply amounts to discarding
all the terms of the series beyond a certain rank.
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13.5 Admissible Hamiltonian Densities

Having brilliantly succeeded in not confronting the question of really defining either the
Hamiltonian or the state space, we keep pretending that the state space is just the same as if
we had only the free field. In the present section we examine two general issues, first how
to find Hamiltonian densities that satisfy (13.9) and then whether the resulting interacting
theory is Lorentz invariant. We expect that the result of our scattering experiments does not
depend on the inertial observers. A natural way to ensure this is to require that if U (c,C)
denotes the action of P∗ on Hpart then11 whenever |in〉 and |out〉 belong to Hpart,

〈outU (c,C)†|S|U (c,C)in〉 = 〈out|S|in〉,
or, equivalently, that S commutes with U (c,C).

Certainly (13.9) is too weak to give us a chance to obtain Lorentz invariance. Rather (in
line with (5.6)) we will assume that12

U (c,C) ◦H(x) ◦ U (c,C)−1 = H(c + C(x)). (13.18)

This is more general than (13.9) because the time-evolution U0(t) is just translation by −t
along the time coordinate, i.e. U (b,1)−1 for b = (t,0,0,0).

We will consider only cases where (13.18) is trivially satisfied, because the Hamiltonian
density H(x) will be a product of free scalar fields that satisfy this condition.13 More
generally, the construction of densities transforming as (13.18) is based on families of fields
that transform according to (10.6). Such densities are of fundamental importance in the
study of the real world, and provide the true motivation for all the work of Chapter 10. An
example of such a construction is provided in the next exercise.

Exercise 13.5.1 (a) Consider two families of fields (ϕk)k≤N , (ϕ′k)k≤N and assume that
for a representation T of SL(2,C) in CN we have

U (c,C) ◦ ϕk(x) ◦ U (c,C)−1 =
∑
�≤N

T (C−1)k,�ϕ�(c + C(x)), (13.19)

as well as the same condition for ϕ′k . Prove that the Hamiltonian density

H(x) =
∑
k,k′

αk,k′ϕk(x)ϕ′k′ (x)

satisfies (13.18) as soon as the following identity holds true

α�,�′ =
∑

k,k′≤N
αk,k′Tk,�(C

−1)Tk′,�′ (C
−1), (13.20)

i.e. as soon as (αk,k′ ) is invariant under the representation T ⊗ T on CN ⊗ CN .
(b) When T is the defining representation of SL(2,C) on C2 (multiplying a matrix
by a column vector), prove that (13.20) is satisfied by the choice α2,2 = α1,1 = 0,
α1,2 = 1 = −α2,1.

11 There also could be in principle a phase factor.
12 A physicist may express this relation by saying that H transforms as a scalar.
13 Furthermore, as is shown in Section 6.9, these fields are really defined at a given value of t as required in

(13.10).
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In the rest of this section we provide a simple criterion for our theory to be Lorentz
invariant. It shows in particular that the theories we consider later in the chapter are Lorentz
invariant.

Theorem 13.5.2 Assume that the Hamiltonian density H satisfies (13.18), is smooth
enough (as will be discussed below) and satisfies the condition

(x − y)2 < 0⇒ [H(x),H(y)] = 0. (13.21)

Then the S-matrix is Lorentz invariant within perturbation theory.

The expression “within perturbation theory” is related to Definition 13.1.1. It means that
each term of the formal series given by Dyson’s formula is Lorentz invariant, in the sense
that it commutes with the operators U (c,C). This is about the best we can do since we do
not have a real formula for the S-matrix. Condition 13.21 is the usual causality condition:
Events happening at two points that are causally separated cannot influence each other. So,
we have to prove that∫

d4x1 . . .

∫
d4xnU (c,C) ◦ T H(x1) · · ·H(xn) ◦ U (c,C)−1

=
∫

d4x1 . . .

∫
d4xnT H(x1) · · ·H(xn). (13.22)

If we did not have the time-ordering operator T in (13.12) this would be an obvious
consequence of (13.18) by Lorentz invariance of the measure d4x, even without requiring
(13.21).

The words “smooth enough” in the statement of the theorem indicate a technical dif-
ficulty, as there can be pathological behavior of the distributions involved here. But since
we are in hand-waving mode, we pretend that H(x) is a function of x, assuming moreover
that H(x) and H(y) commute if x and y have the same time-component, so that the time-
ordering is well defined. A hand-waving argument meets our purpose here since the point of
Theorem 13.5.2 is simply to reassure us that we are doing something sensible. To “prove”
the theorem it is sufficient to establish the identity

U (c,C) ◦ T H(x1) · · ·H(xn) ◦ U (c,C)−1 = T H(c + C(x1)) · · ·H(c + C(xn)). (13.23)

There is no difficulty with the term c so we lighten notation by taking c = 0 and assuming
that the product H(x1) · · ·H(xn) is already time-ordered. Then

U (0,C) ◦H(x1) · · ·H(xn) ◦ U (0,C)−1 = H(C(x1)) · · ·H(C(xn)). (13.24)

The problem is that the right-hand side is not time-ordered. To analyze its time-ordering,
let us denote by ti the time-component of xi and by t ′i the time-component of x′i := C(xi).

Lemma 13.5.3 If a pair (i,j ) is such that ti ≥ tj but t ′i < t ′j then the operators H(x′i)
and H(x′j ) commute.

Proof By (13.21) it suffices to prove that (x′i − x′j )2 = (xi − xj )2 < 0. But if we had

(x′i − x′j )2 = (xi − xj )2 > 0 it would hold that t ′i ≥ t ′j by Lemma 4.1.3.
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Let us now sketch the proof that

H(C(x1)) · · ·H(C(xn)) = T H(C(x1)) · · ·H(C(xn)), (13.25)

thereby completing the proof of (13.23) and of Theorem 13.5.2. The proof of (13.25) can
be described by one sentence: To go from the natural ordering to the time-ordering, we have
to exchange the order of certain operators, but these commute. To make the argument more
precise, consider a permutation σ of {1, . . . ,n} such that t ′σ (1) ≥ t ′σ (2) ≥ . . . , so that the
time-ordered product of H(x′1) · · ·H(x′n) is H(x′σ (1)) · · ·H(x′σ (n)). To transform the product
H(x′1) · · ·H(x′n) into the time-ordered product we first bring the term H(x′σ (1)) from the
position σ (1) in the product to the first position. This is possible because it commutes with
all the terms H(x′i) for i < σ (1) by the previous argument, and then we proceed recursively
in this manner.

13.6 Simple Models for Interacting Particles

There are two different obstacles when trying to compute S-matrices in the interaction
picture.

• Some integrals diverge and it is difficult to assign a meaning to them.
• There is a lot of bookkeeping to be done to keep track of complications such as spin.

A physicist has no choice but to deal with Nature’s complications. In the present setting
however it pays to separate real difficulty (the divergent integrals) from accessory com-
plications. For this reason we will concentrate on models that are as free as possible of
accessory complications. These models have no claim whatsoever to have any realistic
physical content.14 Nonetheless they will teach us how to deal with the greatest technical
difficulty of Quantum Field Theory, the divergent integrals. Once this is mastered, it still
requires stamina and creativity to learn how to proceed with the realistic models, but the
main difficulty is arguably behind us.

We will consider only spinless particles which are their own anti-particles.15 In the basic
model called φ3 theory (or, equivalently, called the φ3 model) one considers a single such
particle type, with a (tentative) interacting Hamiltonian density16

H(x) = ϕ(x)3

3!
. (13.26)

Here, the factor 3! is conventional (and allows for somewhat simpler numerical factors in
the computations), and ϕ(x) is the free field associated to the particle.17 Thus (13.21) is a
consequence of microcausality, Theorem 5.1.5 (if one pretends that microcausality means
that [ϕ(x),ϕ(y)] = 0 when (x − y)2 < 0).

14 Worse, some of these models are non-physical, in the sense that the Hamiltonian is not bounded below. This
however is irrelevant at the level of perturbation theory, which does not “see” this.

15 Thus such particles must be neutral, i.e. they cannot carry an electrical charge.
16 I make the convention that the coupling constant g is not part of the interacting density.
17 In this chapter we no longer consider the “true interaction quantum field” of Section 13.4, and all the fields

are free fields.
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You may wonder of course why we choose the formula (13.26). Generally speaking the
fruitful method to construct admissible Hamiltonian densities is as products of free fields.
Formula (13.26) is about the simplest you can write, as it uses one single free field of the
simplest type. The exponent 3 is the smallest which gives a non-trivial theory. (In particular
we have seen in the Section 13.4 that a term ϕ(x)2 simply amounts to changing the mass
of the particle.) What is remarkable however (and will become clear only gradually) is that
this theory already presents the very basic difficulties of Quantum Field Theory, while being
free of the auxiliary complications that clutter realistic models. It is thus far more than a toy
example, and we will later spend considerable time studying it. In the present chapter, after
a little detour, we will however focus on the similarly defined φ4 theory.

The goal is then to use the formula (13.10) to define the interaction Hamiltonian HI (and
then to study the full Hamiltonian H0+gHI for the interacting particles). If we were doing
mathematics, we would immediately ask two questions: First, since ϕ is a distribution, what
is the meaning of ϕ(x)3? Second, are we in the setting previously described, that is, can we
make sense of the Hamiltonian HI given by (13.10)? But we are physicists, so we proceed
immediately to the important matter, the computation of S-matrix elements. A short answer
to the preceding questions is that at least it is possible to make some sense out of :ϕ(x)3:,
which we will later choose as an interacting Hamiltonian. On the other hand, it is harder to
make sense of HI , see Exercise 13.14.2.18

Before we start studying the φ3 theory, we first study a related model, for which some
marginal aspects of the early computations are simpler than in the φ3 model. In this model,
we consider three different types of spinless particles which are their own anti-particles,
which with a frightful lack of imagination we will call the a-particles, b-particles and c-
particles. We will use the indices a,b,c to make clear to which particle a given quantity
pertains.19

First, let us consider the model where a, b and c-particles are present, but where there is
no interaction between particles. Denoting by Ba the boson Fock space of particle a (etc.),
the state space is the tensor product Hpart := Ba ⊗ Bb ⊗ Bc and the Hamiltonian is

H0 = Ha ⊗ 1⊗ 1+ 1⊗Hb ⊗ 1+ 1⊗ 1⊗Hc. (13.27)

The interaction between particles will be given by the Hamiltonian density

H(x) = ϕa(x)ϕb(x)ϕc(x). (13.28)

When we write such a formula, we identify an operator� on Ba with the operator�⊗1⊗1
on the space Hpart = Ba ⊗ Bb ⊗ Bc, so that ϕa , ϕb and ϕc are distributions valued in this

18 Let us openly admit that our argument that time-ordering does not create problems is flawed. One may argue
in fact that the dreadful divergences we are going to face are a consequence of an improper definition of
time-ordering of distributions. Working much harder with distributions, these divergences can be removed.
This is the Epstein-Glaser approach to renormalization [28]. We will not explore this direction.

19 If you had already some exposure to Feynman diagrams, the point of considering these different particles
types is that each line pertains to a particular particle type. This makes it easier to distinguish lines from each
other, and marginally simplifies counting arguments.
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space of operators on Hpart, which furthermore have the nice property of being defined at a
given value of t .20

We pretend that the interaction picture makes sense. As we discussed in Section 12.5 the
state spaceH appropriate to describe the interacting particles should be different fromHpart.
We assume that Hpart is a subspace of H (as there seems little choice on how to proceed
otherwise).21

The relevant part of the S-matrix will be between two elements ofHpart. We will represent
the elements of Hpart as we did on page 344. That is, denoting by a†, b† and c† the creation
operators relative to the a, b and c-particles respectively, elements of Hpart are described
by quantities such as a†(p1)b†(p2)c†(p3)|0〉. Denoting generically such an element by |in〉,
and the corresponding bra vector by 〈out|, we will compute matrix elements 〈out|S|in〉 “in
perturbation theory” in the sense of Definition 13.1.1, that is when we make a computation
at order n we replace S by 1 + S1 + · · · + Sn where Sn is given by the concrete formula
(13.12). To learn how to compute Sn there are two steps:

• Learn how to compute 〈out|T H(x1) · · ·H(xn)|in〉.
• Learn how to integrate in x1, . . . ,xn.

A first observation is that since we are working in a tensor product Ba ⊗ Bb ⊗ Bc the
contributions of the various types of particles separate. That is, if |in〉 = |ina〉⊗|inb〉⊗|inc〉
and similarly for |out〉 we have

〈out|T H(x1) · · ·H(xn)|in〉 = 〈outa|T ϕa(x1) · · ·ϕa(xn)|ina〉
× 〈outb|T ϕb(x1) · · ·ϕb(xn)|inb〉 × 〈outc|T ϕc(x1) · · ·ϕc(xn)|inc〉. (13.29)

As a specific example of this formula,

〈0|a(p4)b(p3)ϕa(x1)ϕb(x1)a†(p1)b†(p2)|0〉
= 〈0|a(p4)ϕa(x1)a†(p1)|0〉 × 〈0|b(p3)ϕb(x1)b†(p2)|0〉. (13.30)

13.7 A Computation at the First Order

In the setting of the previous section, at the first order in perturbation theory, we compute
the amplitude

〈0|b(p2)c(p3)Sa†(p1)|0〉 (13.31)

that starting with a single a-particle of momentum p1 we end up with a b-particle of
momentum p2 and a c-particle of momentum p3. We first observe that the term of

20 In (13.28) we are writing a quantity which is in fact a product of distributions, without examining what it
might mean. But let us proceed!

21 We keep in mind however that the space Hpart describes particles as we see them after and before the
interactions. The masses of the particles described by this space are the masses as we measure them. It will
turn out that these measured masses may not be the “masses” occurring as parameters in the explicit
expression of H0. Do not worry yet if this sounds mysterious. This is related to the difficult issue of “mass
renormalization” which we will explain gradually.
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order zero i.e. 〈0|b(p2)c(p3)a†(p1)|0〉 is zero. To compute the term of order one, that
is 〈0|b(p2)c(p3)S1a

†(p1)|0〉, we start by computing

〈0|b(p2)c(p3)H(x)a†(p1)|0〉 = 〈0|b(p2)c(p3)ϕa(x)ϕb(x)ϕc(x)a†(p1)|0〉. (13.32)

Using (13.29) this is

〈0|b(p2)ϕb(x)|0〉〈0|c(p3)ϕc(x)|0〉〈0|ϕa(x)a†(p1)|0〉. (13.33)

The first task is then to compute the three terms above. It helps here to think in abstract
terms, and for this we go back to the setting of Theorem 3.4.2. Given the Hilbert space H,
for elements ξ , η of H we consider the operators A(ξ ) and A†(η). We recall the absolutely
central formula (3.33):

∀ξ,η ∈ H , [A(ξ ),A†(η)] = (ξ,η)1. (3.33)

as well as (3.34), which are the cornerstones of all the calculations.

Lemma 13.7.1 Consider elements ξ1,ξ2,η1,η2 and for j = 1,2 let Bj = A(ξj ) +
A†(ηj ). Then 〈0|Bj |0〉 = 0. Moreover, recalling the inner product (·,·) in H we have

〈0|B1B2|0〉 = (ξ1,η2). (13.34)

Proof Let us first note the crucial fact that

A(ξ )|0〉 = 0 ; 〈0|A†(η) = 0. (13.35)

The first relation is simply the fact (3.31) that A(ξ )(e∅) = 0 written in Dirac’s notation, and
the second fact is a consequence of the first, see Exercise 2.5.20. In mathematical notation,
(e∅,A†(η)(x)) = (A(η)(e∅),x) = 0. This proves that 〈0|Bj |0〉 = 0.

Four terms occur in the expression 〈0|B1B2|0〉, but because of (13.35) only the term
〈0|A(ξ1)A†(η2)|0〉 contribute. By (3.33) it is equal to 〈0|A†(η2)A(ξ1)|0〉 + (ξ1,η2)〈0|0〉 =
(ξ1,η2).

To compute the terms in (13.33) we go back to the case of the particle of mass m, so that
ω2

p = m2c2 + p2. The following formulas will be of constant use.

Lemma 13.7.2 It holds that 〈0|ϕ(x)|0〉 = 0. Moreover22

〈0|a(p)a†(p′)|0〉 = (2π )3δ(3)(p − p′) , (13.36)

〈0|a(p)ϕ(x)|0〉 = 1√
2ωp

exp(i(x,p)) ; 〈0|ϕ(x)a†(p)|0〉 = 1√
2ωp

exp(−i(x,p)).

(13.37)

Proof Even though we write a quantity such as 〈0|a(p)ϕ(x)|0〉 it is a distribution, and it
makes sense only when integrated against a function ξ (p)f (x). We recall that Jξ is defined

22 One would expect to see also the formula for 〈0|ϕ(x1)ϕ(x2)|0〉, but the useful formula is for
〈0|T ϕ(x1)ϕ(x2)|0〉 and we will come to this later.
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as Jξ (p) = √
2ωpξ (p). Then, using (5.28) in the first line, the definition of ϕ in the second

line and (13.34) in the third line,∫∫
d3p

(2π )3 d4xξ (p)f (x)〈0|a(p)ϕ(x)|0〉 = 〈0|A(Jξ )ϕ(f )|0〉

= 〈0|A(Jξ )(A(f̂ ∗)+ A†(f̂ ))|0〉
= (Jξ,f̂ ) =

∫
dλm(p)Jξ (p)∗f̂ (p)

=
∫

d3p

(2π )3
√

2ωp

ξ (p)∗f̂ (p)

=
∫∫

d3p

(2π )3 d4xξ (p)f (x)
exp(i(x,p))√

2ωp

, (13.38)

which proves the first equality in (13.37). The rest is similar.

Thus, the quantity (13.33) equals23

1√
8ωbp2

ωcp3
ωap1

exp(i(x,p2 + p3 − p1)).

Here, of course, (ωap1
)2 = m2

a+p2
1, and we lighten the notation by keeping implicit the fact

that p1 = (ωap1
,p1), etc.

The next step is to perform the integration in x, but this is trivial: As a consequence of
(1.19) we have ∫

d4x exp(i(x,p2 + p3 − p1)) = (2π )4δ(4)(p2 + p3 − p1).

We have obtained our first non-trivial amplitude:

〈0|b(p2)c(p3)S1a
†(p1)|0〉 = (−ig)

1√
8ωbp2

ωcp3
ωap1

(2π )4δ(4)(p2 + p3 − p1). (13.39)

Let us discuss the physical meaning of this result. A striking feature of (13.39) is that
the numerical factor of the delta function in the right-hand side does not depend on the
directions of the momenta p2 and p3. This is a feature of our simple model and certainly
not a general fact.

The delta function simply enforces conservation of energy-momentum,24 p1=p2+p3.
Conservation of four-momentum is a fundamental physical principle. An important point
is that this conservation appears here as a consequence of the rules by which the ampli-
tudes are computed. The relation p1 = p2 + p3 can happen only if ma ≥ mb + mc.
This is obvious if one chooses a reference frame in which p1 = (ma,0,0,0) because then

23 The ugly factor in front of the exponential is the price to pay for having chosen a non-Lorentz invariant
normalization of the creation and annihilation operators. We will soon adopt a more natural normalization to
remove such factors.

24 Thus, there is both conservation of momentum, p1 = p2 + p3 and conservation of energy, E1 = E2 + E3.
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a

b

c

Figure 13.1 An a-particle decomposing into a b- and a c-particle.

ma = p0
1 = p0

2 + p0
3 ≥ mb + mc.25 The amplitude 〈0|b(p2)c(p3)S1a

†(p1)|0〉 is not
really related to an interaction but to a single a-particle spontaneously disintegrating into
a b- and a c-particle, so that amplitudes such as (13.39) are related to decay rates rather
than to scattering amplitudes. To study particles that might decay we would need to modify
our setting, as it does not make sense to consider a collection of particles, which “in the
far past” contained an unstable particle (which must have decayed meanwhile). We do not
pursue this subject here, and we assume that each of the masses ma,mb,mc is less than
the sum of the two others. Then the quantity (13.39) is identically zero (as we could have
guessed beforehand from the conservation of four-momentum).

While learning how to make computations we will learn at the same time how to encode
them into diagrams. The present computation is encoded in the diagram of Figure 13.1.

Here the three lines on the diagram are each of a different nature, as is indicated by the
little letters a,b and c, reflecting the fact that such a line brings information about a particle
of the same type. The most important idea about this diagram is that each edge corresponds
to a term in the product (13.33).

Let us agree on some general conventions and terminology. First one must specify how
one reads diagrams. It is convenient to think of a diagram as representing (part of) what
happens during an interaction. There is before (the incoming particles) and after (the outgo-
ing particles). As we write from left to right, we also read the diagram from left to right. On
the left is what we have at the beginning of the interaction and on the right is what we have
at the end.26 The diagram of Figure 13.1 has one initial vertex on the left, corresponding to
the incoming particle, and two final vertices to the right corresponding to the two outgoing
particles. The diagram has also one internal vertex, representing “where the interaction
takes place”. Internal vertices are represented with a •. A vertex that is either initial or
final is called an external vertex. The edges of the diagrams are also called lines. There is
exactly one line ending at each external vertex. Such a line is called an external line. The
external vertices are not represented in the diagram, they are just sitting at the free end of the
external lines. It is important to think of each external line (or, equivalently each external

25 Generally speaking interactions of particles are simpler to study if one uses a reference frame following the
center of mass of the system.

26 In order to match the fact in the S-matrix, 〈out|S|in〉, the situation before the interaction is described at the
right, it would have been more logical to orient diagrams from the right to the left, but almost nobody in the
literature uses this convention, with the notable exception of Coleman’s book [13].
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vertex) as uniquely identified by the incoming or outgoing particle it represents.27 In the
present model, this line is of the same type as the particle the external vertex represents.
For legibility we will often label each external vertex/line by the momentum of the particle
it represents (although there was no point doing so in the case of Figure 13.1). A general
fact is that in this model three lines come out of each internal vertex, one for each type
of particle.

Each diagram will have a value (which we will learn how to calculate). The value of the
diagram is a distribution.28 In the present case, the value of the diagram of Figure 13.1 is
the right-hand side of (13.39).

13.8 Wick’s Theorem

The following extension of Lemma 13.7.1 is a basic tool.

Lemma 13.8.1 (Wick’s theorem29) In the setting of Lemma 13.7.1, consider opera-
tors Bi = A(ξi)+ A†(ηi) for i ≤ k. Then

〈0|B1 · · ·Bk|0〉 = 0 (13.40)

when k is odd. When k = 2, 〈0|B1B2|0〉 = (ξ1,η2). When k is even, k = 2n, then

〈0|B1 · · ·Bk|0〉 =
∑ ∏

{�,�′}∈P
(ξ�,η�′) =

∑ ∏
(�,�′)∈P

〈0|B�B�′ |0〉, (13.41)

where the sum is over all partitions P of the set {1, . . . ,k = 2n} into n subsets {�,�′}
of 2 elements with � < �′.

Proof It goes by induction over k and relies on the identities (13.35). These imply the
result for k = 1 and for k = 2 it is the object of Lemma 13.7.1. This case k = 2 proves the
second equality in (13.41).30

For the general induction step, the main argument is as follows. Since the term A(ξk)|0〉
does not contribute we may assume ξk = 0 and Bk = A†(ηk). The strategy is then to move
this term from the right to the extreme left, where 〈0|Bk will not contribute. The first step
is to write, using (3.33), and (3.34),

[Bk−1,A
†(ηk)] = [A(ξk−1)+ A†(ηk−1),A†(ηk)] = [A(ξk−1),A†(ηk)] = (ξk−1,ηk)1

and thus Bk−1A
†(ηk) = A†(ηk)Bk−1 + (ξk−1,ηk)1, so that

〈0|B1 · · ·Bk|0〉 = 〈0|B1 · · ·Bk−2A
†(ηk)Bk−1|0〉 + (ξk−1,ηk)〈0|B1 · · ·Bk−2|0〉. (13.42)

27 The point of this statement will become clearer when we start “exchanging” identical lines. A given external
line cannot be exchanged with any another line.

28 In our definition the overall delta function is part of the value of the diagram. This is not what is usually done.
The one single advantage of this convention is to be able to say that “the scattering amplitude is the sum of the
values of the Feynman diagrams”.

29 Calling this lemma Wick’s theorem is convenient but somewhat inaccurate. What is usually called Wick’s
theorem is a more general statement about products of polynomials in creation and annihilation operators of
which the previous lemma is an immediate consequence, but which we shall not use.

30 The reason for stating this second equality is that the expression 〈0|B�j B�′j |0〉 will often be a convenient way
to write the quantity (ξ�j ,η�′j

).
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Using the induction hypothesis, we are now able to compute the last term. When k is odd
this term is zero. When k is even it is exactly the contribution to (13.41) of the partitions of
the set {1, . . . ,k = 2n} into n subsets of two elements such that {k− 1,k} is one element of
this partition. In the second step we write, using (3.33),

〈0|B1 · · ·Bk−2A
†(ηk)Bk−1|0〉 = 〈0|B1 · · ·Bk−3A

†(ηk)Bk−2Bk−1|0〉
+ (ξk−2,ηk)〈0|B1 · · ·Bk−3Bk−1|0〉.

Using the induction hypothesis, the last term is zero when k is odd. When k is even it
is the contribution to (13.41) of the partitions of the set {1, . . . ,k = 2n} into n subsets of
two elements such that {k − 2,k} is one element of this partition. Iterating this procedure
completes the induction step and the proof.

In order to deal with time-ordering we will need the following variation on Lemma
13.8.1, which uses the same notations and hypotheses.

Proposition 13.8.2 Consider operators Bi = A(ξi)+ A†(ηi) for i ≤ k. Assume that
to Bi is associated a time ti . Assume that Bi and Bj commute if ti = tj . We may then
define the time-ordered product T B1 · · ·Bk as Bσ (1) · · ·Bσ (k) where σ is a permuta-
tion of the indices such that tσ (1) ≥ tσ (2) . . . ≥ tσ (k). Then

〈0|T B1 · · ·Bk|0〉 = 0 (13.43)

when k is odd. When k is even, k = 2n, then

〈0|T B1 · · ·Bk|0〉 =
∑ ∏

{�,�′}∈P
〈0|T B�B�′ |0〉, (13.44)

where the sum is over all partitions P of the set {1, . . . ,k = 2n} into n subsets {�,�′}
of two elements with � < �′.

Proof This should be an obvious consequence of Lemma 13.8.1 applied to the operators
B ′j := Bσ (j ).

When the indices � and �′ belong to the same element of the partition of {1, . . . ,k} in two-
elements sets, we will say that we contract the operatorsB� andB�′ , and that the contraction
of these operators31 is the number 〈0|T B�B�′ |0〉. Throughout the chapter we will say that
a certain quantity is a contraction if it is the contraction a certain operator. Let us then
recapitulate how we compute 〈0|T B1 · · ·Bk|0〉:

• We partition the set of indices into two-elements sets.
• We contract together the operators with indices in the same element of the partition,

and we take the product of the corresponding contractions.
• We sum the previous quantities over all possible partitions.

31 One may also consider the version of the same principle without time-ordering as in Lemma 13.8.1. The
contraction of the operators is then defined as the number 〈0|B�B�′ |0〉. It is for this version that the condition
� < �′ matters.
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We will use this method formally, allowing the termsB� to be of types such as ϕ(x), a(p)
or a†(p) (as was already the case e.g. in Lemma 13.7.2).

The practical problem we will face is that there are many partitions of the set of indices
in two-element sets. The solution to the problem is a fundamental advance brought to us by
Richard Feynman: Keep track of the many partitions using diagrams.

13.9 Interlude: Summing the Dyson Series

In this section we use the Dyson series to compute the time-evolution of a simple pertur-
bation of the harmonic oscillator. This computation is absolutely atypical, as we will be
able to sum the whole Dyson series rather than just using the first few terms of it; but it
illustrates well some useful principles in a very simple case, and in particular the use of
Wick’s theorem. This section can be skipped without harm. We use the notation of Section
2.18. We advise the reader to review Section 11.2. We are interested in computing the time-
evolution of the time-dependent Hamiltonian

H (t) = H0 + γ (t)a† + γ (t)∗a = H0 +H1(t), (13.45)

where H0 = ω(a†a + (1/2)1) is the Hamiltonian of a harmonic oscillator, and where γ (t)
is a nice function of t . This Hamiltonian is seen as a small perturbation of the Hamil-
tonian H0. According to (11.21), in the interaction picture the interaction part H̃1(t) =
U0(−t)H1(t)U0(t) of the Hamiltonian equals

H̃1(t) = α(t)a† + α(t)∗a, (13.46)

where we have used the formulas (2.105), U0(−t)aU0(t) = exp(−iωt)a and the similar
formula (2.104) and where

α(t) = γ (t) exp(iωt). (13.47)

In the present case, the time-evolution equation (11.20) can be solved easily because, while
the operators H̃1(t) do not commute with each other for different values of t , they have
the remarkable property that the commutator of any two such operators is a multiple of the
identity. In that case, based on an appropriate version of Proposition C.1.4 one can directly
show that a small modification of the formula (11.24) works. The present example is “too
simple” because it is completely solvable. Let us pretend however that we did not notice
this, and let us set the goal of calculating the probability that starting at time zero in the
ground state we end up at time t with k quanta of oscillation. Denoting by U (t) the time-
evolution of the system under the Hamiltonian (13.45) this probability is |〈0|akU (t)|0〉|2 =
|〈0|akV (t)|0〉|2, whereV (t) = U0(−t)U (t), and where we use in the equality that a†|0〉 is an
eigenvector of H0 so that U0(t)a†k|0〉 = ca†k|0〉 where |c| = 1. We will use Dyson’s series
(11.30) to compute the amplitude 〈0|akV (t)|0〉 through the formulaV (t) = 1+∑n≥1 Wn(t)
where Wn(t) is given by (11.34). Thus

〈0|akWn(t)|0〉 = (−i)n

n!

∫
. . .

∫
0≤θ1,θ2,...,θn≤t

dθ1 . . . dθn〈0|akT H̃1(θn) · · · H̃1(θ1)|0〉.
(13.48)
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Assigning time +∞ to a, to compute

〈0|akT H̃1(θn) · · · H̃1(θ1)|0〉 = 〈0|T akH̃1(θn) · · · H̃1(θ1)|0〉, (13.49)

we are exactly in the setting of Proposition 13.8.2. Indeed, the state space of the harmonic
oscillator is the boson Fock space of a space of dimension 1, and if the basis vector of
this space is denoted by e1 we then have a=A(e1) and a†=A†(e1), so that each operator
a and H̃1(θi) is of the form considered in that proposition. We will compute the quan-
tity (13.49) using the formula 13.44. The only non-zero terms in the sum (13.44) occur
when the k powers of a are contracted with terms H̃1(θb1 ), . . . ,H̃1(θbk ) for distinct integers
1 ≤ b1 < . . . < bk ≤ n, and where the remaining H̃ (θ�) are contracted in pairs. This can
happen only if n ≥ k and n − k is even, so that n = k + 2m. The total number of such
contractions is then

n(n− 1) . . . (n− k + 1)
(2m)!

m! 2m
= n!

m! 2m
. (13.50)

It will turn out that the contribution of each such contraction to the integral (13.49) is
the same. We fix the contraction and we compute this contribution now. We denote by
(�j,�′j )j≤m the pairs of indices such that H̃1(θ�j ) and H̃1(θ�′j ) are contracted together.

Observing that 〈0|aH̃1(θ )|0〉 = α(θ ) and 〈0|H̃1(θ )H̃1(θ ′)|0〉 = α(θ )∗α(θ ′) the contribution
of the given contraction to the quantity (13.49) is∏

i≤k
α(θbi )

∏
j≤m

c(�j,�
′
j ), (13.51)

where

c(�,�′) =
{
α(θ�)∗α(θ�′) if θ� > θ�′

α(θ ′�)
∗α(θ�) if θ�′ > θ�.

(13.52)

It is then easy to perform the integration (13.48), since the various factors in (13.51) depend
on different variables. This integral is AkBm, where

A =
∫ t

0
α(θ )dθ ; B = 2

∫∫
0≤θ1≤θ2≤t

dθ1dθ2α(θ2)∗α(θ1).

Taking into account the number of contractions, the quantity (13.48) is therefore

〈0|akWn(t)|0〉 = 〈0|akWk+2m(t)|0〉 = (−i)nAk Bm

m! 2m
.

Summation of the Dyson series amounts to summing over m ≥ 0, giving

〈0|akV (t)|0〉 = (−iA)k exp(−B/2). (13.53)

This provides a complete description of V (t)|0〉:
V (t)|0〉 = exp(−B/2)

∑
k≥0

(−iA)k(a†)k|0〉.
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Exercise 13.9.1 (a) Perform a little calculus to prove that ReB = |A|2.
(b) Using the first part of (2.88) to recover a crucial factor, check on the formula
(13.53) that the sum over k of the probabilities that at time t the system has k quanta
of energy is indeed equal to 1.

It is possible to show that U (t)|0〉 is a “coherent state” in the sense of Section C.2.

13.10 The Feynman Propagator

We go back to the study of the S-matrix. To compute a term such as 〈0|a(p)T ϕ(x1)ϕ(x2)
a†(p′)|0〉 using Proposition 13.8.2, we simply assign time +∞ to each term a(p) and
time −∞ to each term a†(p′), in line with the intuition that the creation operators act
much before the interaction itself and the annihilation operators act much later than the
interaction.32 We then write

〈0|a(p)T ϕ(x1)ϕ(x2)a†(p′)|0〉 = 〈0|T a(p)ϕ(x1)ϕ(x2)a†(p′)|0〉.
Applying Proposition 13.8.2 to this quantity brings forward contractions such as
〈0|T a(p)ϕ(x1)|0〉= 〈0|a(p)ϕ(x1)|0〉 which we have already computed. It also brings
forward the new quantity

〈0|T ϕ(x1)ϕ(x2)|0〉. (13.54)

The goal of the present section is to investigate this quantity. To compute it we need the
following fundamental object.

Definition 13.10.1 The Feynman propagator is the tempered distribution given for
x = (t,x) by

�F (x) = �F (t,x) = i
∫

d3p

(2π )32ωp
exp(−i|t |ωp + ip · x). (13.55)

The Feynman propagator depends on the mass of the particle, so we will put indices
a,b,c when needed. The factor i in this definition is conventional. Its purpose is to make the
Feynman propagator a fundamental solution of the Klein-Gordon equation.33

The Feynman propagator is closely related to the distribution �0 of Definition 5.1.6
and Lemma 5.1.7. In the present mood of not distinguishing distributions and functions we
pretend that �0 is given by the formula (5.11):

�0(x) =
∫

dλm(p) exp(i(x,p)) =
∫

d3p

(2π )32ωp
exp(i(x0ωp − x · p)). (13.56)

Thus it holds that

t = x0 > 0⇒ �F (x) = i�0(−x) ; t = x0 < 0⇒ �F (x) = i�0(Px), (13.57)

32 Please try to remember this convention, how to assign time to the terms a(p) and a†(p). It will be used again.
33 For the relationship between the Feynman propagator and the Klein-Gordon equation, and the way physics

textbooks treat this question, please see Appendix N and in particular Theorem N.2.1.
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where Px = (x0, − x). The factors i in these formulas simply occur because of the factor i
in (13.55) which is not present in the definition of �0.34

Thus the tempered distribution �F is actually a function outside the light cone, because
this is the case for �0. We observe also that �F (±t, ± x) = �F (t,x), as is shown by the
change of variables p→−p.

Lemma 13.10.2 It holds that 〈0|T ϕ(x1)ϕ(x2)|0〉 = −i�F (x2 − x1).

Proof Writing symbolically the definition (5.1) of the free field as ϕ(x) = A(fx)+A†(fx)
where fx(p) = exp(i(x,p)) we have

〈0|ϕ(x2)ϕ(x1)|0〉 = (fx2,fx1 ) =
∫

d3p

(2π )32ωp
exp(i(x1 − x2,p))

=
∫

d3p

(2π )32ωp
exp(−iωp(t2 − t1)+ ip · (x2 − x1)), (13.58)

which is indeed −i�F (x2 − x1) when t2 > t1. The other case holds since �F (x1 − x2) =
�F (x2−x1). The argument can be made rigorous by integrating against test functions.

Exercise 13.10.3 Deduce informally the result of the previous lemma from (5.30)
using only the commutation relations between the a(p) and the a†(p′).

Our computations will require integration over the variables xi . Certain such integrations
can be done very easily using (1.19) if we express the Feynman propagator as an inverse
Fourier transform, which is our next task.

Lemma 13.10.4 As tempered distributions, we have

�F (x) = lim
ε→0+

∫
d4p

(2π )4

exp(−i(x,p))

−p2 +m2 − iε
. (13.59)

We may also express this in the more compact form

�̂F (p) = lim
ε→0+

1

−p2 +m2 − iε
, (13.60)

where �̂F denotes the Fourier transform as a distribution; but (13.59) is the form under
which the formula is proved and used. It is obvious from this formula that the Feynman
propagator is Lorentz invariant.

Proof Let us write again x = (t,x). The simplest proof of (13.59) consists in computing
the integral ∫

dp0

2π

exp(−itp0)

−(p0)2 + p2 +m2 − iε

using a contour integral (these are reviewed in Appendix N) and the holomorphic function

f (z) = exp(−itz)

−z2 + p2 +m2 − iε
. (13.61)

34 We could have defined �0 with a similar conventional factor i, but this would have looked completely
artificial at that time.
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Figure 13.2 The position of the poles is indicated by the little crosses.

Let us denote by ωp,ε the point such that ω2
p,ε = p2+m2− iε and Reωp,ε > 0, so at the

first order in ε we have ωp,ε �
√

p2 +m2 − iε/(2
√

p2 +m2). The poles of the function
(13.61) are the points ±ωp,ε and the residues of f at these points are − exp(∓itωp,ε)/ ±
2ωp,ε. Assuming e.g. t > 0 (so that Re (−itz) < 0 for Im z < 0) the contour C of
Figure 13.2 contains only the pole at ωp,ε. Cauchy’s theorem (N.1) yields∫

dp0

2π

exp(−itp0)

−(p0)2 + p2 +m2 − iε
= −i

(
− exp(−i|t |ωp,ε)

2ωp,ε

)
= i exp(−i|t |ωp,ε)

2ωp,ε
, (13.62)

where the first minus sign occurs because C is oriented clockwise. A similar argument
proves that this still holds for t < 0. If we pretend that distributions are functions, the proof
is finished by using this formula in the right-hand side of (13.59) and letting ε → 0. If
we are self-conscious about behaving this way,35 we consider a test function ξ (x) and we
compute the integral∫

d4p

(2π )4

1

−p2 +m2 − iε

∫
d4x exp(−i(x,p))ξ (x).

Integrating first in d3x, this becomes∫
dt

d4p

(2π )4

exp(−itp0)

−p2 +m2 − iε
η(t,p) (13.63)

where

η(t,p) =
∫

d3x exp(ix · p))ξ (t,x).

In (13.63) we may now apply (13.62) at given t and p, and use dominated convergence to
take the limit as ε→ 0, obtaining

i
∫

dt
d3p

(2π )3

exp(−i|t |ωp)

2ωp
η(t,p) = i

∫
d3p

(2π )32ωp

∫
d4x exp(−i|t |ωp + ix · p)ξ (x),

which is
∫

d4x�F (x)ξ (x) by the very meaning of (13.55).

35 It is then urgent to relax, as it would be overwhelming to keep trying to be rigorous.
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Exercise 13.10.5 This exercise derives (13.62) without using contour integrals (fol-
lowing Folland’s textbook [31]).
(a) Prove that whenever Re a > 0 we have∫ ∞

−∞
dt exp(−|t |a + itω) = 2a

ω2 + a2 .

(b) Using the inverse Fourier transform, prove that

1

2a
exp(−|t |a) =

∫
dω

2π

exp(−itω)

ω2 + a2 . (13.64)

(c) Deduce (13.62) using a suitable value of a.

Exercise 13.10.6 (a) Can you use (13.59) to define the square of the Feynman prop-
agator? Why?
(b) Can you define the square of the distribution �0 of Definition 5.1.6?

One of the benefits of denoting distributions as functions is that it prevents us from
facing the unpleasant fact that propagators are distributions and that we are not permitted
to multiply them.36 For two distributions �(x) and �′(y) there is no problem defining
a product �(x)�′(y) but it is another matter, say, to define the square of a distribution.
For example, the square of the delta function does not make sense. As we have seen in
Exercise 13.10.6, even the square of the Feynman propagator is actually ill defined. Ill-
defined products of propagators will haunt us in the form of divergent integrals.37 For the
time being however we have found a method to pretend that we can multiply propagators.
The formula (13.59) gives us the value of the propagator as the limit as ε → 0 of a
perfectly well-defined quantity depending on ε > 0. To find a candidate for the product of
propagators we exchange the operations of taking products and limits: We take the product
of the corresponding well-defined quantities at given ε > 0 and then we take the limit as
ε→ 0.38

The proof of the following is nearly identical to the proof of Lemma 13.10.4. It will not
be used until Chapter 16 (so that you can ignore it until then).

Lemma 13.10.7 As tempered distributions, we have

�F (x) = lim
ε→0+

∫
d4p

(2π )4

exp(−i(x,p))

−(1+ iε)(p0)2 + p2 +m2 . (13.65)

In a more compact form

�̂F (p) = lim
ε→0+

1

−(1+ iε)(p0)2 + p2 +m2 . (13.66)

36 This statement is intended as a joke.
37 As usual we will pretend that we have put the universe in a box or somehow regularized the situation so that

our manipulations make sense.
38 It is just too bad that after taking this limit we obtain ill-defined integrals.
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13.11 Redefining the Incoming and Outgoing States

The cumbersome factor 1/
√

8ωbp2
ωcp3

ωap1
in (13.39) is a serious nuisance for the clarity

of the exposition. The presence of this term stems from our choice of normalization of the
operators a(p), as was explained in Section 5.4. This choice might be reasonable for other
purposes but it is simply absurd in the present setting, where it is Lorentz invariance that
matters. We will get rid of this factor by setting

a(p) := √
2ωpa(p) , a†(p) := √

2ωpa
†(p),

and likewise for the other particles. Here ω2
p = m2

a + p2, where ma is the mass of the
a-particle, and where it is understood that p ∈ Xma . With this convention (13.39) takes the
more elegant form

〈0|b(p2)c(p3)S1a
†(p1)|0〉 = (−ig)(2π )4δ(4)(p2 + p3 − p1).

The relation (13.37) takes the form

〈0|a(p)ϕ(x)|0〉 = exp(i(x,p)) ; 〈0|ϕ(x)a†(p)|0〉 = exp(−i(x,p)). (13.67)

As it is the relations (13.37) which created the factors 1/
√

2ωp these will never occur
anymore.

13.12 A Computation at Order Two with Trees

The goal of the present section is to compute in our model with interaction density (13.28),
at the second order of perturbation theory, the matrix elements39

〈0|a(p3)b(p4)Sa†(p1)b†(p2)|0〉 = γ 〈0|a(p3)b(p4)Sa†(p1)b†(p2)|0〉, (13.68)

where γ =
√

16ωap3
ωap1

ωbp4
ωbp2

. This is the amplitude that starting with an a-particle of

momentum p1 and a b-particle of momentum p2 we end up with two particles of the same
types but now momenta p3 and p4. The same type of computations as we present here for
realistic models yields a number of remarkable results, as is explained in detail e.g. in Peskin
and Schroeder’s book [64].

As we are interested only in the case where scattering really occurs we assume p3 �= p1

and p4 �= p2.40 The reader may think at first that quantities such as (13.68) must be in some
sense trivial because the a and b-particles do not directly interact with each other, but our
model will illustrate the fundamental fact that they may indirectly interact with each other
through their joint interaction with the c-particle.41 (Quantum Electrodynamics, the most
important Quantum Field Theory, teaches us that electrons interact with each other through
their interaction with the photons of the electromagnetic field.)

39 We do not pursue the example (13.31) as the next non-zero-order terms are really tricky.
40 Since momentum is conserved in interactions i.e. p1 + p2 = p3 + p4, the conditions p3 �= p1 and p4 �= p2

are equivalent.
41 The previous expressions do not have a mathematically precise meaning. They intuitively convey what

happens at the level of diagrams, and their meaning will become obvious as we learn to work with these. For
example, the diagram (a) in Figure 13.3 makes it impossible to resist saying that a and b-particle interact
through a c-particle. Furthermore, all the relevant diagrams involve at least a c-particle, which leads us to say
that the a and b-particles do not interact “directly” with each other.
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Let us first detail a rather trivial fact, namely that

〈0|a(p3)b(p4)S1a
†(p1)b†(p2)|0〉 = 0. (13.69)

This is because

〈0|a(p3)b(p4)ϕa(x)ϕb(x)ϕc(x)a†(p1)b†(p2)|0〉 = 0

since using (13.29) to write this as a product of three terms corresponding to the different
types of particles brings forward the factor 〈0|ϕc(x)|0〉 = 0.

Therefore we need only to compute

〈0|a(p3)b(p4)S2a
†(p1)b†(p2)|0〉. (13.70)

Keeping (13.12) in mind, we start by the computation of

〈0|a(p3)b(p4)T H(x1)H(x2)a†(p1)b†(p2)|0〉, (13.71)

or, equivalently, of

〈0|a(p3)b(p4)T ϕa(x1)ϕb(x1)ϕc(x1)ϕa(x2)ϕb(x2)ϕc(x2)a†(p1)b†(p2)|0〉. (13.72)

We will do this computation in great detail, as its understanding is the key to take the mystery
out of diagrams. According to (13.29) the quantity (13.72) is the product of the following
quantities:

〈0|a(p3)T ϕa(x1)ϕa(x2)a†(p1)|0〉 (13.73)

〈0|b(p4)T ϕb(x1)ϕb(x2)b†(p2)|0〉, (13.74)

C := 〈0|T ϕc(x1)ϕc(x2)|0〉. (13.75)

Let us then look at a typical expression such as

〈0|a(p3)T ϕa(x1)ϕa(x2)a†(p1)|0〉 = 〈0|T B1B2B3B4|0〉, (13.76)

where

B1 = a(p3) ; B2 = ϕa(x1) ; B3 = ϕa(x2) ; B4 = a†(p1).

To apply Proposition 13.8.2 we need to group the elements 1,2,3,4 in pairs. There are three
ways to do this,42 but since p3 �= p1 the contraction of a(p3) and a†(p1) is zero, as follows
from (13.36). So we obtain only the following two terms:

〈0|ϕa(x1)a†(p1)|0〉〈0|a(p3)ϕa(x2)|0〉 ; 〈0|a(p3)ϕa(x1)|0〉〈0|ϕa(x2)a†(p1)|0〉, (13.77)

which we may compute using (13.67). For example, the term to the right equals

exp(i(x1,p3)− i(x2,p1)).

42 To describe in words how to proceed, we might say that there are three possibilities to contract the term B1
with another term, and that once this is done, the other two elements must be contracted together.
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Figure 13.3 Two of the four possible contraction diagrams. There is no vertex at the crossing
of the a or b-lines.

In an entirely similar manner the quantity (13.74) is the sum of the following two terms:

〈0|ϕb(x1)b†(p2)|0〉〈0|b(p4)ϕb(x2)|0〉 ; 〈0|b(p4)ϕb(x1)|0〉〈0|ϕb(x2)b†(p2)|0〉.
Therefore, recalling the term C of (13.75) the quantity (13.72) is the sum of the following
four terms:

C〈0|ϕa(x1)a†(p1)|0〉〈0|a(p3)ϕa(x2)|0〉〈0|ϕb(x1)b†(p2)|0〉〈0|b(p4)ϕb(x2)|0〉 (13.78)

C〈0|ϕa(x1)a†(p1)|0〉〈0|a(p3)ϕa(x2)|0〉〈0|ϕb(x2)b†(p2)|0〉〈0|b(p4)ϕb(x1)|0〉 (13.79)

C〈0|ϕa(x2)a†(p1)|0〉〈0|a(p3)ϕa(x1)|0〉〈0|ϕb(x1)b†(p2)|0〉〈0|b(p4)ϕb(x2)|0〉 (13.80)

C〈0|ϕa(x2)a†(p1)|0〉〈0|a(p3)ϕa(x1)|0〉〈0|ϕb(x2)b†(p2)|0〉〈0|b(p4)ϕb(x1)|0〉. (13.81)

Each of the four terms is a product of contractions. We will describe this product by a dia-
gram. We need four different diagrams. These diagrams will be called contraction diagrams
because each edge represents a certain term which is the contraction of two operators.43

Each of these diagrams has two initial vertices, two internal vertices, and two final vertices.
The terms (13.78) and (13.79) are represented by the diagrams of Figure 13.3, and the terms
(13.80) and (13.81) are represented by the diagrams of Figure 13.4. These diagrams are
drawn in a way that the external lines, which represent incoming and outgoing particles are
in the same position in each of these diagrams.

The internal vertices are labeled 1 and 2, as they are respectively associated with the
variables x1 and x2. There is now an internal line in these diagrams, i.e. a line between two
internal vertices.

43 Equivalently, a diagram tells you which contraction we performed when applying Wick’s theorem.



376 The Scattering Matrix in Perturbation Theory

aa

aa

bb

bb

c

(c)

(d)

c

1 2

1 2

p1 p3

p3

p4

p4

p1

p2

p2

Figure 13.4 The other two possible contraction diagrams. Three of the crossing are not vertices.

Each line in a diagram represents a specific contraction. The internal line, which is
labeled c (so we call it a c-line) represents the contraction C = 〈0|ϕc(x1)ϕc(x2)|0〉. It is the
same in all diagrams because this term occurs in all four products we consider. Writing “i.v.”
and “e.v.” for internal vertex and external vertex, respectively, the other four contractions
occurring in the term (13.78) correspond to lines of the diagram (a) of Figure 13.3 as follows:

〈0|ϕa(x1)a†(p1)|0〉 a-line between the e.v. labeled p1 and the i.v. labeled 1
〈0|a(p3)ϕa(x2)|0〉 a-line between the i.v. labeled 2 and the e.v. labeled p3

〈0|ϕb(x1)b†(p2)|0〉 b-line between the e.v. labeled p2 and the i.v. labeled 1
〈0|b(p4)ϕb(x2)|0〉 b-line between the i.v. labeled 2 and the e.v. labeled p4.

There is no possible ambiguity about the order of the terms in the contraction, which is
the natural time-ordering with incoming particles at time −∞ and out-going particles at
time +∞.

We now define the value of each of our diagrams.

• We make the product of the contractions corresponding to the edges of the diagram
as described above.

• We integrate in x1 and x2.

• We multiply by the factor (−ig)2/2!.

Recalling (13.12), our desired amplitude is simply the sum of the values of the four contrac-
tion diagrams.
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Let us then compute the values of these four diagrams. Using the formula (13.37) and
Lemma 13.10.2 it is straightforward that the product of the contractions described by the
diagram (a) in Figure 13.3 equals

−i�c
F (x2 − x1) exp

(
i(x2,p3 + p4)− i(x1,p1 + p2)

)
. (13.82)

Here the superscript c refers to the fact that this is the propagator corresponding to the c-
particle. It is understood here that p1 = (ωap1

,p1), p2 = (ωbp2
,p2), and so on. Using (13.59)

the term (13.82) equals

−i lim
ε→0+

∫
d4p

(2π )4

exp
(
i(x2, − p + p3 + p4)+ i(x1,p − p1 − p2)

)
−p2 +m2

c − iε
. (13.83)

Proceeding in a rather formal manner, we now see that the integrations in x1 and x2

become trivial (at least if we assume that it is legal to exchange the order of integration with
the limit ε→ 0+). The result of these integrations is

− i lim
ε→0+

∫
d4p

(2π )4

(2π )8δ(4)(−p + p3 + p4)δ(4)(p − p1 − p2)

−p2 +m2
c − iε

= −i(2π )4 lim
ε→0+

δ(4)(p3 + p4 − p1 − p2)

m2
c − (p1 + p2)2 − iε

= −i(2π )4 δ
(4)(p3 + p4 − p1 − p2)

m2
c − (p1 + p2)2 , (13.84)

assuming in the third line that m2
c − (p1 + p2)2 �= 0.44 The reason why this computation

is formal is that first, even though we write the quantity (13.82) as a function, it is really a
tempered distribution, and the integral of this quantity over x1 and x2 is not defined. What
is defined on the other hand is the integral∫∫

d4x1d4x2ξ (x1,x2)
(
−i�c

F (x2 − x1) exp
(
i(x2,p3 + p4)− i(x1,p1 + p2)

))
,

whenever ξ ∈ S8. The meaning of the previous computation is that, as ξ converges to the
identity function the previous integral converges to the quantity (13.84). The task of proving
this is left to the mathematically inclined reader.

By the same methods, the product of the contractions encoded by diagram (b) of Figure
13.3 equals

−i�c
F (x2 − x1) exp

(
i(x2,p3 − p2)+ i(x1,p4 − p1)

)
, (13.85)

and the integral over x1 and x2 is found to equal

−i(2π )4 δ
(4)(p4 + p3 − p1 − p2)

m2
c − (p4 − p1)2

. (13.86)

Now we turn to the diagrams of Figure 13.4. The pleasant fact is that these diagrams
differ from the corresponding diagrams of Figure 13.3 only by the fact that the vertices

44 We will not mention anymore such restrictions in the sequel.
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labeled 1 and 2 have been exchanged. Thus their value is the same. We will investigate this
important phenomenon in the next section.

Not forgetting the factor (−ig)2/2 = −g2/2 we have found the value of the quantity
(13.70):

ig2(2π )4δ(4)(p3 + p4 − p1 − p2)
( 1

m2
c − (p1 + p2)2 +

1

m2
c − (p4 − p1)2

)
. (13.87)

There are two rather different terms in this formula, reflecting the fact that the two
diagrams of Figure 13.3 are “non-isomorphic” ways to contribute to the scattering ampli-
tude. One then says that there are different channels. At some intuitive level these two
contributions correspond to two physically different processes. In the case of diagram (a),
the incoming a and b-particles transform into a c-particle,45 which transforms back into an
a and a b-particle. In the case of diagram (b) the incoming a and b-particles transform in b
and a-particles respectively while “exchanging a c-particle”. It however makes little sense
to consider these processes separately, since the corresponding amplitudes have to be added.

The four diagrams considered in this section are trees i.e. contain no loop.46 Typically
trees do not create problems. Unfortunately, as we will experience soon, diagrams that
contain loops are another matter.

In the rest of the section we try to understand some of the physical content of the previous
formulas. We assume ma = mb, and we investigate the non-relativistic limit, and the limit
mc → 0 (hoping to get some glimpse about Quantum Electrodynamics, with the c-particle
playing the role of the massless photon). Recalling that the speed of light is 1 in our system
of units, for a particle of rest mass ma and four-momentum p, in the non-relativistic limit
p2 ! m2

a we have

p0 =
√
m2
a + p2 � ma + p2

2ma

.

In that case (p0
4 − p0

1)2 � (p2
4 − p2

1)2/(2ma)2, and since
√

p2 is just the length ‖p‖ of p,
we have

|p2
4 − p2

1| = |‖p4‖2 − ‖p1‖2| = (‖p4‖ − ‖p1‖)(‖p4‖ + ‖p1‖)! 2ma‖p4 − p1‖,
so that (p0

4 − p0
1)2 ! (p4 − p1)2 and therefore

−(p4 − p1)2 � (p4 − p1)2.

Exercise 13.12.1 Prove that if p1+p2 = p3+p4, in the reference frame with origin
the center of mass of the incoming particles, the previous relation is exact.

On the other hand, (p1 + p2)2 � (p0
1 + p0

2)2 � 4m2
a . We then see that (recalling that we

assume mb = ma) in the limit mc → 0 the term (13.84) is very much smaller than the term
(13.86) and can be neglected.

45 Such a particle is called “a virtual particle” in physics. It exists as a line on a diagram, but its claim to
existence beyond this are tenuous. It cannot be detected in any conceivable experiment, for the good reason
that “it is not on the shell”, it does not satisfy the relation p2 = m2.

46 A loop is a closed path that uses any given edge at most once.
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Within this approximation we have found that

〈0|a(p3)b(p4)S2a
†(p1)b†(p2)|0〉 � ig2(2π )4 δ

(4)(p3 + p4 − p1 − p2)

(p4 − p1)2
. (13.88)

We would like to compare this formula with (13.8). The formula (13.8) refers to the dif-
ferent situation of a particle scattered by a potential. But suppose that we study the case of
the scattering of two (possibly different) particles that attract (or repel) each other with a
potential depending only on their mutual positions. Shifting to hand-waiving mode, we may
argue that if we study these in the reference frame centered at their common center of mass,
each individual particle will behave as if it is attracted by this common center of mass. Then
(13.88) shows that the potential V such that

V̂ (p) = − 1

p2 (13.89)

is involved here. It is a simple computation (using spherical coordinates) to check that the
electrostatic potential

V (x) = − 1

4π |x| (13.90)

has precisely the property (13.89).47 At this point we refer the reader to Appendix O
for a related and more physical model bringing forward the so-called Yukawa potential
V (x) = −exp(−mc|x|)/4π |x|.

13.13 Feynman Diagrams and Symmetry Factors

Having seen simple examples we should be ready to discuss some general features of the
computation of n-order terms in 〈out|S|in〉 in the present model, that is of terms

(−ig)n

n!

∫
. . .

∫
d4x1 . . . d4xn〈out|T ϕa(x1)ϕb(x1)ϕc(x1) . . . ϕa(xn)ϕb(xn)ϕc(xn)|in〉.

(13.91)

The brackets 〈. . .〉 are computed through Wick’s theorem (here in the form of Proposition
13.8.2). Each term obtained through this proposition is described by a contraction diagram.
The value of this diagram is defined by integrating the corresponding term in the variables
x1, . . . ,xn and multiplying by (−ig)n/n!. Therefore we reach the following statement:

The value of (13.91) is the sum of the values of all the contraction
diagrams with n internal vertices and the appropriate initial and final vertices
(corresponding to the given incoming and outgoing particles). (13.92)

All the contraction diagrams we consider in this sum have the “same” external vertices
and have internal vertices labeled 1 to n. We say that two contraction diagrams are the same

47 The electrostatic potential describes the interaction of electrons through photons.
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if one of the diagrams has a line of a certain type between two given vertices if and only if
the other diagram has a line of the same type between the corresponding vertices.48 When
drawing diagrams one has to be cautious that the same diagram (in the previous sense) may
be drawn in different-looking ways. Referring to two different-looking pictures, we will
then say “that they represent the same diagram drawn differently”. A very simple example
of this situation occurs in diagram (a) of Figure 13.6. If one exchanges the labels 1 and 2,
one obtains the same diagram, although it is drawn differently. The sum in (13.92) is taken
over all possible different diagrams.

To prevent uninteresting situations, where not all the particles actually interact,49 we
typically assume that there does not exist a subset of incoming particles and a subset of
outgoing particles whose sums of four-momenta are equal. In a contraction diagram, each
external vertex is then linked by an external line to an internal vertex, and three lines
(one of each type a, b, c) come out of each internal vertex. It may be worth stressing
this important feature, which arises from the form of the interaction Hamiltonian H(x) =
ϕa(x)ϕb(x)ϕc(x). Each of the three terms creates a line of the corresponding nature out of
an internal vertex.

Let us then state the rules to compute the value of a contraction diagram. We state
these rules formally, not worrying yet whether the corresponding operations are really well
defined.

• For each external line linking a final vertex with an internal vertex labeled j

(corresponding to the variable xj ), write a factor exp(i(xj,p)), where p is the four-
momentum flowing on this external line from the internal vertex to the final vertex. If
instead the external line links an initial vertex with an internal vertex labeled j write
a factor exp(−i(xj,p)), where p is the four-momentum flowing from the external
vertex to the internal vertex.50

• For each internal line with endpoints labeled i and j write a factor equal to−i�d
F (xj−

xi), where again d is the type of the particle.
• For each internal vertex write a factor −ig.
• Multiply all these factors and integrate over all xi’s.51

• Divide by n! .

To explain why these rules are correct, we observe that according to (13.37) the quantity
assigned in the first item above to an external line is just the value of the contraction
corresponding to this line, and that by Lemma 13.10.2 the quantity assigned to an internal
line is just the value of the contraction corresponding to this line. The factor−ig assigned to
each internal vertex and the factor 1/n! of the last item combine to give the factor (−ig)n/n!
in front of (13.12).

48 That definition may have to be adjusted for different models.
49 Or where the particles can be split into two groups that interact separately. In such cases one has more terms

to consider and this makes the exposition heavier.
50 You have certainly noticed that the reason why the factors are different in the case of a line joining an internal

vertex to a final or initial vertex is that the corresponding external lines are oriented differently. An external
line is oriented from an initial vertex to an internal vertex, but from an internal vertex to a final vertex.

51 As we are going to see soon, this integration raises problems.
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a a

c

bb

1

2

p1

p2

p4

p3

Figure 13.5 Another way to draw diagram (b) of Figure 13.3. The last crossing is not a vertex.

There are many factors i. Generally speaking when computing diagrams it is tricky to
get the powers of i and π right. It is customary for authors to apologize for the unavoidable
mistakes they might have made for such factors, and they often add that they made a real
effort to get them right. The situation is different here. As these factors bear on the practical
use of the computations but not on the theoretical understanding which concerns us here, I
made no special effort to get them right!

At last we are ready to introduce Feynman diagrams. Two contraction diagrams that
differ only in the numbering of their internal vertices have the same value, because when
one integrates in the xi one does not care how the variables that are integrated are named.
For example, if one exchanges the labels 1 and 2 in diagram (a) in Figure 13.3 one obtains
the diagram (c) in Figure 13.4. In order not to do the same computation twice it is then
natural to identify these two diagrams. The result of this identification is called a Feynman
diagram. So (in this model), a Feynman diagram is a contraction diagram where the labeling
of the internal vertices has been erased. Whenever convenient in our pictures of Feynman
diagrams the internal vertices might be labeled, but this labeling is not part of the diagram,
and any other labeling would represent the same Feynman diagram (but probably another
contraction diagram). After this identification, the four diagrams of Figures 13.3 and 13.4
reduce to the two diagrams shown in Figure 13.3.52 The diagram (b) is often drawn in
textbooks as in Figure 13.5.

The goal now is to define the value of Feynman diagrams in such a manner that we may
replace (13.92) with the following:

The value of (13.91) is the sum of the values of all the Feynman diagrams
with n internal vertices and the appropriate initial and final vertices. (13.93)

52 Again, when these are seen as Feynman diagrams, one must forget about the labeling of the internal vertices.
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This determines the value of a Feynman diagram. This Feynman diagram arises from all
the contraction diagrams one obtains by labeling its n internal vertices any of the n! possible
ways. It is then obvious that the value of the Feynman diagram should be given by

Number of different contraction diagrams obtained by labeling the internal
vertices all possible ways× common value of these diagrams. (13.94)

The difficulty is that one does not necessarily obtain n! possible different contraction
diagrams this way (as e.g. in the case of the diagram (a) of Figure 13.6).

Lemma 13.13.1 The number of different contraction diagrams one obtains when
labeling the internal vertices of a Feynman diagram all possible ways is of the form
n! /S where S is an integer called the symmetry factor of the diagram.

We will prove this later, but we explain how to compute the value of a general Feynman
diagram in order for (13.93) to hold. The rules to compute this value are known as Feynman
rules in position space,53 and you are surely aware that they are fundamental. Again we
consider only the case where all particles are scattered.

• Number the internal vertices from 1 to n any way you like.
• For each external line linking a final vertex with an internal vertex labeled j

(corresponding to the variable xj ), write a factor exp(i(xj,p)), where p is the
four-momentum flowing from the internal vertex to the final vertex. If instead
the external line links an initial vertex with an internal vertex labeled j write a factor
exp(−i(xj,p)), where p is the four-momentum flowing from the external vertex to
the internal vertex.

• For each internal line with endpoints labeled i and j write a factor equal to−i�d
F (xj−

xi), where again d is the type of the particle.
• For each internal vertex write a factor −ig.
• Multiply all these factors and integrate over all xi’s.
• Divide by the symmetry factor S of the diagram.

Only the final step differs from the rules computing the value of a contraction diagram.
As some textbooks put it, “the symmetry factor of the Feynman diagram prevents over-
counting”.

Let us go back to the discussion of Lemma 13.13.1, and define the symmetry factor of a
contraction diagram as being the symmetry factor of the corresponding Feynman diagram.

Lemma 13.13.2 The symmetry factor S of a contraction diagram is the number of
ways one may relabel the internal vertices without changing the diagram.

The next exercise is highly recommended.

53 The exact form of the rules depends on the model under study. The name “position space” is motivated by the
fact “that the interactions occur at the positions xi”.
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Figure 13.6 Two vacuum bubbles with S = 2 for (a) and S = 4 for (b).

Exercise 13.13.3 (a) Show that the symmetry factor S of a contraction diagram is
the number of permutations σ of the set of internal vertices that have the following
properties. First the internal vertex i is connected to the external vertex v by a line of
a certain type if and only if σ (i) is connected to v by a line of the same type. Second,
two internal vertices i and j are connected by a line of a certain type if and only if
σ (i) and σ (j ) are connected by a line of the same type.
(b) A permutation as in (a) is called a symmetry of the diagram. Prove that if an internal
vertex is connected to an external vertex by an external line, it is invariant under any
symmetry of the diagram.

Consider for example the contraction diagrams of Figure 13.6. (Such diagrams without
external legs are called vacuum bubbles. They are further discussed at the end of this sec-
tion.) It should be obvious that the diagram (a) has a symmetry factor 2. For diagram (b) the
symmetry factor is 4: There are four different ways to label the vertices which just represent
the same diagram drawn a different way.54

The proof of Lemmas 13.13.1 and 13.13.2 is very simple, and it might help to state an
abstract version of the argument.

Lemma 13.13.4 If a finite group G operates on a set, given any point a of orbit
O ={g · a;g ∈ G} and its little group V ={g ∈ G;g · a= a}, one has cardO card
V = cardG.

Proof Consider the map T : g �→ g · a from G to O. Then g · (h · a) = h · a if and only
if (h−1gh) · a = a i.e. g ∈ hV h−1. Thus card T −1(h · a) = cardV . Summation of this
equality over the different values of h · a ∈ O yields the result.

54 One may exchange simultaneously vertices 1 with 2 and 3 with 4; vertices 1 with 3 and 2 with 4, and vertices
1 with 4 and 2 with 3.
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Staying a bit informal, to prove Lemmas 13.13.1 and 13.13.2 we use that the permutation
group G of {1, . . . ,n} acts on the contraction diagrams by relabeling the internal vertices,
and we apply Lemma 13.13.4 to this action.

As Exercise 13.13.5 shows, symmetry factors are not exciting in the present situation.
Nonetheless results similar to Lemma 13.13.2 will hold in many situations with similar
proofs.

Exercise 13.13.5 Prove that for the three-particle model, a connected diagram with
at least one external line has a symmetry factor equal to 1. Hint: If an internal vertex
is fixed under a symmetry of the diagram, the two internal vertices connected to this
vertex could only be exchanged with each other, but this is impossible because they
are attached to this vertex by lines of a different nature.

Soon we will learn to deal with models where there is a single type of line. In this case, the
possibility of exchanging lines that cannot be distinguished will contribute to the symmetry
factor of a diagram.

When actually computing amplitudes, Feynman diagrams are certainly the way to go. For
general theoretical arguments, however, symmetry factors are a nuisance. This nuisance is
entirely our own doing, since it does not exist if one sticks with contraction diagrams. We
will however follow the crowd and cope with this nuisance.

Coming back to vacuum bubbles as in Figure 13.6, it is obvious that they spell trouble.
For example, the value of the bubble diagram (a) of Figure 13.6 is given by

(−ig)2
∫∫

d4x1d4x2�
a
F (x2 − x1)�b

F (x2 − x1)�c
F (x2 − x1).

It cannot be finite because the integrand depends only on x2 − x1.55 These infinities are
a consequence of our continuous model.56 Physicists think of vacuum bubbles as repre-
senting “vacuum fluctuations” which occur with a constant space-time density. There is no
reason to believe that they should interfere with our scattering experiment. We will ignore
diagrams containing vacuum bubbles to compute scattering amplitudes. If you find that
this rule is not well grounded, you cannot be blamed, but further support will be obtained in
Section 14.5.

13.14 The φ4 Model

From this point on we consider only models with a single type of particle. The model we
introduce in this section will be of constant use. It does not pretend to be realistic. It however
presents many of the difficulties inherent to Quantum Field Theory in a form which is at
the same time rather generic and free of accessory complications. In this model there is a
single massive spinless particle which is its own anti-particle. The (tentative) interaction
Hamiltonian density is given by the formula

55 Besides, as we will learn soon, this integrand is an ill-defined product of three distributions.
56 They disappear if we put the universe (both spatial and temporal) in a box.
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Figure 13.7 Scattering two particles at order one; (a) contraction diagram and (b) Feynman
diagram.

H(x) = ϕ(x)4

4!
. (13.95)

This model is called the φ4 model.57 We will learn first how to deal with the minor compli-
cations this model suffers compared with the previous model, but our main objective is the
computation at the second order of perturbation theory of the scattering amplitude

〈0|a(p3)a(p4)Sa†(p1)a†(p2)|0〉. (13.96)

We assume that the momenta p3,p4,p1,p2 are all different from each other. Let us start
by the computation of

〈0|a(p3)a(p4)ϕ(x)4a†(p1)a†(p2)|0〉. (13.97)

When applying Wick’s theorem to compute this quantity, one may not contract a(p3) with
either of a†(p1) or a†(p2), etc. Indeed if we contract a(p3) with a†(p1) we get a factor
(2π )4δ(4)(p3 − p1) which is zero as we assume that the incoming momenta are different
from the outgoing momenta. In order to keep proper track of the contractions, it greatly helps
to distinguish between the four different copies of ϕ(x) which occur in (13.97). For this we
number them from one to four. A contraction is then completely determined by knowing
with which of these copies each of the terms a(p3), a(p4) etc. is contracted. We symbolize
such a contraction by a contraction diagram such as diagram (a) in Figure 13.7. Each line
out of a vertex, instead of carrying the information as to which particle type it refers, now
carries the information of which copy of ϕ(x) it reaches in the internal vertex. The diagram
(a) of Figure 13.7 represents one of the 4! such diagrams (recalling that the external lines
are uniquely identified). Each of the contraction diagrams gives the same contribution

exp(i(x,p3 + p4 − p1 − p2)), (13.98)

and the denominator 4! in (13.95) is included exactly to cancel the number of these dia-
grams. Quite naturally we will identify contraction diagrams which differ only by the num-
bering of the lines. For this we simply remove this numbering, obtaining in the present
case the Feynman diagram labeled (b) in Figure 13.7, which now represents 4! contraction

57 Please do not embarrass me by asking me what is the exact meaning of the fourth-power of the distribution
ϕ(x). As we will see soon, our contractions will create only sensible terms. More precisely, we will keep only
the sensible terms, throw the other terms out and wish for the best.
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2

1

Figure 13.8 Lines from one vertex to itself.

diagrams. Identification of contraction diagrams which differ only by the numbering of their
lines will give rise to the same nuisance as identification of contraction diagrams which
differ only by the labeling of their internal vertices: Different ways to number these lines
may not give different diagrams, but just the same diagram drawn differently. Examples to
come in the next section will make this matter clearer.

From the contribution (13.98) we reach the result

〈0|a(p3)a(p4)S1a
†(p1)a†(p2)|0〉 = −ig(2π )4δ(4)(p3 + p4 − p1 − p2). (13.99)

Let us now turn to the computation of

〈0|a(p3)a(p4)ϕ(x1)4ϕ(x2)4a†(p1)a†(p2)|0〉. (13.100)

The first observation is that when using Wick’s theorem it is possible to contract the four
terms with a’s with terms ϕ(x1) and to contract some of the terms ϕ(x2) with other such
terms, as in the diagram of Figure 13.8 (where the irrelevant numbering of the lines has not
been indicated).

A line from a vertex labeled x to itself corresponds to an infinite term (fx,fx) =
〈0|ϕ(x)ϕ(x)|0〉, see (13.58). We will simply get rid of these lines with the following.

Exclusion Rule: Lines between an internal vertex and itself are forbidden.

The Exclusion Rule is enforced from that point on, for every type of diagram we will
ever consider. The following exercise shows that the Exclusion Rule is most reasonable.58

Exercise 13.14.1 (a) Convince yourself that after replacing ϕ(x)4 by :ϕ(x)4: the terms
of the S matrix are still computed as the sums of the values of certain diagrams (but
that there are fewer of them).
(b) Convince yourself that enforcing the exclusion rule amounts to replacing the
Hamiltonian density of the interacting term by its normal-ordered version :ϕ(x)4: /4!.

As a consequence of the previous exercise, as we enforce the exclusion rule, it is more
appropriate from now on to write the Hamiltonian density of the interaction term for the
Hamiltonian as59

58 Please keep in mind that the goal is to build a fruitful model, so that the notion of “reasonable” is rather
elastic. If one does not like this rule, there are other methods to take care of the lines from one vertex to itself,
but these are hardly satisfactory for a mathematician.

59 If you have difficulties solving Exercise 13.14.1, please do not be discouraged by this detail. Just think that
the Hamiltonian density is ϕ(x)4/4! and that we enforce the exclusion rule.
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H(x) =:
ϕ(x)4

4!
: (13.101)

The formula (13.99) remains true for this new Hamiltonian.

Exercise 13.14.2 (a) Let us examine the meaning of (13.101). The term S1 of the
expansion S = 1+ S1 + · · · of the S matrix is S1 = (−ig)

∫
d4x :ϕ4(x): /4!, which

should be an operator defined on a certain domain of the Fock space. Can you give a
sensible definition of S1|0〉?
(b) Can you show that the operator S1 is defined on many elements of the Fock space?
Hint: This is harder.
(c) The interaction Hamiltonian is supposed to be defined by HI (t) = ∫

d3xH(t,x).
Can you make sense of HI (0)|0〉?
Exercise 13.14.3 At least at the formal level, find an argument that the Hamiltonian
(13.101) satisfies the condition (13.21).

13.15 A Closer Look at Symmetry Factors

We now compute the quantity (13.100) using contraction diagrams and applying the exclu-
sion rule. One typical such diagram is drawn as diagram (a) in Figure 13.9.

The lines out of each internal vertex labeled i are numbered 1 to 4 to tell us which copy
of ϕ(xi) has been used in that vertex. Each internal line carries two numbers between 1
to 4, one at each end, whereas each external line carries one single such number.60 The
diagrams fall into six different types. Three of these types are represented in Figure 13.10.
The other three types of diagrams are obtained by exchanging x1 and x2, or equivalently by
exchanging the labels 1 and 2 on the vertices.

In these pictures the numbering of the lines out of the internal vertices has not been
indicated for clarity. There are (4! )2/2 possible ways of numbering lines for each of these
diagrams. To see this we observe there are (4× 3)2 ways to number the external lines, and
given these there are only two ways (rather than four) to number the internal lines to get
different diagrams. For example, diagram (a) of Figure 13.9, the internal line which has the
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Figure 13.9 Scattering two particles at order two. (a) a contraction diagram with line number
boldface and vertex numbers and (b) the corresponding Feynman diagram.

60 In the next few pages, when we talk of “numbering the lines” we mean determining for each line what are
these numbers.
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Figure 13.10 The three different channels. The last crossing on the right is not a vertex.

label 3 on the side of the vertex numbered 1 may have label either 4 or 3 on the side of
the vertex numbered 2. (To put things differently, if you exchange the labels 2 and 3 on the
internal lines getting out of the vertex numbered 1 and you also exchange the labels 3 and 4
on the internal lines getting out of the internal vertex numbered 2, you get the same diagram,
drawn differently.) The number (4! )2/2 fails by a factor 2 to compensate the 1/(4! )2. One
then says that each of the diagrams of Figure 13.10 has a symmetry factor 2. Equivalently,
one may number the lines of the diagram in two different ways while getting the same
contraction diagram. These two different numberings differ just by exchanging the two
internal lines between the internal vertices.

Exercise 13.15.1 Write the products of contractions corresponding to the three
diagrams of Figure 13.10.

Let us then summarize some general features of contraction diagrams. In a contraction
diagram, the internal vertices are labeled from 1 to n, and each line out of an internal
vertex is numbered from 1 to 4 (so that an internal line receives two such numbers). A
Feynman diagram is obtained from a contraction diagram by removing both the labeling of
the internal vertices and the numbering of the lines out of the internal vertices. The symmetry
factor of the diagram is the number of ways one may label the internal vertices and number
the lines as explained above in order to get the same contraction diagram (maybe drawn
differently). The symmetry factor may be >1 because we may not get n! different diagrams
when changing the labeling of the internal vertices (as in the case of the previous three-
particle model) but also because we may not get (4! )n different diagrams by changing
the numbering of the lines going out of the n internal vertices (which is a new feature
compared to the previous model), or both. It is instructive, as in Exercise 13.13.3 to think of
“symmetries” of a diagram as permutations of the internal vertices and of the internal lines
that do not change the diagram, and of the symmetry factor of a diagram as the number of
such symmetries.

Exercise 13.15.2 State the results corresponding to Lemmas 13.13.1 and 13.13.2.

We illustrate symmetry factors on several more examples.
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(a) (b)

Figure 13.11 Symmetry factor of 2 in (a) and 4 in (b).

1 2 1 2
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Figure 13.12 Symmetry factors of 3! in (a) and 2× (3! )2 in (b).

In the diagrams of Figure 13.11, the symmetry factors are respectively 2 and 4, which
come from the possibilities of permuting the internal lines without changing the diagrams.
We have not yet seen diagram (b) of this figure. It will occur when we make computations
of the same scattering amplitude at order three.61

In diagram (a) of Figure 13.12 the symmetry factor is 3!, for all the possible permutations
of lines between vertices 1 and 2. In diagram (b), the symmetry factor is 2×(3! )2, where the
factor 2 arises from exchanging the vertices 3 and 4 with the vertices 5 and 6, whereas the
factors 3! are created by the permutations of the three lines between vertices 3 and 4 and
the three lines between vertices 5 and 6.

Exercise 13.15.3 Convince yourself that generally speaking the symmetry factor S of
a diagram is of the type SvSl where Sv is the number of permutations of the internal
vertices which do not change the diagram, while Sl is the number of permutations
of internal lines which do not change the diagram. In the case of diagram (b) of
Figure 13.12 we have Sv = 2 and Sl = (3! )2.

13.16 A Computation at Order Two with One Loop

Going back to the computation of the term (13.100), we compute the value of each of the
diagrams of Figure 13.10. For diagram (a) we will have to integrate the function

(−ig)2(−i�F (x2 − x1))2 exp(i(x2,p3 + p4)− i(x1,p1 + p2)). (13.102)

61 Generally speaking, any diagram with n internal vertices in which four lines stem from each internal vertex
appears in the computation of the scattering amplitude at order n. The reader may like to attempt drawing all
diagrams with four internal vertices to get a feeling for the magnitude of this task.
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At this point we would be really stuck if we tried to proceed rigorously, because the square
of the propagator is not really defined. So we use (13.59) to pretend that it makes sense
to write

�F (x2 − x1)2 = lim
ε→0+

∫∫
d4p

(2π )4

d4p′

(2π )4

exp(−i(x2 − x1,p))

−p2 +m2 − iε

exp(−i(x2 − x1,p
′))

−(p′)2 +m2 − iε
,

(13.103)

so that we now have to integrate in x1 and x2 the quantity

g2 lim
ε→0+

∫∫
d4p

(2π )4

d4p′

(2π )4

exp(i(x1, − p1 − p2 + p + p′))
−p2 +m2 − iε

exp(i(x2,p3 + p4 − p − p′))
−(p′)2 +m2 − iε

,

and we obtain

g2 lim
ε→0+

∫∫
d4p

(2π )4

d4p′

(2π )4

1

−p2 +m2 − iε

1

−(p′)2 +m2 − iε
δ, (13.104)

where

δ := (2π )8δ(4)(p3 + p4 − p − p′)δ(4)(p + p′ − p1 − p2). (13.105)

Here we see the difference with the tree case of the previous section. As a consequence
of the fact that the diagram contains a loop, there are not enough delta functions to render
the integrals over p and p′ trivial. Still, the delta function allows to reduce the number of
variables, since it forces the relation p′ = p1 + p2 − p. There remains an integral in p.
We have to worry about the convergence of this integral, and also about the existence of the
limit as ε→ 0+.

Before we pursue this, we stress what we have been doing. When trying to compute the
value of diagrams containing loops, we are faced with ill-defined products of propagators.
In order to proceed, we resort to the rather desperate device of writing these products as
limits of multiple integrals as in (13.59).62 Of course this is not rigorous, but we hope that
we will eventually be able to extract numerical values out of our manipulations.

It should be apparent to write the expression (13.104) directly from diagram (a) in
Figure 13.10. The method is encapsulated in a set of rules called Feynman rules in
momentum space.63 This is very useful when one must compute many such diagrams.
(These rules are obtained using mathematically questionable manipulations such as in
(13.103).)

• Orient each internal line in an arbitrary direction. To each internal line corresponds a
variablep integrated over momentum space, and the corresponding factor−i/(−p2+
m2 − iε) .

• To each internal vertex assign a factor (−ig)(2π )4δ(4)(�), where the argument� is an
algebraic sum of the four-momenta corresponding to the lines going into that vertex,

62 In particular, we make the choice to use the same value of ε in each of the limits 13.59 for the different
propagators, because in retrospect this is a successful strategy.

63 These rules depend on the model. Here they are stated for the φ4 model, and similar rules hold for the φ3

model which we study later. The name “rules in momentum space” is motivated by the fact that the main
parameter is momentum p.
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with a minus sign when the line is oriented toward the vertex and a plus sign when
the line is oriented away from the vertex.64

• Multiply all these factors. Use the delta functions to eliminate as many of the p

variables as possible and integrate over the remaining ones.
• Divide by the symmetry factor of the graph if needed.

These rules are fundamental and will be of constant use, so it essential that you understand
them fully. Please note that we attach to an internal line with corresponding variable p the
factor −i/(−p2 +m2 − iε) because we have been using the formula (13.60). If instead we
had been using the formula (13.66), as we will do in Chapter 16, we would attach a factor
−i/(−(1+ iε)(p0)2 + p2 +m2).

We now comment in more detail on these rules. Another way to express in words the
content of the second bullet is to say that “we assign a factor ig at each internal vertex and
we enforce the conservation of four-momentum at this vertex”. We will at times use this
convenient language. Let us now explain in more detail this second bullet. To compute the
value of the diagram we number the internal vertices from 1 to n and we attach a variable
xi to the vertex labeled i, and the term (2π )4δ(4)(�) corresponding to the vertex labeled i
is obtained as the integral

∫
d4xi exp(i(xi,�)). Here � is an algebraic sum of all the four-

momenta on lines adjacent to the internal vertex labeled i. How do we get the signs right
in that sum? For an external line, this is ensured by our conventions. For an internal line
oriented from the vertex numbered i to the vertex numbered j , we express the propagator
�F (xj − xi) as

�F (xj − xi) = lim
ε→0+

∫
d4p

(2π )4

exp(−i(xj − xi,p))

−p2 +m2 − iε
,

whereas when the internal line is oriented from the vertex numbered j to the vertex num-
bered i we make the change of variable p→−p in the previous formula.

To compute the value of a term such as (13.96) at order k of perturbation theory, one
“simply”65 adds the values of all the Feynman diagrams with at most k internal vertices.

Let us now explain how conservation of four-momentum during an interaction is built
in the Feynman rules. The quantity to integrate contains a factor δ(�v) for each internal
vertex v, where �v is an algebraic sum of the four-momenta corresponding to the lines
going into v, with a minus sign when the line is oriented toward the vertex and a plus sign
when the line is oriented away from the vertex. Thus the product of the δ(�v) can be non-
zero only if each �v is zero. Physically, four-momentum is conserved at every vertex, and
the quantity of four-momentum exiting the diagram equals the quantity of four-momentum
entering it. More formally the sum of the �v over the internal vertices v equals pout − pin

where pout is the sum of the four-momenta exiting through the final vertices and pin the

64 This point is not totally obvious and will be elaborated soon, but the basic reason the internal lines may be
oriented any way we wish is simply that changing the orientation of such a line simply amounts to changing
the corresponding momentum variable from p to −p.

65 The number of diagrams to consider explodes when one goes to higher orders of perturbation theory. Some
computations are currently undertaken which involve hundreds of thousands of diagrams. I cannot conceive
which strategy one must adopt in order not to forget any diagram and not to make computational mistakes.
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sum of the four-momenta entering through the initial vertices. This is pretty obvious since
all the other terms cancel out, as they occur twice with different signs. Thus the value of
the Feynman diagram will be zero unless pout = pin, which means that four-momentum is
conserved in the interaction. This explains why when we compute the value of a Feynman
diagram this value always contains a factor (2π )4δ(4)(pout − pin). We will show later, in
Theorem 15.7.1, that this is a general fact.

Returning to the quantity (13.104), we can use the delta function (13.105) to perform the
integral in p′, getting the result

g2(2π )4δ(4)(p3 + p4 − p1 − p2)

× lim
ε→0+

∫
d4p

(2π )4

1

−p2 +m2 − iε

1

−(p1 + p2 − p)2 +m2 − iε
. (13.106)

Looking at the second line of this expression, there are two issues.

• As ε→ 0, the denominators get small for p2 � m2 and (p1 + p2 − p)2 � m2, and
that may make the integral diverge.

• The integrand decays as (p2)−2 which is not fast enough to make the integral
converge.

The integral is not finite because we forgot (again) to introduce an ultraviolet cutoff. (This
divergence is the price to pay for considering an ill-defined product of distributions.) As it
turns out, the first issue, while not trivial, will not be a major obstacle, so we ignore it for
now. The second issue is far more serious, and we deal with it in the next four sections.

13.17 One Loop: A Simple Case of Renormalization

Generally speaking, renormalization is a procedure by which a finite value is assigned to
scattering amplitudes that involve diagrams whose value is given by divergent integrals.66

In this section we start the task of renormalizing the scattering amplitude (13.96) φ4 theory,
computed at order two in perturbation theory. The divergent diagrams have one single loop.

To tame a divergent integral such as (13.106) we will introduce a cutoff. Before we decide
on it, we should know what we are going to make of our cutoff-dependent integral. So, we
assume now that we have decided on a cutoff with parameter θ , which makes the integral
finite, and we assume that moreover the limit as ε→ 0+ exists. This limit then depends on
θ and p1 + p2. We also have to consider the other relevant diagrams, which also involve
divergent integrals, and we compute the contribution of each of them by the same method.
In this manner we obtain the relation

〈0|a(p3)a(p4)S2a
†(p1)a†(p2)|0〉 = g2(2π )4δ(4)(p3 + p4 − p1 − p2)M, (13.107)

where M = M(p1,p2,p3,p4,θ ) is a quantity that depends on the cutoff θ and on the
momenta of the incoming and outgoing particles. If we take (13.99) into account, we obtain
that at order two in perturbation theory we have

66 That is, the objective is not necessarily to assign a value to each diagram, but only to certain sums of these
diagrams.
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〈0|a(p3)a(p4)Sa†(p1)a†(p2)|0〉 = (2π )4δ(4)(p3 + p4 − p1 − p2)(−ig + g2M).
(13.108)

For readability let us rewrite this amplitude as

A(g + ig2M), (13.109)

where

A := −i(2π )4δ(4)(p3 + p4 − p1 − p2) (13.110)

is a quantity completely determined by the values of p1,p2,p3,p4. (This quantity will be
used until the end of this chapter, even though at times the letter A will also be used for
other purposes.)

To interpret the preceding result, we have to remember a basic fact, which we already
stressed: Writing an equation with a parameter does not mean that we can measure this
parameter in the lab. The only “real” quantities are those which can be measured. The
parameter g of our model quantifies the strength of the interaction between particles. But
how do we measure the strength of this interaction? A sensible experiment is to try to
scatter two particles and measure cross-sections. These cross-sections are likely to depend
on p1,p2,p3,p4. A sensible choice (among others) is to perform this experiment at small
velocity, p1,p2,p3,p4 � p∗ := (m,0). Measuring cross-sections allows us to measure the
modulus of the scattering amplitude, but let us pretend that we can measure the amplitude
itself. Let us define the number glab by

At small velocity we measure the scattering amplitude Aglab.

Thus the quantity glab is determined by Nature and has nothing to do with our model. The
subscript lab insists that it is a quantity we can measure in our lab. How does glab relate to
the parameter g of our model? This model predicts (at order two of perturbation theory) a
scattering amplitude at small velocity given by the formula (13.109), that is A(g + ig2M0)
where

M0 := M(p∗,p∗,p∗,p∗,θ ). (13.111)

The definition of glab then implies that

glab � g + ig2M0, (13.112)

where the � is a reminder that the right-hand side is not an exact value, but has been
computed at order two in perturbation theory. The quantity on the left-hand side is fixed
by Nature. On the right-hand side the quantity M0 depends on our cutoff. We then cannot
escape the conclusion that, in order for our model to make sense, we must allow the coupling
constant g to depend on the cutoff.

In order to get a physical prediction from our model, we must express the predicted
amplitude (13.109) as a function of the known quantity glab, not of the unknown parameter g.
The normal mathematical procedure for that would be to solve the equation (13.112) in g
and plug this value of g in (13.109). This is however not what we are going to do, because
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it does not work. In particular if we took the equation (13.112) at face value, we would be
let to believe that g→ 0 as the cutoff gets removed whereas it will turn out that g→∞.

Instead of thinking as mathematicians, we are going to learn to “work in perturbation
theory” the way the physicists do, so please take a deep breath before you continue reading.
We have obtained (13.112) within order two perturbation theory, that is we have ignored any
term containing a higher power of g, so that we should rewrite (13.112) taking into account
these terms as

glab = g + ig2M0 +O(g3), (13.113)

where the symbol O(g3) takes into account “the contribution of all the terms containing a
coefficient gn for some n ≥ 3”. Generally speaking, O(g3) will denote any quantity which
is a sum of terms containing a coefficient gn for some n ≥ 3,67 irrelevant of the size of
the term that multiplies gn. The same symbol may denote different quantities at different
occurrences. We have now to express our predicted amplitude A(g+ ig2M +O(g3)) using
glab rather than g. First, using (13.113), we obtain

g + ig2M +O(g3) = glab + ig2(M −M0)+O(g3). (13.114)

Next, squaring the relation (13.113) we obtain

g2
lab = g2 +O(g3), (13.115)

and replacing g2 by g2
lab +O(g3) in the right-hand side of (13.114) this gives

g + ig2M +O(g3) = glab + ig2
lab(M −M0)+O(g3). (13.116)

The occurrence of the quantity M −M0 is great news, because this difference of large
quantities could remain finite as we remove the cutoff. In fact, our main finiteness problem
with M came from an integrand which decayed as (p2)−2. The difference M−M0 involves
a difference of two such integrands, which has a faster rate of decay. The divergence is
less severe. Assume now that indeed the difference M − M0 remains finite as the cut-
off is removed. Then according to the formula (13.116) the scattering amplitude (13.109)
becomes

A(glab + ig2
lab(M −M0))+O(g3). (13.117)

Assuming that the termsO(g3) are indeed small, this formula contains a prediction68 on how
the cross-section depends on the four-momenta of the incoming and outgoing particles, and
this prediction can be tested against experiment.

The symbol O has not been used the way a mathematician would use it.69 The standard
mathematical meaning of O(g3) is to denote a quantity B(g) depending on g with the
property that |B(g)| ≤ |g|3C whereC does not depend on g, so that such a termO(g3) does

67 This standard physics notation unfortunately conflicts with the usual meaning of this symbol in mathematics.
This is explained a bit later.

68 Once you have measured glab of course.
69 The way the symbol O is used in physics textbooks can be an endless source of wonder for a mathematician.

A particularly striking instance is the way these books “justify” path integrals.
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indeed become small at a controlled speed as g→ 0. Here, by contrast, we agglomerate in
O(g3) any term of the type g3C however large is the quantityC. The intended mathematical
meaning of a relation such as (13.115) is at the very least obscure. Furthermore, one really
sees no reason why the term O(g3) should be small in (13.117), in particular since as we
will see later g→∞ as the cutoff gets removed.

Let us summarize. On the positive side, we have obtained a physical prediction about
scattering amplitudes. On the negative side, calling a spade a spade, the mathematical value
of our procedure is strictly nil.70 Let us elaborate on this point. In the next section we will
use perfectly rigorous mathematics to prove that as the cutoff gets removed, that quantity
M −M0 has a finite limit. Later, in Part IV, we will again use perfectly sound mathematics
to assign a finite value to each Feynman diagram, a procedure known as renormalization.
What is well outside mathematics is the argument that this procedure should produce the
correct prediction for the experimentally measured values.

Many predictions of Quantum Field Theory were originally obtained by methods that
are technically more elaborate but are in essence similar to the way we obtained (13.117),
with equally nil mathematical value.71 The astounding fact is that these predictions are
experimentally verified, sometimes with fantastic accuracy. One should of course wonder
how and why such a miracle takes place.72

In the next section we develop the tools to prove that the difference M −M0 in (13.117)
remains finite as the cutoff gets removed. In Section 13.20 we explain the traditional
description of the procedure leading to (13.117) using “counter-terms”. In the last four
sections we extend the procedure of the present section to the far more challenging situation
of two loops.

13.18 Wick Rotation and Feynman Parameters

The program of this section is to show how to make sense of the difference M − M0 in
(13.117) as the cutoff gets removed. The quantity M is the sum of different terms, arising
from different diagrams. We focus on the term arising from the integral (13.106). (At this
stage we worry only about the integral itself. We will examine later what to do about the
various powers of i.)

Let us stress that, as mathematicians, we want to understand how things work and why
what we are doing makes sense. In the present case we will find explicit formulas, but actual
computations will not be our emphasis, as these are available in any physics textbook.

Up to this point our only serious encounter with infinities was the Casimir effect of
Chapter 7, and we got away with flying colors, a clean argument showing that the final

70 This is typically not stated clearly in physics textbooks. Rather the whole issue is often downplayed to a quite
remarkable extent, see e.g. Lancanster and Blumdell’s book [50]. Whereas the procedure predicts reality very
accurately, it does not achieve anything to pretend that our manipulations are innocuous.

71 That is, one finds ways to eliminate certain infinite terms (in the form of divergent integrals which cancel each
other) from expressions involving quantities that can actually be measured, while ignoring whole series of
even larger terms.

72 I wish I could explain it to you. I cannot, but I am unsure as to whether anybody really could. A more recent
method, “the renormalization group approach”, is probably less unsatisfactory, although my understanding is
that it does not really solve the problem either. We refer to Lancanster and Blumdell’s book [50] for this topic.
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answer was independent of the regularization procedure. It would certainly be desirable
to achieve the same result in all cases where regularization is used. Unfortunately, this is
a difficult program. For example, a physically satisfying cutoff would preserve Lorentz
invariance. But such a cutoff does not make the integral absolutely convergent, basically
because the volume of the set of p with p2 bounded is infinite. And if one works with
integrals that are not absolutely convergent, it gets much harder to rigorously justify any-
thing. This program is also of limited interest. Once one has found a numerical value by a
regularization method, if this value matches experimental results, the proof that another
regularization method would yield the same value is unlikely to attract much attention.
Several physics textbooks claim that the results obtained while renormalizing diagrams are
independent of the renormalization method, but they give neither arguments nor references
to original papers.73

In any case, since the method we will eventually develop for renormalization does not
use a cutoff at all, our overwhelming desire when considering cutoffs will be to avoid
technicalities, at the expense of being somewhat brutish. To make the integral (13.106)
converge, we simply introduce a factor θ (p) in the integrand, where 0 ≤ θ (p) ≤ 1 is
a function that takes the value 1 unless p is very large and that goes to 0 fast enough at
infinity.74

We will call the function θ a cutoff. The physical results are obtained when we remove
the cutoff. That is, we assume that for some number R > 0

p2 ≤ R2 ⇒ θ (p) = 1

and we show that the limits of our θ -dependent quantities exist as R→∞. Let us simplify
notation by setting w = p1 + p2, so our goal is to study the quantity

U (w,θ) := lim
ε→0+

∫
θ (p)d4p

(2π )4

1

−p2 +m2 − iε

1

−(w − p)2 +m2 − iε
, (13.118)

The integral is now well-defined and absolutely convergent. Our goal is to prove the
following:

• As ε→ 0+ (and provided the cutoff is “far enough away”) the limit exists in (13.118).
• Given w,w′, as the cutoff gets removed, the quantity U (w,θ)−U (w′,θ ) has a finite

limit.

Even though we cannot make much sense of the quantity (13.106), the difference of two
such quantities for different values ofw = p1+p2 is well defined. For as simple as possible
an example of a similar situation, for a > 0 the integrals

I (a) =
∫ ∞
−∞

dx
1

a + |x|
do not make sense. However, the quantity I (a)− I (b) is well defined.

73 A common method in physics books to “show that renormalization results are independent of the
renormalization method” consists of showing that two different specific methods yield the same results.

74 As already pointed out, such a non-Lorentz invariant cutoff is unphysical.
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The reader might now like to review contour integrals in Appendix N, as we shall use
this to perform the integrals in p0.

Before we start describing the physicists’ magical methods, it is a good idea to con-
vince yourself that even the existence (not to even mention the computation) of the limit
in (13.118) is not trivial. As ε → 0+, singularities develop at the points where either
−m2 + p2 = 0 or −m2 + (w − p)2 = 0, or, worse of all, at the points where both these
quantities are zero. The most obvious approach to proving the limit in (13.118) would be to
compute the integral in p0 at given p and then to use dominated convergence. The purpose
of the next exercise is to show that this does not work.75

Exercise 13.18.1 Consider the function fp,ε(z) of one complex variable given by

fp,ε(z) = 1

−z2 + p2 +m2 − iε

1

−(z− w0)2 + (w − p)2 +m2 − iε
. (13.119)

(a) Prove that for (
√

p2 +m2−w0)2 �= (w−p)2+m2 and (w0+
√

(w − p)2 +m2)2 �=
p2 +m2 the limit

A(p) = lim
ε→0+

∫
dp0

2π
fp,ε(p

0)

exists whereas this limit does not exist if (
√

p2 +m2 − w0)2 = (w − p)2 + m2 or
(w0 +

√
(w − p)2 +m2)2 = p2 +m2.

(b) Prove however that for R large enough one has∫
p2≤R2

d3p

(2π )3 |A(p)| = ∞. (13.120)

Hint: For (a) compute the limit using contour integrals. For (b) show that for α large,
the volume of the set of p for which |A(p)| ≥ α is of order 1/α. Think before you
compute.

An obvious reason why it is tricky to compute a limit such as limε→0+
∫

dxfp,ε(x)
where fp,ε is given in (13.119) is that the poles of this function get close to the contour
of integration (here the real line) as ε → 0+. If we replace the contour of integration by
another contour which stays away from these poles as ε → 0+, then it is obvious that
there will be no problem in taking the limit ε → 0+. We should try to choose the new
contour as simply as we can. A prime candidate as a simple contour is the imaginary axis.
The technique to do this is known as Wick rotation and is useful enough to be stated in its
own right.

Proposition 13.18.2 (Wick rotation) If the function f (z) = f (x+iy) is holomorphic
in an open domain containing the quadrants x,y ≥ 0 and x,y ≤ 0 and decays fast
enough at infinity in these quadrants (|f (z)| ≤ |z|−1−α for some α > 0 and all |z|
large enough suffices), we have

75 There are further cancellations which are not immediately apparent.
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0

2

1

Figure 13.13 Wick rotation.

∫
dxf (x) = i

∫
dxf (ix). (13.121)

Proof We write that the integral of f on the contours 1 and 2 of Figure 13.13 is zero and
we let the radius of these contours go to infinity.

At this point we should stress that the formula �̂F (p) = limε→0 1/(−p2 +m2 − iε) is
terribly misleading. It basically looks like this quantity is a real number, since the imaginary
part has this small coefficient ε. This however is not true at all. Indeed, using the formula
(13.121) for the function f (z) = 1/(−z2 + p2 +m2 − iε) shows that the quantity

lim
ε→0+

∫
dp0

−p2 +m2 − iε
= i

∫
dp0

(p0)2 + p2 +m2

is purely imaginary.
Recalling (13.119), one may not use Wick rotation to study the integral

∫
dxfp,ε(x)

unless |w0| <
√

(p − w)2 +m2 because then otherwise fp,ε has poles in the wrong place.
Richard Feynman has however found a magical way to transform the integral in (13.118) to
bypass this difficulty. It relies on the following identity. If two complex numbers A,B are
such that uA+ (1− u)B �= 0 for 0 ≤ u ≤ 1 then

1

AB
=
∫ 1

0

du

(Au+ B(1− u))2 . (13.122)

This follows from the fact that the integrand is the derivative of 1/((B−A)(Au+B(1−u))).
The number u is called a Feynman parameter.

We use (13.122) for

A = −(w − p)2 +m2 − iε ; B = −p2 +m2 − iε
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so that we have

Au+ B(1− u) = −(p − uw)2 − u(1− u)w2 +m2 − iε.

Making the change of variables p→ p + uw (13.118) becomes

U (w,θ) = lim
ε→0+

∫ 1

0
du
∫

θ (p + uw)d4p

(2π )4

1

(−p2 − u(1− u)w2 +m2 − iε)2 . (13.123)

Here we see the magic of the transformation. We have an extra parameter u, but given u the
integral in p is much simpler. In particular we may now use Wick rotation (13.121) on p0.
Using the notation

‖p‖2 := (p0)2 + p2

for the Euclidean norm of a four-vector, after Wick rotation (13.123) becomes

U (w,θ ) = i lim
ε→0+

∫ 1

0
du
∫

θ (p + uw)d4p

(2π )4

1

(‖p‖2 − u(1− u)w2 +m2 − iε)2
. (13.124)

When ‖p‖ is large (say ‖p‖2 ≥ w2) the denominator cannot be small and there are no
problems with the limit ε → 0+. The unfortunate fact is that it can be shown that76 w2 >

4m2. There are then values of u for which −u(1− u)w2 +m2 < 0 and singularities occur
for certain values of p as ε→ 0+. We should stay cool at this stage.

Exercise 13.18.3 (a) Prove that for ε > 0 one has∫ ∞
∞

dx

(x − iε)2
= 0.

(b) Does it make sense to set ε = 0 in the previous identity?
(c) Does it make sense to replace ε by 0 in the integral in (13.124)?

The next goal is to show that when “the cutoff is far enough away”, the limit ε → 0+

exists in (13.124). For this we will use the following explicit formula.77

Lemma 13.18.4 Consider a complex number C, of the type C = v− iε where v ∈ R

and ε > 0. Then∫
‖p‖≤R

d4p

(2π )4

1

(‖p‖2 + C)2
= 1

16π2

(
log(R2 + C)− logC − R2

R2 + C

)
. (13.125)

In this lemma we use the function “log”, the logarithm of a complex number. This
function logarithm is defined for non-zero complex numbers but it is “multivalued”. At
present we need only the quantity log(v − iε) for v ∈ R. For v large, there is no ambiguity

76 Indeed, recalling that w = p1 + p2, to compute the Lorentz invariant quantity w2 we may as well assume that
we are in the “center of mass” reference frame, p1 + p2 = 0, in which case it is apparent that
w2 = (p0

1 + p0
2)2 ≥ (2m)2 = 4m2, with strict inequality unless the situation is trivial.

77 Do not think however that the specific computation here has any importance whatsoever in the existence of
the limit. Later we will obtain such limits in a general setting just by moving to polar coordinates and
integrating by parts.
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about what this means, and for other values of v we simply “follow the branch” as we
decrease v. In particular for v < 0, we have limε→0+ log(v − iε) = log |v| − iπ .

Proof As a first step we use polar coordinates to obtain∫
‖p‖≤R

d4p

(‖p‖2 + C)2
= 2π2

∫ R

0

drr3

(r2 + C)2
, (13.126)

where the factor 2π2 is just the surface area of the sphere in R4. We then write

r3

(r2 + C)2 =
r

r2 + C
− rC

(r2 + C)2 ,

and we integrate to obtain the result.

Observe that when v < 0 it is not possible to pass to the limit ε→ 0+ inside the integral
(13.125) because the resulting integral78 is +∞.

Given a number B and w ∈ R1,3 we define the following number:

C(B,w) = sup{(p + uw)2 ; p2 < B ; 0 < u < 1}.
Let us also consider the following function

W (w) = i

16π2

∫ 1

0
du log(m2 − u(1− u)w2). (13.127)

It is understood here that for m2 − u(1 − u)w2 < 0 the value of the logarithm is obtained
“by following the correct branch”, i.e.

log(m2 − u(1− u)w2) = log |m2 − u(1− u)w2| − iπ .

Proposition 13.18.5 (a) Given w and a cutoff θ such that

p2 ≤ C(w2,w)⇒ θ (p) = 1, (13.128)

the limit U (w,θ ) exists in (13.118) as ε→ 0+.
(b) Given w and w′, as the cutoff gets removed (in the sense defined just above
(13.118)), the difference U (w,θ)− U (w′,θ ) has the limit W (w)−W (w′).

Thus, the precise meaning of (b) is that given w,w′ and ε1 > 0 there exists R > 0 such
that |U (w,θ)−U (w′,θ )− (W (w)−W (w′))| < ε1 whenever the cutoff θ satisfies θ (p) = 1
for p2 < R2.

Condition (13.128) is very mild and gets satisfied when the cutoff is removed.
In broader terms, as the cutoff gets removed we have U (w,θ ) � U (0,θ )+W (w)−W (0)

and alsoU (0,θ )→∞. In flowery language we could say that the whole family of diverging
integrals depends only on a single infinite parameter. This parameter cancels out of each
expression that has a physical content.

78 In a number of respected textbooks, the present calculation is precisely handled by first setting ε = 0 inside
the integral (13.124) and then using the formal relation (13.125) when C < 0. It is all right in the end but
neither of these procedures makes mathematical sense. Having been trained from kindergarten to avoid risky
manipulations I cannot explain how physicists succeed in routinely using (and teaching!) such methods
without falling into utter nonsense.
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Proof of (a) of Proposition 13.18.5 Let us fix a number R > 0 with R2 ≥ w2. Assuming

p2 ≤ C(R2,w)⇒ θ (p) = 1, (13.129)

for ‖p‖ ≤ R we have (p+uw)2 ≤ C(R2,w) and θ (p+uw) = 1 so the integral in (13.124)
is the sum of the following two pieces:

∫ 1

0
du
∫
‖p‖≤R

d4p

(2π )4

1

(‖p‖2 − u(1− u)w2 +m2 − iε)2 , (13.130)

∫ 1

0
du
∫
‖p‖≥R

θ (p + uw)d4p

(2π )4

1

(‖p‖2 − u(1− u)w2 +m2 − iε)2 . (13.131)

Lemma 13.18.4 shows that as ε→ 0+ the first piece has the limit

U1(w,R) := 1

16π2

∫ 1

0
du
(

log(R2 − u(1− u)w2 +m2)− log(−u(1− u)w2 +m2)

+ R2

R2 − u(1− u)w2 +m2

)
. (13.132)

Since we assume that R2 ≥ w2, on the domain of integration of (13.131) we have ‖p‖2 −
u(1− u)w2 +m2 ≥ R2 −w2 +m2 ≥ m2, so that as ε→ 0+ the quantity (13.131) has the
limit

U2(w,R,θ) :=
∫ 1

0
du
∫
‖p‖≥R

θ (p + uw)d4p

(2π )4

1

(‖p‖2 − u(1− u)w2 +m2)2
. (13.133)

This proves the existence of the limit in (13.118) and the formula

U (w,θ ) = iU1(w,R)+ iU2(w,R,θ). (13.134)

Taking R2 = w2, we have proved (a) since in that case (13.129) reduces to (13.128).

The main idea to Prove Part (b) is to use (13.134) together with the fact that for another
number w′ it follows from (13.132) that

lim
R→∞

i(U1(w,R)− U1(w′,R)) = W (w)−W (w′). (13.135)

One then shows that the terms U2(w,R,θ) have a vanishing importance as R→∞. As this
technical argument is not essential to follow the main story, it is better left as an exercise.

Exercise 13.18.6 Complete the proof of part (b) of Proposition 13.18.5.

13.19 Explicit Formulas

We have completed the proof that (13.117) does lead to a physical prediction (assuming
that the term O(g3) is small). It is another matter to check that the prediction makes real
sense, e.g. is Lorentz invariant, but this is going to be obvious soon. Our next task is to be
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1 2 1 2 1 2

p1 p3 p2

p2 p4 p3 p3p4 p4

p2p1 p1

(a) (b) (c)

Figure 13.14 Another way to present the three channels of Figure 13.10.

more explicit about the value of M , to recover the physicist’s formulas. We recall that we
considered a (suitable) cutoff θ and we defined

U (w,θ ) = lim
ε→0+

∫
θ (p)d4p

(2π )4

1

−p2 +m2 − iε

1

−(w − p)2 +m2 − iε
. (13.136)

This is the integral occurring in diagram (a) of Figure 13.10. Recalling the quantity A of
(13.110) the value of the diagram itself is

(−ig)2(−i)2(2π )4δ(4)(p1 + p2 − p3 − p4)U (w,θ) = Aig2U (w,θ ).

If we draw the diagrams of Figure 13.10 as in Figure 13.14 it is plain that they “are the
same” but that w = p1 + p2 has to be replaced respectively by p1 − p3 and p1 − p4.

Thus we have

M2 := M
(
p1,p2,p3,p4,θ ) = 1

2

(
U (p1 + p2,θ )+ U (p1 − p3,θ )+ U (p1 − p4,θ )

)
.

(13.137)

Here we introduce the subscript 2 to the quantity M to indicate that we have taken into
account all the contributions of the diagrams with two vertices. The factor 1/2 occurs
because the symmetry factor of the diagrams of Figure 13.14 is 2. As the function W (w)
of (13.127) depends only on w2, there exists a function V such that W (w) = V (w2). The
traditional notation when studying scattering two particles into two particles is to use the
variables79

s := (p1 + p2)2 ; t := (p1 − p3)2 ; u := (p1 − p4)2. (13.138)

In the specific situation

p1 = p2 = p3 = p4 = p∗ = (m,0,0,0), (13.139)

we have s = 4m2,t = u = 0. As the cutoff is removed, using (b) of Proposition 13.18.5
our prediction for the scattering amplitude becomes

A
(
glab + 1

2
ig2

lab

(
V (s)+ V (t)+ V (u)− V (4m2)− 2V (0)

))
. (13.140)

Our prediction 13.117 has used the special choice (13.139) and the corresponding value
M0 given by (13.111). Surely the choice (13.139) is reasonable, but other choices are
possible. We argue now that all these choices lead to the same prediction of the scattering
amplitude.

79 s,t,u are called the Mandelstam variables in physics.
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Rather than the specific point (13.139) let us use another arbitrary point, and denote by
a “prime” the corresponding quantities, so that (13.113) is replaced by

g′lab = g + ig2M ′0 +O(g3), (13.141)

and the prediction (13.117) for the scattering amplitude is replaced by

A(g′lab + ig′2lab(M −M ′0)+O(g3)). (13.142)

Squaring the relation (13.141) we obtain that g′2lab = g2 at orderO(g3). Comparing (13.113)
with (13.141) we obtain at this order

g′lab = glab + ig2(M ′0 −M0).

Plugging this into (13.142) and using that g′2lab = g2 = g2
lab at order O(g3) recovers

(13.117), showing that the two predictions are identical at the order of error involved.80

The incoming and outgoing particles satisfy p2
1 = p2

2 = p2
3 = p2

4 = m2. This is however
never used, and it is fruitful in the previous considerations to think of p1,p2,p3,p4 as any
points of R1,3. Having argued that the specific point used to perform the renormalization
does not matter, rather than (13.139) it is tempting to use the (unphysical but more conve-
nient) choice p1 = p2 = p3 = p4 = 0, to which correspond the more symmetrical values
s = t = u = 0. This idea will be much used later.

13.20 Counter-terms, I

The gist of our method toward renormalization has been to write the predicted scattering
amplitude as a function of the parameter glab in (13.117). As we will experience in the
next section, this method becomes cumbersome at higher orders of perturbation theory,
and physicists have developed another way to perform this procedure. This is the so-called
counter-terms method. It is more efficient, but it is also very mysterious-looking at the
beginning. In the present section we provide a first introduction to this method.

Let us look back at the computations of Section 13.17. Our main parameter g has to
depend on the cutoff, and cannot be physically measured. It therefore seems appropriate to
make a change of variables, and to take glab as the main parameter. We then write

g = glab +D, (13.143)

where D depends on the cutoff. Let use this notation to redo the computations of Section
13.17, to introduce in its simplest version a scheme of computation which will be used again
and again. We now write (13.109) as

A(glab +D + i(glab +D)2M)+O((glab +D)3), (13.144)

whereas (13.113) becomes

glab = glab +D + i(glab +D)2M0 +O((glab +D)3),

80 The whole argument is based on the fairy tale that it makes sense to compute quantities at order O(g3).
Unfortunately, if one rejects the fairy tale, there is little to say about the whole matter.



404 The Scattering Matrix in Perturbation Theory

i.e.

D = −i(glab +D)2M0 +O((glab +D)3). (13.145)

The fruitful way to use this relation is not in the direction of standard mathematical
thinking. We do not make estimates on the size of the terms, or such sensible approaches.
Rather, we pretend that D is a formal series in powers of glab, with cutoff-dependent
coefficients,D= ∑

n≥1 Dng
n
lab.81 We substitute this expression in (13.145). Identifying the

coefficients of glab in the right and left-hand side givesD1= 0, and thenD2= −iM0 so that
D= − ig2

labM
0 +O(g3

lab).
We should stress how far we are from rigorous arguments here.82 The relation

D= − ig2
labM

0 + O(g3
lab) leads us to believe that as the cutoff gets removed we have

D→∞, so that g = glab +D→∞ and

(13.144) is an expansion in powers of a quantity that goes to infinity!

Going back to (13.144), the prediction for the scattering amplitude is

A(glab + ig2
lab(M −M0))+O(g3

lab). (13.146)

In parallel with our decomposition g = glab+D it will be fruitful to write the interaction
term in the Hamiltonian as

g

4!
:ϕ4:= glab

4!
:ϕ4: +D

4!
:ϕ4: , (13.147)

and to think of the first term on the right as the correct interaction term (which produces the
measured value glab at small velocity) and of the other term as a counter-term. The standard
picture (to which we will gradually lead the reader) is that

Counter-terms can be adjusted to cancel the divergences of the diagrams.

Later we will learn which version of Feynman diagrams should be used for Hamiltonians
containing counter-terms as in (13.147). At the present stage it should be rather obvious
that the term D :ϕ4: /4! simply creates a term AD in the amplitude (see (13.99)), which
therefore becomes

A(glab + ig2
labM +D).

Since D = −ig2
labM

0 +O(g3
lab), this recovers the formula (13.146). We see here the effect

of the counter-term. It replaces the divergent term M by the convergent term M −M0.
It is a general feature of the method of counter-terms that the coefficient D has an expan-

sion in powers of glab, which is computed term by term. The next term of this expansion
will be computed in Section 13.24, and the general method is explained in Chapter 17.

13.21 Two Loops: Toward the Central Issues

The renormalization of diagrams containing one single loop already yields spectacular
results in Quantum Electrodynamics (as can be found in any book on this topic). The main

81 Doing so, we pretend of course that glab is a variable, not a number.
82 It is really unfortunate that certain physics textbooks make nonsensical claims about the legitimacy of this

approach, see e.g. Schwartz’s book [80].
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textbooks consider the study of diagrams containing two loops as an advanced topic. The
purpose of this section and the next two is to extend the analysis of Section 13.17 to the
computation of scattering at order three in perturbation theory, still in φ4 theory. This
involves many different two-loops diagrams. The possibility of renormalization in this case
already hinges on very non-trivial issues. These issues will be addressed in a systematic
manner in Chapters 15 and 16.

The difference between order two and order three of perturbation theory is that we
now have to include in our computation the contribution 〈0|a(p3)a(p4)S3a

†(p1)a†(p2)|0〉.
Recalling the quantity A = −i(2π )4δ(4)(p3 + p4 − p1 − p2) of (13.110) let us denote this
contribution by

−Ag3M3, (13.148)

where M3 = M3(p1,p2,p3,p4,θ ) depends on the cutoff and the momenta of the incoming
and outgoing particles. Thus the relation (13.148) defines M3. The minus sign is conven-
tional, and the reason behind it will appear when we start making actual computations.

At order O(g4) the scattering amplitude is then

A(g + ig2M2 − g3M3)+O(g4), (13.149)

where M2 is the very same as the quantity M in (13.109). In particular

glab = g + ig2M0
2 − g3M0

3 +O(g4). (13.150)

We have already explained that the choice of the non-measurable quantity g as parameter is
not clever, so that we use again the change of variable g = glab +D, where D depends on
the cutoff, and all our computations are at the order g3

lab. Then (13.150) implies the equality

glab = glab +D + i(glab +D)2M0
2 − (glab +D)3M0

3 +O((glab +D)4),

i.e.

D = −i(glab +D)2M0
2 + (glab +D)3M0

3 +O((glab +D)4). (13.151)

To use this relation, we proceed as in Section 13.20: We try to find83 D as a power series
in glab, with cut-off dependent coefficients: D = D1glab + D2g

2
lab + D3g

3
lab + O(g4

lab).
We substitute this relation into (13.151) and we identify in turn the coefficients of gklab for
k = 1,2,3 in the left-hand and the right-hand sides. Since there is no term in glab in the
right-hand side, we obtain D1 = 0. Thus the term in g2

lab in the right-hand side is−ig2
labM

0
2

so that D2 = −iM0
2 . Then the term in g3

lab in the right hand side is g3
lab(M0

3 − 2(M0
2 )2), and

we have shown that

D = −ig2
labM

0
2 + g3

lab(M0
3 − 2(M0

2 )2)+O(g4
lab).

Going back to (13.149), replacing there g by its value glab+D = glab−ig2
labM

0
2+g3

lab(M0
3−

2(M0
2 )2) + O(g4

lab) and collecting again all terms that contain a term gnlab for n ≤ 3, a
straightforward computation shows that the prediction for the scattering amplitude is now

A
(
glab + ig2

lab(M2 −M0
2 )+ g3

lab

(
2M0

2 (M2 −M0
2 )−M3 +M0

3

))+O(g4
lab). (13.152)

83 Once again, this is probably not the first thing which a mathematician would try, but this is what works.
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In Section 13.18 we proved that as ε→ 0+ and then the cutoff is removed, the quantity
M2 − M0

2 has a finite limit, giving us a physical prediction. In order to get a physical
prediction at the present third order of perturbation theory, it must be true that

As ε→ 0+ and then the cutoff gets removed, the quantity

2M0
2 (M2 −M0

2 )−M3 +M0
3 has a finite limit. (13.153)

This fact involves a truly remarkable “cancellation of infinities” between the various terms.
We will prove this in the next three sections. There is no doubt that this is a significant
undertaking. Our motivation is to drive home the point that the possibility of renormalization
is a non-trivial and near-miraculous fact. Our general study of renormalization will however
follow another path, so that the material of Sections 13.23 and 13.24 is not an absolute
prerequisite for the sequel.

13.22 Analysis of Diagrams

We turn to the computation of 〈0|a(p3)a(p4)S3a
†(p1)a†(p2)|0〉. This involves all diagrams

with three internal vertices and four external lines, and containing no vacuum bubble. Four
lines come out of each internal vertex. The first task is to understand the structure of these
diagrams. For each diagram we may consider a triplet of integers describing how many
external lines are attached to a given internal vertex. Within permutation of the vertices the
possible triplets are (0,0,4), (0,1,3), (0,2,2) and (1,1,2). The first type is ruled out because
in such a diagram the first two vertices form a vacuum bubble, and we have ruled out these.
Let us recall that lines from a vertex to itself are forbidden. For the type (0,1,3), let us call
a,b,c the internal vertices to which are attached zero, one or three external lines. Then b is
touched by three internal lines and c is touched by one internal line. Thus one of the four
internal lines going out of a must attach to c and three of the four internal lines going out of
a must attach to b. This gives the shape (1) of Figure 13.15. A similar argument shows that
the type (0,2,2) gives the shape (2) of Figure 13.15. To analyze the type (1,1,2), there are
two internal lines out of the vertex touched by two external lines. When these two internal
lines are attached one to each of the other two vertices, one obtains the shape (3) in Figure
13.15. It is not possible that these two internal lines attach to the same other vertex, because
then there would be an internal line from the third vertex to itself, which is forbidden. In
conclusion we obtain only the three shapes in Figure 13.15.

We may then write

〈0|a(p3)a(p4)S3a
†(p1)a†(p2)|0〉 = I+ II,

where I is the contribution of the four diagrams84 of shape 1 and II is the contribution of
the diagrams of shapes 2 and 3. Even though this is absolutely not obvious yet, the proper
way to compute the scattering amplitude is to consider only the term II.85 We will accept

84 The blob that is on the incoming edge in the picture might sit on any of the external edges.
85 The term I will be shown later to contribute to “mass renormalization”. We study mass renormalization

starting with Section 14.10.
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Figure 13.15 The three shapes of diagrams.
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Figure 13.16 The three diagrams in the s group.

this now without further comments, so we have to take into account only the diagrams of
shape 2 and 3. To obtain a diagram from its shape described in Figure 13.15, we have to
assign the in-coming and out-going momenta to the external legs. We find that there are
three diagrams of shape 2, which correspond to the diagrams of Figure 13.14, except that
the loop is repeated. Each of these diagrams has a symmetry factor 4 (since in each loop the
edges can be exchanged). On the other hand, there are 6 = (4

2

)
diagrams of shape 3, because

such a diagram is determined by which two external momenta appear “at the vertex of the
ice cone”, indicated by the letter v on the figure. Each of these diagrams has a symmetry
factor 2.

Therefore we have nine diagrams to contend with. Fortunately we can bring some orga-
nization to this collection of nine diagrams: It naturally breaks down in three collections of
three diagrams each, which we will call respectively the s, t and u groups. The diagrams in
the s group are represented in Figure 13.16.

Observe that the momenta on the external legs to the left of these diagrams are the same
as the momenta on the external legs to the left of diagram (a) of Figure 13.14. The name
“s group” is then motivated by the notation (13.138). The other two collections of three
diagrams are defined in the obvious manner: The momenta on the external legs to the left of
the diagrams are as in the second (respectively third) diagrams of Figure 13.14. They will be
called respectively the t and u groups. The motivation for defining these groups may not be
obvious now by will appear when we make the computation. In brief, the contributions of
the diagrams within one given group “fit nicely together” and the computations are similar
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Figure 13.17 Momenta on the internal lines.

between groups. So, we will not really have to deal with nine diagrams but only with three,
and the task will not be as difficult as we might have feared.

We start by computing the value of diagram (2) of Figure 13.16. For this we use the
Feynman rules in momentum space, and we do not yet use a cutoff for clarity. These
rules assign a four-momentum p to each internal line. We call these p1,p2,p3,p4, with
upper indices to distinguish them from the momenta of the particles, and they are as in
Figure 13.17.

To lighten notation we set

Gm(k) := 1

−k2 +m2 − iε
,

the value of ε being implicit. Denoting by S the symmetry factor of the diagram (here
S= 2), the value assigned by the Feynman rules in momentum space on page 390 to the
diagram is then

1

S
(−ig)3(−i)4 lim

ε→0+

∫∫∫∫ ∏
1≤i≤4

d4pi

(2π )4

∏
1≤i≤4

Gm(pi)δ. (13.154)

Here the factor (−ig)3 occurs because we assign a factor −ig to each of the three internal
vertices. The factor (−i)4 occurs because we assign a factor −iGm(p) to an internal line
with flow p. The factor 1/S occurs because in the end we divide by the symmetry factor S.
Finally, δ is the product of the delta functions enforcing conservation of four-momentum at
each internal vertex:

δ := (2π )12δ(4)(p1 + p2 − p1 − p2)δ(4)(p2 − p3 + p4 − p4)δ(4)(p1 + p3 − p4 − p3).
(13.155)
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Figure 13.18 Relabeled momenta on the internal lines.

Writing as usual w=p1 + p2, the term (2π )4δ(4)(w − p1 − p2) forces the relation
p2 = w − p1, and the term (2π )4δ(4)(p1 + p3 − p4 − p3) forces the relation p4 =
p1 + p3 − p3. With these relations the term (2π )4δ(4)(p2 − p3 + p4 − p4) becomes
(2π )4δ(4)(p1 + p2 − p3 − p4). We lighten notation by letting k := p1 and � := p3. The
corresponding flows are then described in Figure 13.18.

Recalling the quantity A = −i(2π )4δ(4)(p3+p4−p1−p2) of (13.110), the expression
(13.154) becomes

−Ag3 × 1

S
lim
ε→0+

∫∫
d4k

(2π )4

d4�

(2π )4Gm(k)Gm(w − k)Gm(�)Gm(k + �− p3). (13.156)

We then understand the reason for the sign convention in (13.148): The contribution of the
diagram to the quantity M3 is given by the simple expression

1

S
lim
ε→0+

∫∫
d4k

(2π )4

d4�

(2π )4
Gm(k)Gm(w − k)Gm(�)Gm(k + �− p3). (13.157)

13.23 Cancellation of Infinities

The goal of the present section is to explain how to prove (13.153). More precisely, keeping
the notation p∗ = (m,0,0,0), our goal is the following.

Proposition 13.23.1 Consider the quantity

W (p1,p2,p3,p4,θ ) = 2M0
2M2 −M3.
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Then as ε→ 0+ and then the cutoff θ gets removed the limit of

W (p1,p2,p3,p4,θ )−W (p∗,p∗,p∗,p∗,θ ) = 2M0
2 (M2 −M0

2 )−M3 +M0
3

(13.158)

exists and is finite.86

The proof of this proposition depends on understanding the quantity M3 −M0
3 (which

might be easier than understanding M3 itself). The principle of the proof is simple.

• For each of the nine diagrams contributing to M3, find a semi-explicit way to express
“its infinite part”. This is done through the decomposition (13.171); the “infinite part”
is contained in the term J1 of this decomposition.

• Check through computation that these infinite parts cancel.

There are several sources of difficulty in studying the integral in (13.157). The problem
of the vanishingly small denominators as ε → 0+ is far less trivial than in Section 13.17
but again the main difficulty is the slow decrease of the integrand at infinity. To separate
these two difficulties and bypass the problem of small denominators let us examine first
what happens when we replace Gm in (13.157) by the Euclidean propagator E given by

E(k) := 1

‖k‖2 +m2 . (13.159)

Replacing Gm by E, the integral in (13.157) is then replaced by∫∫
d4k

(2π )4

d4�

(2π )4E(k)E(w − k)E(�)E(k + �− p3). (13.160)

This integral cannot converge because the denominator does not grow fast enough at infinity.
More precisely, there are only four powers of either ‖k‖2 or ‖�‖2 in the denominator, so that
this denominator is bounded above by C(1+ ‖k‖2 + ‖�‖2)4, whereas, setting x = (k,�) ∈
(R1,3)2, the integral∫∫

d4k

(2π )4

d4�

(2π )4

1

(1+ ‖k‖2 + ‖�‖2)4 =
∫

d8x

(2π )8

1

(1+ ‖x‖2)4

is “logarithmically” divergent.87 This type of divergence of (13.160) is called an overall
divergence. We already faced such a problem in Section 13.17. There is however a fur-
ther problem: In (13.160) the integral in � itself is divergent, because there are basically
only two powers of ‖�‖2 in the denominator. The divergence of the integral in � will be
referred to as a sub-divergence.88 There is no free lunch. The overall divergence and the
sub-divergence have to be addressed separately. We first remove the sub-divergence in the
� integral. The strategy for this is to replace the term E(�)E(k + � − p3) by the term

86 As we will see later, this is true only in the sense of distributions, when the previous quantity is integrated
against a test function of p1, . . . ,p4.

87 This argument is a special case of the technique of power counting to be developed later.
88 More generally when there is a divergence “inside” another divergence one talks of “nested divergences”.
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E(�)(E(k + � − p3) − E(�)). This improves the integrability in �, since by considering
the difference E(k + � − p3) − E(�) “we gain a power of � in the denominator”. The
function

F (k,�,w,p3) := E(k)E(w − k)E(�)(E(k + �− p3)− E(�)) (13.161)

is now integrable in � and∫
d4�

(2π )4F (k,�,w,p3) = E(k)E(w − k)I (k − p3)

where

I (k − p3) :=
∫

d4�

(2π )4
E(�)(E(�+ k − p3)− E(�)).

We however did nothing to address the problem of the overall divergence, so let us now
look into that. It is not difficult to get convinced that I (k − p3) depends smoothly on the
parameter k−p3, and grows logarithmically with this parameter. Actually this integral can
be explicitly computed by a formula similar to (13.127), and these claims are obvious from
the resulting formula. In loose words the function E(k)E(w − k)I (k − p3) behaves like
‖k‖−4 log ‖k‖ for large k. The function

F (k,�,w,p3)− F (k,�,2p∗,p∗) (13.162)

will then have a faster rate of decrease at infinity and will be integrable.89 Thus, writing
now the cutoff the integral∫∫

d4k

(2π )4

d4�

(2π )4 θ (k)θ (�)
(
F (k,�,w,p3)− F (k,�,2p∗,p∗)

)
(13.163)

has a limit as the cutoff is removed.
All this is very good, but let us go back to what we really try to study, the integral (13.160),

which, writing now the cutoff is

H (w,p3,θ ) :=
∫∫

d4k

(2π )4

d4�

(2π )4 θ (k)θ (�)E(k)E(w − k)E(�)E(k + �− p3). (13.164)

The trick is to write this as H (w,p3,θ ) = H1(w,p3,θ )+H2(w,p3,θ ) where

H1(w,p3,θ ) :=
∫∫

d4k

(2π )4

d4�

(2π )4 θ (k)θ (�)E(k)E(w − k)E(�)2 (13.165)

H2(w,p3,θ ) =
∫∫

d4k

(2π )4

d4�

(2π )4
θ (k)θ (�)F (k,�,w,p3). (13.166)

Two very remarkable things happen then.

• The integral (13.165) is much simpler than the integral (13.164) because the integra-
tions in k and � separate.

89 One may subtract F (k,�,w∗,p∗3) for any fixed value of w∗,p∗3 . It would be less natural here to choose
w∗ = p∗3 = 0 but there are good reasons for which this second choice is better in the long run, as will be
apparent later.
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• As the cutoff gets removed, the quantity H2(w,p3,θ ) − H2(2p∗,p∗,θ ) has a finite
limit, see (13.163).

As a consequence of the second point above, when trying to prove the existence of the
limit in (13.158) we may replace H (w,p3,θ ) by the much simpler quantity H1(w,p3,θ ).
This allows computations to proceed.

We follow the same strategy when dealing with the true propagator rather than the
Euclidean propagator. That is, we consider the function

Fm(k,�,w,p3,ε) = Gm(k)Gm(w − k)Gm(�)(Gm(k + �− p3)−Gm(�)), (13.167)

and (writing now the cutoff) the integral∫∫
d4k

(2π )4

d4�

(2π )4 θ (k)θ (�)
(
Fm(k,�,w,p3,ε)− Fm(k,�,2p∗,p∗,ε)

)
. (13.168)

We may then hope that

As ε→ 0+ this integral has a limit, and that as the cutoff gets removed
this limit has itself a finite limit. (13.169)

The problem of the limit as ε → 0+ makes this a far less trivial statement than in the
previous case of the Euclidean propagator. To prove it we basically have to show that when
we control a certain expression involving Euclidean propagators, we also control a similar
expression involving the true propagators. Later, in Theorem 18.2.1 we will prove a general
theorem to that effect. This theorem holds only “in distribution”, that is only after integration
against a test function of the momenta of the out-going and in-coming particles. This is not
surprising since we expect that the scattering amplitudes are only defined in the sense of
distributions even though we denote them as functions. In the same manner, Proposition
13.23.1 is true only “in distribution”. Proposition 13.23.1 does not immediately follow
from Theorem 18.2.1, which uses slightly different hypotheses, but since our purpose in
the present section is simply to illustrate the near-miraculous “cancellation of infinities” we
will not write a specialized argument to prove it, and we will simply accept that (13.169) is
in some sense true (as well as corresponding results for the other diagrams).

Going back to (13.157), let

J := lim
ε→0+

∫∫
d4k

(2π )4

d4�

(2π )4
θ (k)θ (�)Gm(k)Gm(w − k)Gm(�)Gm(k + �− p3). (13.170)

Following the same idea as in the decomposition of the function H (w,p3,t) of (13.164)
we write

J = J1 + J2 (13.171)

where

J1 = lim
ε→0+

∫∫
d4k

(2π )4

d4�

(2π )4 θ (k)θ (�)Gm(k)Gm(w − k)Gm(�)2, (13.172)

J2 = lim
ε→0+

∫∫
d4k

(2π )4

d4�

(2π )4 θ (k)θ (�)Fm(k,�,w,p3,ε). (13.173)
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The quantity J1 is much simpler than J because the integrations in k and � separate in
(13.172). Indeed, recalling the notation (13.136), the quantity J1 equals

U (w,θ)U (0,θ ).

On the other hand, (13.169) asserts that as the cutoff gets removed, the quantity J2 con-
tributes only a finite value to the quantity (13.153), so that it is simply irrelevant in our
proof “that the infinities cancel out”.

That is the key step: We can basically express any contribution we wish using the func-
tions U (·,θ ), so that we can witness the cancellation of infinities through calculation. Since
the graph of Figure 13.18 has a symmetry factor 2, its contribution (not taking into account
an irrelevant finite contribution) to M3 −M0

3 is then

1

2
(U (w,θ)− U (2p∗,θ ))U (0,θ ). (13.174)

Exactly by the same method, one sees that the third graph of Figure 13.16 provides the same
contribution (again within a finite quantity).

Finally there is a contribution from the first graph of Figure 13.16. The computation of
the value of this graph is much easier than for the second graph of the same figure. We let
the reader check that (13.170) is replaced by

lim
ε→0+

∫∫
d4k

(2π )4

d4�

(2π )4
θ (k)θ (�)Gm(k)Gm(w − k)Gm(�)Gm(w − �)

=
(

lim
ε→0+

∫
d4k

(2π )4
θ (k)Gm(k)Gm(w − k)

)2 = U (w,θ)2.

Since the graph has a symmetry factor 4 its contribution90 to M3 −M0
3 is then

1

4
(U (w,θ)2 − U (2p∗,θ )2).

The contribution of all three graphs of the s group to M3 −M0
3 is the sum of this quantity

and of twice (13.174), that is

1

2
(U (w,θ)− U (2p∗,θ ))

(1

2
U (w,θ)+ 1

2
U (2p∗,θ )+ 2U (0,θ )

)
. (13.175)

On the other hand, we recall (13.137):

M2 = 1

2

(
U (w,θ)+ U (p1 − p3,θ )+ U (p1 − p4,θ )

)
,

and its consequence

M0
2 =

1

2
(U (2p∗,θ )+ 2U (0,θ )). (13.176)

90 I am very much grateful to Jean Bernard Zuber for having provided the most useful help with symmetry
factors in this computation.
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The quantity 2M0
2 (M2 −M0

2 ) is thus the sum of the following three terms

1

2
(U (w,θ)− U (2p∗,θ ))(U (2p∗,θ )+ 2U (0,θ )) (13.177)

1

2
(U (p1 − p3,θ )− U (0,θ ))(U (2p∗,θ )+ 2U (0,θ )) (13.178)

1

2
(U (p1 − p4,θ )− U (0,θ ))(U (2p∗,θ )+ 2U (0,θ )). (13.179)

The term (13.177) exactly “cancels the infinite part of (13.175)” because the difference
between these two quantities has a finite limit as the cutoff gets removed, since this is the
case for the differences U (v,θ )− U (v′,θ ) according to Proposition 13.18.5.

In other words, the term (13.177) cancels the infinite part of the contribution of the three
graphs of the s group of Figure 13.16 to the quantity M3 −M0

3 . To complete the proof of
Proposition 13.23.1 and of (13.153) it then suffices to proceed in an entirely similar manner
with the t and the u groups of diagrams to see that the infinite parts of these groups are
canceled respectively by the terms (13.178) and (13.179).

Exercise 13.23.2 Check this in complete detail.

13.24 Counter-terms, II

Let us now present the computation leading to (13.152) in a manner that is closer to the
physicists’ standard presentation.91 We write the interacting Hamiltonian as in (13.147)

glab

4!
:ϕ4: +D

4!
:ϕ4: , (13.180)

where D depends on the cutoff. From now on glab is our main parameter,92 so we change
notation and write g rather than glab. The former meaning of g = glab +D will no longer
be used.

Our goal is to compute

〈0|a(p3)a(p4)Sa†(p1)a†(p2)|0〉 (13.181)

in perturbation theory, thinking now of the interaction Hamiltonian as made up of two terms
as in (13.147). The computation of the S-matrix now uses Feynman diagrams with two
types of internal vertices. The internal vertices corresponding to the term g :ϕ4: /4! are
represented with a • and are called ordinary vertices. The internal vertices corresponding to
the counter-term D :ϕ4: /4! are represented with a � and are called counter-term vertices.
The Feynman rules for these diagrams are nearly identical to the Feynman rules for ordinary
diagrams, except that counter-term vertices are given the coefficient−iD, as opposed to the
coefficient −ig of the ordinary vertices. We let the reader convince herself of that.

91 Please be ready for a certain lack of mathematical crispness. Also, please keep in mind that however hazy this
section sounds, its actual content is exactly the same as that of the previous section.

92 This is physically sensible since glab is the parameter that can be measured, while we have no way to measure
g = glab +D.
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It is fruitful to think of D not as a single quantity, but as a sum of terms filling different
purposes. There is one term in the sum for each order in g, starting at order two, so that

D = g2D2 + g3D3 +O(g4). (13.182)

A nice feature is that there is no term in g. Thus each counter-term vertex brings a factor
g2 and counter-term vertices contribute twice as much as ordinary vertices to reach a given
order in g and the value of a diagram that contains a ordinary vertices and b counter-term
vertices is O(ga+2b). Hence, to compute amplitudes at order k (that is, throwing away all
terms that contain a power of g higher than k) we need to consider only diagrams for which
0 ≤ a+2b ≤ k. For k = 2 we have either b = 0,a ≤ 2 (ordinary diagrams with at most two
internal vertices) or b = 1,a = 0 (the diagram with a single internal counter-term vertex).
For k = 3 either b = 0 (ordinary diagrams with at most three internal vertices) or else b = 1
and a ≤ 1 (diagrams containing one counter-term vertex and at most one ordinary vertex).

We recall yet again the quantity A = −i(2π )4δ(4)(p3 + p4 − p1 − p2) of (13.110). The
counter-term method consists of adjusting in succession the value of Dk order by order to
enforce the condition

At the given value p1 = p2 = p3 = p4 = p∗

the scattering amplitude is Ag. (13.183)

This simply says that at small velocity the model predicts the scattering amplitude which
is actually measured in the lab. Two lines below (13.146) we have already determined the
value of D2 which enforces this condition at order two but the argument starts afresh here.

We first compute the scattering amplitude at order two. For this we take into account four
ordinary diagrams: the one-vertex diagram, which gives a contribution Ag and the three
diagrams of Figure 13.10 which together give a contribution of the type A(ig2M2) where
M2 is a function of p1,p2,p3,p4 and the cutoff θ . We also need to consider the diagram
with a single counter-term vertex, which is shown on diagram (a) of Figure 13.19. It should
be obvious that the value of this diagram is AD. This gives us a scattering amplitude of

A(g + ig2M2 +D)+O(g3). (13.184)

Recalling (13.182), we find the value of D2 by enforcing (13.183) within error O(g3), that
is Ag = A(g + ig2M0

2 + g2D2) + O(g3), where M0
2 is the value of M2 at the point p1 =

p2 = p3 = p4 = p∗. This provides the condition D2 = −iM0
2 . That is exactly what we did

in (13.146). The scattering amplitude then takes the form A(g + ig2(M2 −M0
2 ))+O(g3).

To compute the scattering amplitude at order three we need to take into account other
contributions:

• The contribution Ag3D3 of the term AD = Ag2D2 + Ag3D3 +O(g4) in (13.184).

• The contributionAg3(−M3) of the nine ordinary diagrams with three internal vertices
which we considered in the previous section.

• The contribution of the six diagrams which each have exactly one ordinary and one
counter-term internal vertex.
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p1

p1p3

p3

p4

p4

p2

p2

p1 p3

p4p2

(a)

(b) (c)

Figure 13.19 Some diagrams with counter-terms vertices.

Two of these six diagrams are shown as (b) and (c) in Figure 13.19. To each of the two
diagrams (b) and (c) corresponds two other diagrams as in Figure 13.14. Let us compute
the value of diagram (b) in Figure 13.19. It has a symmetry factor 2 and it should be quite
obvious that this value is

1

2
(−ig)(−iD)(−i)2(2π )4δ(p1 + p2 − p3 − p4) lim

ε→0+

∫
d4k

(2π )4Gm(k)Gm(w − k)

= 1

2
A(igD)U (w,θ)/2, (13.185)

wherew = p1+p2 andU (w,θ ) is defined in (13.136). The diagram (c) in Figure 13.19 has
the same value. SinceD = −ig2M0

2+O(g3), the total contribution of these two diagrams is

g3AM0
2U (w,θ)+O(g4). (13.186)

The total contribution of the six diagrams with two internal vertices, exactly one of which
is a counter-term vertex is therefore, using (13.137) in the last equality,

Ag3M0
2

(
U (p1+p2,θ )+U (p1−p3,θ )+U (p1−p4,θ )

)+O(g4) = 2Ag3M0
2M2+O(g4).

Therefore at order three the contribution of all diagrams to the scattering amplitude is

A
(
g + ig2(M2 −M0

2 )+ g3(2M0
2M2 −M3 +D3

))+O(g4). (13.187)

In words, the effect of the counter-term g2D2 is to replace M2 by M2 −M0
2 and to replace

−M3 by −M3 + 2M2M
0
2 .

We now enforce (13.183) at order three. This determines the choice D3 = M0
3 −2(M0

2 )2.
Then the predicted scattering amplitude (13.187) coincides with (13.152). This is hardly a
surprise since we just performed in this other guise the very same computation leading to
(13.152).

Having recovered the equation (13.152) for the predicted scattering amplitude in the lan-
guage of counter-terms, our next task is to recover the “cancellation of infinities” ensuring
that this prediction remains finite as the cutoff gets removed. For this we will entirely forget
about (13.152) and we think entirely in terms of diagrams. We will show that in the words of
the physicists “the counter-terms cancel the divergences” at order three.93 The diagram (a)

93 We are not concerned here with the easier problem of what happens as ε→ 0.
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of Figure 13.19 contributes as AD = −Ag2M0
2 +O(g3). The term −iAg2M0

2 cancels the
divergences of the diagrams of Figure 13.14 with two internal vertices. This was explained
in Sections 13.17 and 13.18 and we do not come back to this.

Let us now explain what happens at order three. We keep the cutoffs implicit for clarity.
When we add the contributions of the type g3C (that is, the contribution containing exactly
a factor g3) of the six diagrams with exactly one ordinary and one counter-term vertex with
the similar contributions of the nine ordinary diagrams with three internal vertices we obtain
the term Ag3(2M0

2M2 −M3). The quantity 2M0
2M2 −M3 is of the type

lim
ε→0+

∫∫
d4k

(2π )4

d4�

(2π )4 T (k,�,ε,p1,p2,p3,p4), (13.188)

where the integral diverges. On the other hand, the contribution Ag3D3 of the diagram (a)
of Figure 13.19 is −Ag3(2(M0

2 )2 −M0
3 ). Adding these contributions together replaces the

integral in (13.188) by∫∫
d4k

(2π )4

d4�

(2π )4 (T (k,�,ε,p1,p2,p3,p4)− T (k,�,ε,p∗,p∗,p∗,p∗)). (13.189)

As we will prove below, the integral in (13.189) is “convergent”.94 This fact can be
stated in flowery language by saying that “although the integral (13.188) is divergent, it
suffices to remove an overall divergence (that is, the integral of −T (k,�,p∗,p∗,p∗,p∗),
which independent of the external momenta) to make it convergent”.

The physicists describe the situation as follows:

• The contributions (13.186) of the six diagrams with exactly one ordinary and one
counter-term vertex “cancel the sub-divergences” of the nine ordinary diagrams.

• The remaining overall divergence is canceled by the contribution Ag3D3 of the dia-
gram (a) of Figure 13.19.

The first bullet does not mean that the integrals in k and � separately converge in (13.188)
(this does not seem to be the case).95 Rather, it means that, as stated in the second bullet the
integral (13.188) can “be made convergent by subtracting an overall divergence” (indepen-
dent of the external momenta).

Let us now stress the “miracle” happening here. The term D2 is determined by looking
only at diagrams with two internal vertices. It determines in turn the contributions at order
three of the diagrams with exactly one ordinary and one counter-term vertex. This affects
the diagrams with three internal vertices just in the correct manner to make the procedure
work. This is extremely remarkable.

Let us now proceed to the proof of the convergence of (13.189). The whole procedure is
very similar to the decomposition 13.171, but is expressed in a different language. Again,
we do not have to deal with the nine ordinary diagrams at the same time, we can group them

94 We are here interested only in showing that the counter-terms solve the problem of the integrands which do
not decrease fast enough at infinity, so when we say that an integral is “convergent” we mean that it would be
if we replace the propagators by their Euclidean version.

95 But the books I have seen certainly do not make this clear!
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into three groups of three diagrams, as in Section 13.22. We will prove that the contributions
(13.186) of the two diagrams (b) and (c) of Figure 13.19 “cancel the sub-divergences” of
the three diagrams in the s group.

As follows from (13.186) and (13.176), at order three the total contribution of the two
diagrams (b) and (c) of Figure 13.19 is

Ag3M0
2U (w,θ) = Ag3 1

2
U (w,θ )(U (2p∗,θ )+ 2U (0,θ ))+O(g4). (13.190)

We think of this quantity as the sum of three96 terms: Twice the term Ag3U (w,θ)U (0,θ )/2,
and one time the term Ag3U (w,θ)U (2q∗,θ )/2. We will prove that subtracting the appro-
priate term of the previous type from the value of a diagram of the s group “cancels the
sub-divergences of this diagram”, in the sense that it suffices then to “remove an overall
divergence” to make the integral converge. This completes the argument (as one proceeds
similarly for the t and the u groups).

We start this program with diagram (2) of Figure 13.16 (which is also the diagram of
Figure 13.18). Taking into account the symmetry factor 2 of this diagram, subtracting the
term Ag3U (w,θ)U (0,θ )/2 from the value of this diagram replaces the integral in (13.157)
(keeping the cutoff and the dependence in ε implicit) by the integral∫∫

d4k

(2π )4

d4�

(2π )4R(k,�,w,p3), (13.191)

where

R(k,�,w,p3) := Gm(k)Gm(w − k)
(
Gm(�)Gm(k + �− p3)−Gm(�)Gm(−�)

)
,

which is the function of (13.167), and the corresponding integral of R(k,�,w,p3) −
R(k,�,2p∗,p∗) is “convergent”, completing the argument for this diagram (the overall
divergence removed being the integral of R(k,�,2p∗,p∗)).

We proceed in the same way for diagram (3) of Figure 13.16 (using up the other term
Ag3U (w,θ)U (0,θ )/2)!) and we consider finally the case of diagram (1) of Figure 13.16.
Taking into account the symmetry factor 4, subtraction of the term Ag3U (w,θ)U (2p∗,θ )/2
confronts us with the integral ∫∫

d4k

(2π )4

d4�

(2π )4
S(k,�,w)

where

S(k,�,w) = Gm(k)Gm(w− k)Gm(�)Gm(w− �)− 2Gm(k)Gm(w− k)Gm(�)Gm(2p∗ − �),

and replacing S(k,�,w) by S(k,�,w)−S(k,�,2p∗), (subtracting an overall divergence!) the
integral becomes the perfectly well-defined quantity97

96 One for each of the diagrams in the s group!
97 Well-defined at least if we replace the propagators by their Euclidean version.
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( ∫ d4k

(2π )4

(
Gm(k)Gm(w − k)−Gm(k)Gm(2p∗ − k)

))2
.

This completes the argument for this diagram.
Thus we have provided an alternative approach to Proposition 13.23.1 (which is actu-

ally just another way to write the previous argument). One expresses this result by say-
ing that “the counter-terms have made all diagrams with at most three internal vertices
convergent”.98

It is by no means obvious how to continue the procedure to higher orders of perturbation
theory. Furthermore, matters will then become distinctly more complicated, because at
higher order it does not suffice to renormalize the coupling constant. One also has to renor-
malize the mass and the field itself. The next chapter will present (non-rigorous) arguments
trying to justify these facts. In the final chapters, we will investigate systematic methods
to perform renormalization. These methods can be seen as a considerable extension of the
ideas of Section 13.23.

Key ideas to remember:

• The S-matrix is studied through the Dyson series, order by order in perturbation
theory.

• Models for interaction are constructed using Hamiltonian densities.
• The computation of the S-matrix proceeds despite the fact that the interaction picture

is not mathematically sound.
• Feynman diagrams are a picturesque way to encode the terms arising from the appli-

cation of Wick’s theorem.
• When using Feynman diagrams one must watch for treacherous symmetry factors.
• The value of a Feynman diagram is given by an integral.
• Wick rotations are an effective method to tame singularities in the denominators of

the integrands.
• Tree computations are fine, but loops in diagrams give rise to divergent integrals,

reflecting the fact that we make ill-defined products of distributions.
• In φ4 theory, by expressing the results of the computation as a function of the strength

of the interaction as it is measured in the lab (as opposed to the corresponding param-
eter in the Hamiltonian) one can however make a sensible prediction of certain scat-
tering amplitudes, at least at the one and two loops levels.

• These predictions involve a remarkable “cancellation of infinities” which the physi-
cists express by introducing counter-terms.

98 This might sound foggy now, but the whole procedure should become clearer when it is made systematic in
Chapter 16.
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Interacting Quantum Fields

The mathematical approach to Quantum Field Theory consists of setting a number of axioms
and developing consequences of these axioms. In Appendix M we describe the most popular
axiomatic setting, the Wightman axioms, and we strive to give an idea of some of the
underlying mathematics. Unfortunately it is not known as of today whether in four space-
time dimensions any non-trivial theory (in the sense that it is not equivalent to a theory
without interactions) satisfies these axioms.1 Many books on this topic, such as that of
Araki [2], Bogoliubov [9], Derezinski and Gérard [19], Jost [45], Streater and Wightman
[79], and Rivasseau [70] should be fairly accessible to a reader having reached this point
and read Appendix M. We shall not pursue this direction in this chapter.

The physicists’ approach is more pragmatic. Without worrying about axioms, they con-
struct all kinds of arguments (sometimes very subtle). These types of considerations go
under the general name of “theoretical physics”, not to be confused with the often fully
rigorous “mathematical physics”. Overall it is not an easy task for a mathematician to
understand what they are doing. Among the various obstacles is the fact that many con-
ditions are implicit or not precisely stated. This is to be expected, for otherwise it would
probably be possible to build a rigorous theory. The present introduction to Quantum Field
Theory, which is first and foremost a physical theory, must include a sample of these types
of arguments. The current chapter presents some of them.2

It is appropriate first to renew our warnings that we are exploring here a very different
domain from mathematics. The previous sections saw plenty of hand-waving, but here lack
of rigor takes place at a different scale. Even if some of the vocabulary is familiar, it might
not have the expected meaning. A “theorem” need not be always true, but rather is expected
to hold under normal circumstances.3 As mathematical sanity has been left behind, we will
use the word “theorem” the way physicists use it, even when it concerns an ill-defined
statement with a purely formal supporting argument. In order however to help the reader
distinguish between what is a theorem in the sense of mathematics and what is a theorem in

1 Another somewhat different rigorous approach, the so-called algebraic approach, suffers from basically the
same problems.

2 Which of course we have tried to write in a near-mathematical language.
3 This is in particular the case of the Gell-Mann−Low theorem.

420
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the sense of physics, the latter do not have “proofs” but have only “supporting arguments”.4

It is not only that these “theorems” have not received a rigorous proof yet. Rather, it is
that the whole story is a kind of fairy tale, as we make-believe that certain structures exist
really when this is far from being clear. Authors rarely make the uncertain status of their
assertions explicit. This can be very confusing for a mathematician who wanders there for
the first time.

The reader must also keep in mind that there does not exist a whole coherent mathemati-
cal model. Therefore, the best one can do is to tell some little stories, each relating to a certain
aspect of things. It is not necessarily easy to make these little stories fully compatible with
each other. In other words, the global picture is far fuzzier than our individual little stories.
The reader should be reassured that this is the theory’s problem, not hers.

14.1 Interacting Quantum Fields and Particles

As the name should indicate, quantum fields (and not particles) are arguably the central
concept of Quantum Field Theory. In this entire chapter we consider the simplest pos-
sible case, when the quantum of the field is a neutral spinless particle which is its own
anti-particle.

Let us describe in words some of the properties we expect from our quantum field.
(A more precise description is the object of the Wightman axioms of Appendix M.) The
state space H encodes a description of all the objects of our theory, and in particular all
multiparticle systems. It contains a distinguished element, the vacuum, which we denote
|Ω〉. (In the present chapter, we use Dirac’s notation, so our notation does not coincide
with that of the more mathematical Appendix M.) On the state space is given a unitary
representation U (c,C) of the group P∗ = R1,3 � SL(2,C). The vacuum is an eigenvector
for each operator U (c,C),5 and it shares this property only with the states of the type
α|Ω〉 for α ∈ C.6 The operators U (c,1) form a commutative group of unitary operators.
For such a group, we will accept that there is suitable generalization of (2.72) which for
c = (c0,c1,c2,c3) allows us to write

U (c,1) = exp(i(c0P0 − c1P1 − c2P2 − c3P3)) := exp(icμPμ),

for certain self-adjoint operators Pμ, which are called the momentum operators. To form
a mental picture of the situation, one may consider a positive measure dλ on R1,3 and the
unitary operatorU (c,1) onL2 = L2(R1,3,dλ) given by multiplication by exp(icμpμ). Then
Pμ is simply the operator “multiplication by pμ” on L2 given for f ∈ L2 by Pμ(f )(p) =
pμf (p). The self-adjoint operator PμPμ = P 2

0 −
∑

1≤j≤3 P
2
j should be seen as corre-

4 Despite the fact that we have often used the word “proof” in Part III, this does not imply that all the results we
have obtained in the previous chapters of this part are rigorous. Still, the line has to be drawn somewhere, and
it is not appropriate to use the word “proof” when the result under consideration may fail.

5 Since the operators U (c,C) are unitary, this is equivalent to saying that U (c,C)|Ω〉 = α|Ω〉 where α is of
modulus 1, and is equivalent to saying that U (c,C)|Ω〉 represents the same state as |Ω〉. If you think about the
physical content of this statement, it should appear very natural. If I look at the vacuum, and then move any
way I want, it will appear just the same.

6 Which means that any other state than the vacuum will not be invariant under all the transformations U (c,C).
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sponding to the observable “square of the mass” and to make the theory physical it should
have only non-negative eigenvalues.7

The quantum field ϕ(x) is an (unbounded) operator onH. Actually we cannot really think
of ϕ as being defined at a given point. It has to be “smeared” as the physicists say. In other
words, it is really an operator-valued distribution. The quantum fields behave as expected
with respect to the action of the Poincaré group. In an informal way relativistic invariance
(5.6) becomes

ϕ(c + Cx) = U (c,C) ◦ ϕ(x) ◦ U (c,C)−1. (14.1)

The previous setting says nothing about particles. The assumption that the model describes
particles is separate from the assumptions involving the existence of fields. To describe
particles we specifically assume that the state spaceH contains a subspaceH1 that describes
single-particle states (recalling that we consider only the case of a single particle type). The
space H1 is invariant under all operators U (c,C). The restriction of these operators to the
space H1 is then a unitary representation of the Poincaré group, and it is natural to assume
that this representation is irreducible, reflecting the fact that the particle is elementary.

Calling μ the mass of the particle8 we assume that H1 consists of eigenvectors of the
operator P νPν , with eigenvalue μ2. We always assume μ > 0 because the case of massless
particles is far more difficult.

14.2 Road Map I

The overall goal of the chapter is to provide support for some of the trickiest points in the
entire theory, the issues of mass and field renormalization. One of the central ideas is the
use of diagrammatics: Quantities of interests are expressed as the sum of the values of (lots
of) diagrams. This is just what we have been doing all along, but now there is an implicit
change of perspective. We keep saving face by stating that our expansions make sense only
as formal series in the coupling constant, but somewhere deep inside we start to believe that
there is more to it, and that these expansions should be trusted more than what is strictly
permitted.

A central result in the whole approach is Proposition 14.5.4 which lets us compute the
Green functions9

G(y1, . . . ,yk) := 〈Ω|T ϕ(y1) . . . ϕ(yk)|Ω〉 (14.2)

as a sum of the values of certain diagrams. The reader is not expected to understand imme-
diately why these objects are important, this will appear only gradually.

The purpose of Section 14.3 is primarily to support Proposition 14.5.4, although this is
done through results arguably of independent interest. Supporting is not proving, and to be

7 More formally, this operator should have a positive spectrum. In our mental picture of the operator U (c,1) just
described, this operator PμPμ is just “multiplication by p2” and the condition that it has a non-negative
spectrum means exactly that dλ lives on the set {p2 ≥ 0}.

8 The change of notation from m to μ prepares us to accept the fact that the mass μ of the particle will not be the
parameter m of the free field.

9 “Green functions” occur in many areas of physics. Typically they encode the response of the system to a small
perturbation, but we will not use or develop this point of view.
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on the safe side in Section 14.4 we present another line of approach, also of independent
interest, supporting again Proposition 14.5.4. The only use of the material of Sections 14.3
and 14.4 in the rest of the chapter is through Proposition 14.5.4, so these sections should be
thought of as independent of the main story.

14.3 The Gell-Mann−Low Formula and Theorem

Trying to learn the Gell-Mann−Low theorem proved to be a real obstacle race. This theorem
belongs to a circle of ideas, and different authors use different ingredients (none of which is
rigorous). They also call different formulas the “Gell-Mann−Low formula”.10 We will try
to clear the confusion and tell several aspects of the story in the present section and the next,
while later in the chapter we explain how this result will provide us guidance on choosing
renormalization parameters.

The object of interest is a true interaction field ϕ. Please make sure you notice the change
of notation, now ϕ is the interacting field, not the free field. The time-evolution of ϕ is
governed by a Hamiltonian H . A key hypothesis is that we assume that the “vacuum” of the
previous section is the unique ground state ofH . It will be denoted by |Ω〉, and is sometimes
called the physical ground state. Assuming also (in a way which will be made precise later)
that ϕ is a perturbation of a free field ϕ0, the purpose of the section is twofold:

• Relate the physical ground state |Ω〉 with the ground state |0〉 of the non-interacting
system.11

• Then use this relationship to express the Green functions 〈Ω|T ϕ(y1) . . . ϕ(yk)|Ω〉 of
(14.2) using only quantities related to the simpler non-interacting system.12

As we use the interaction picture, we recommend that the reader reviews now
Section 11.2, and also Sections 13.3 and 13.4.

We have a free field ϕ0 (as in Section 5.1) with associated mass m, whose time-evolution
is governed by a Hamiltonian H0. Writing U0(t) = exp(−itH0), according to Theorem
6.11.1, it holds that

ϕ0(t,x) = U0(t)−1 ◦ ϕ0(0,x) ◦ U0(t). (14.3)

We assume that the Hamiltonian H of the true interacting field ϕ is of the type
H =H0 + gHI , where HI is an interacting Hamiltonian13 HI . We assume that H has
a unique ground state |Ω〉. We denote by U the unitary evolution U (t) = exp(−itH ), so
that as a consequence of (14.1) the true interacting field ϕ satisfies

ϕ(t,x) = U (t)−1 ◦ ϕ(0,x) ◦ U (t). (14.4)

10 Furthermore, the “imaginary times” considered in Peskin and Schroeder’s book [64] do not really contribute
to clarify the picture, but fortunately we will avoid such extravagance.

11 You are certainly aware that we make plenty of implicit assumptions, like e.g. the fact that the interacting
quantum field and the non-interaction quantum field correspond to the same state space.

12 As we will see later, the Green functions are intrinsically related to scattering amplitudes. For now we take
their importance for granted.

13 Although the argument is quite general, we may think of HI as being given by a density H(x) =: ϕk0 (x)/k! :.
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We assume, as is typical in the interaction picture, that ϕ(0,x) = ϕ0(0,x).14 Then, it follows
from (14.3) and (14.4) that we may describe ϕ in the interaction picture by

ϕ(t,x) = U (t)−1 ◦ ϕ0(0,x) ◦ U (t) = V (t)−1 ◦ ϕ0(t,x) ◦ V (t), (14.5)

with our usual notation15

V (t) = U0(−t)U (t). (14.6)

Consider states |ξ 〉,|ψ〉 and points y1, . . . ,yk ∈ R1,3. Let t1, . . . ,tk be the time-components
of y1, . . . ,yk . Consider two times t− and t+ such that t− ≤ t1, . . . ,tk ≤ t+. The following
purely algebraic formula is called the Gell-Mann−Low formula in Duncan’s textbook [24].
It is a first step in our program of expressing the Green functions using the free field only.
We recall the notation HI (t) = U0(t)−1HIU0(t).

Proposition 14.3.1 (The Gell-Mann−Low formula) It holds that

〈ξ |V (t+)T ϕ(y1) . . . ϕ(yk)V (t−)−1|ψ〉 =
∑
n≥0

(−ig)n

n!

∫ t+

t−
dθ1 . . .

∫ t+

t−
dθnKn,

(14.7)

where

Kn = 〈ξ |T ϕ0(y1) . . . ϕ0(yk)HI (θ1) · · ·HI (θn)|ψ〉. (14.8)

The special case k = 0,t+ = ∞,t− = −∞ is Dyson’s formula (13.4) for the S-matrix.
The meaning of (14.7) is the same as that of Dyson’s formula: In perturbation theory, one
approximates the left-hand side by the first few terms of the series in the right-hand side
(by definition of perturbation theory). The point of the formula is that the left-hand side, an
expression involving the complicated full interaction field, is expressed in the right-hand
side using only the simpler free field ϕ0.

Proof To start the derivation we define

V (t,s) = V (t)V (s)−1. (14.9)

We may assume without loss of generality that the time-components t1, . . . ,tk of y1, . . . ,yk

satisfy

t0 := t+ ≥ t1 ≥ t2 . . . ≥ tk ≥ tk+1 := t−.

14 As we explained in Section 13.4, the interaction picture is not mathematically consistent, and the assumption
that ϕ(0,x) = ϕ0(0,x) is probably untenable. One may try to salvage the situation as follows. For the
diagrammatic computations that follow, all that matters is that ϕ0(t,x) is given by the formula (5.30) where
the operators a(p) and a†(p′) satisfy the usual commutation relations. We may assume as a basic hypothesis
that the field ϕ satisfies the Klein-Gordon equation and the canonical commutation relations. We have then
argued that ϕ(0,x) is given by the formula (6.72) where the operators a(p) and a†(p′) satisfy the usual
commutation relations. One may then define ϕ0(t,x) := U0(t)−1 ◦ ϕ(0,x) ◦ U0(t) where U0(t) is the
time-evolution under the Hamiltonian (5.36). The field ϕ0(t,x) is then given by the formula (5.30) for the
same operators a(p) and a†(p) and everything works out.

15 Using the interaction picture precisely means that we are considering this operator.
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We observe that (14.5) means ϕ(y�) = V (t�)−1ϕ0(y�)V (t�), so that the left-hand side of
(14.7) is

〈ξ |V (t+,t1)ϕ0(y1)V (t1,t2) . . . ϕ0(yk)V (tk,t−)|ψ〉. (14.10)

The plan is now to manipulate the right-hand side of (14.7) and to show that it equals
(14.10). Let us define

Wn :=
∫ t+

t−
dθ1 . . .

∫ t+

t−
dθnKn, (14.11)

where Kn is as in (14.8). Thus the right-hand side of (14.7) is
∑

n≥0(−ig)nWn/n!. We will
decompose the domain of integration in the integral Wn into different pieces, according to
exactly which the points θ1, . . . ,θn fall into each of the intervals (t�,t�−1), for 1 ≤ � ≤ k+1
(with t0 = t− and tk+1 = t+). Consider a partition J1, . . . ,Jk+1 of {1, . . . ,n} into k+1 sets,
and denote D(J1, . . . ,Jk+1) the set of all (θ1, . . . ,θn) with t− ≤ θ1, . . . ,θn ≤ t+ such that
θj ∈ (t�,t�−1) whenever j ∈ J� (and not caring about lower-dimensional sets where one θj
may equal one t�). Let us denote

WJ1,...,Jk+1 =
∫
. . .

∫
D(J1,...,Jk+1)

dθ1 . . . dθnKn,

so that

Wn =
∑

J1,...,Jk+1

WJ1,...,Jk+1, (14.12)

for a sum over all possible partitions J1, . . . ,Jk+1 of {1, . . . ,n}. Now, if (θ1, . . . ,θn) ∈
D(J1, . . . ,Jk+1) we know how to perform the time-ordering

T ϕ0(y1) . . . ϕ0(yk)HI (θ1) · · ·HI (θn).

It is simply

U1ϕ0(y1)U2 . . . ϕ0(yk)Uk+1

where U� is the time-ordered product T
∏

j∈J� HI (θj ). Hence

Kn = 〈ξ |U1ϕ0(y1)U2 . . . ϕ0(yk)Uk+1|ψ〉.
Consequently

WJ1,...,Jk+1 = 〈ξ |V1,m1ϕ0(y1)V2,m2 . . . ϕ0(yk)Vk+1,mk+1 |ψ〉
where m� = card J� and

V�,m =
∫ t�−1

t�

dθ1 . . .

∫ t�−1

t�

dθmT HI (θ1) · · ·HI (θm).

Thus WJ1,...,Jk+1 depends only on m1, . . . ,mk+1, WJ1,...,Jk+1 = Wm1,...,mk+1 , and (14.12)
implies

Wn =
∑

J1,...,Jk+1

WJ1,...,Jk+1 =
∑

m1,...,mk+1

n!

m1! · · ·mk+1!
Wm1,...,mk+1,
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and finally

Wn

n!
=

∑
m1,...,mk+1

1

m1! · · ·mk+1!
Wm1,...,mk+1

=
∑
〈ξ |V1,m1

m1!
ϕ0(y1)

V2,m2

m2!
. . . ϕ0(yk)

Vk+1,mk+1

mk+1!
|ψ〉, (14.13)

where the summation is over all ways to decompose n as a sum m1+ · · ·+mk+1. Next, we
note that if for � = 1, . . . ,k + 1 we consider generic formal series A�,m then∏

�≤k+1

∑
m

A�,m =
∑
n

∑
m1+···+mk+1=n

A1,m1 . . . Ak+1,mk+1,

where the second summation is over all ways to decompose n as a sum m1 + · · · + mk+1.
Multiplying equality (14.13) by (−ig)n, summing over n ≥ 0 and using the previous identity
we then obtain ∑

n≥0

(−ig)n

n!
Wn = 〈ξ |V1ϕ0(y1)V2 . . . ϕ0(yk)Vk+1|ψ〉, (14.14)

where

V� =
∑
m≥0

(−ig)m

m!

∫ t�−1

t�

dθ1 . . .

∫ t�−1

t�

dθmT HI (θ1) · · ·HI (θm).

Finally, we recall from (11.38) that for s ≤ t we have

V (t,s) =
∑
m≥0

(−ig)m

m!

∫ t

s

dθ1 . . .

∫ t

s

dθmT HI (θ1) · · ·HI (θm).

This proves that V� = V (t�−1,t�). We have achieved our desired goal to show that the right-
hand side of (14.14) coincides with (14.10), i.e. with the left-hand side of (14.7).

Let us specialize the Gell-Mann−Low formula to the case |ξ 〉 = |ψ〉 = |0〉, the ground
state of the non-interacting system. Since H0|0〉 = 0, we have U0(t)|0〉 = |0〉 so that
V (t)−1|0〉 = U (t)−1|0〉. Looking back at (14.7) we observe that if we can relate U (t)−1|0〉
with |Ω〉 (the ground state of the interacting system) then we can express the Green functions
using quantities related to the non-interacting model.

Let us first observe that since we assume that |Ω〉 is an eigenstate of every operator
U (c,C) it is in particular an eigenstate of U (t), and we have

U (t)|Ω〉 = exp(−itE)|Ω〉 (14.15)

where E is the energy of the ground state |Ω〉, H |Ω〉 = E|Ω〉.16 Since for a complex
number α of modulus 1, α|Ω〉 represents the same state as |Ω〉, (14.15) means that the
true vacuum is the same at all times. Consider now a state |ψ〉 and assume that it is not

16 Some authors do not bother to mention this phase factor (e.g. Schwartz [80, page 80]), but it cannot be 1
unless one has arranged that E = 0.
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a mixture of |Ω〉 and another state, i.e. assume that 〈ψ |Ω〉 = 0. Then, as we time-evolve
|ψ〉, i.e. we consider U (t)|ψ〉 we expect that this state “spreads out and goes to infinity”
as t → ±∞, just as what happens in standard Quantum Mechanics for the spreading of
the wave function that we met in Section 12.2. More specifically, if we fix any state |ξ 〉 we
expect that the probability that for t → ±∞ the state U (t)|ψ〉 is measured as being |ξ 〉
vanishes, i.e. we expect that limt→±∞〈ψ |U (t)−1|ξ 〉 = 0. In the next section we will show
that this physically obvious fact is also mathematically reasonable.

To continue our analysis, we assume something a bit weaker, namely that for any state
|ψ〉 one has the following

〈ψ |Ω〉 = 0⇒ lim
t→±∞〈ψ |U (t)−1|0〉 = 0. (14.16)

Lemma 14.3.2 Under (14.16) there exists a phase factor r(t), i.e. a complex number
with |r(t)| = 1 with the following property: Given any state |ψ〉, we have

〈ψ |U (t)−1|0〉 = r(t)〈ψ |Ω〉〈Ω|0〉 + ε(t), (14.17)

where limt→±∞ ε(t) = 0.

In particular this shows that when (14.16) holds, this implication can be reversed if
〈Ω|0〉 �= 0.

Proof Assuming without loss of generality that 〈Ω|Ω〉 = 1, consider the state |ξ 〉 given
by 〈ξ | = 〈ψ | − 〈ψ |Ω〉〈Ω|, so that, using (14.15),

〈ψ |U (t)−1|0〉 = 〈ξ |U (t)−1|0〉 + exp(itE)〈ψ |Ω〉〈Ω|0〉.
Since 〈ξ |Ω〉 = 0 the result follows using (14.16) for ξ .

We are now ready to argue that, assuming (14.16), one has the following, which is also
sometimes called the “Gell-Mann−Low theorem”. The word “theorem” is certainly not
to be taken in the mathematical sense, in particular since the assumption (14.16) appears
nowhere in the statement of the theorem. But we will wave our hands later to argue that
“(14.16) should be typically true”.

Theorem 14.3.3 (The Gell-Mann−Low Theorem) It holds that

〈Ω|T ϕ(y1) . . . ϕ(yk)|Ω〉 = A

B
(14.18)

where

A =
∑
n≥0

(−ig)n

n!

∫ ∞
−∞

dθ1 . . .

∫ ∞
−∞

dθn〈0|T ϕ0(y1) . . . ϕ0(yk)HI (θ1) · · ·HI (θn)|0〉

(14.19)

and

B =
∑
n≥0

(−ig)n

n!

∫ ∞
−∞

dθ1 . . .

∫ ∞
−∞

dθn〈0|T HI (θ1) · · ·HI (θn)|0〉. (14.20)
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Supporting argument. Assuming (14.16), and using (14.17) for 〈ψ | = 〈0|V (t+)
T ϕ(y1) . . . ϕ(yk)|, we can then believe that for given t+, when−t− becomes large the
left-hand side of (14.7) when |ξ 〉 = |η〉 = |0〉 is about

r(t−)〈Ω|0〉〈0|V (t+)T ϕ(y1) . . . ϕ(yk)|Ω〉. (14.21)

Repeating the argument (using now the assumption (14.16) for t →∞) we can further
believe that for t+ large this is about

r(t−)r(t+)〈Ω|0〉〈0|Ω〉〈Ω|T ϕ(y1) . . . ϕ(yk)|Ω〉. (14.22)

In summary, the quantity (14.22) is about the right-hand side of (14.7). This formula is
not useful yet because the first four terms are not known. To get rid of them we consider
the same expression, but with k = 0. Taking the ratio of these expressions eliminates
the unknown quantity r(t−)r(t+)〈Ω|0〉〈0|Ω〉, and taking the limit as −t− → ∞,
t+ →∞ we obtain the expression (14.18) for the Green functions.

For this procedure to make any sense at all it is absolutely necessary that
〈Ω|0〉 �= 0. As to why this should be true, I repeat the argument put forward in
Peskin and Schroeder’s textbook [64]: The Hamiltonian H is supposed to be a small
perturbation of H0 and this would not be the case if its ground state |Ω〉 was too
different from the ground state |0〉 of H0.

Let us now analyze (14.16) more precisely, with the goal of arguing that it should typi-
cally be true. Changing t into −t we want that for a state |ψ〉

〈ψ |Ω〉 = 0⇒ lim
t→∞〈ψ |U (t)|0〉 = 0. (14.23)

Denoting by (x,y) the generic point of R2 let us recall the “multiplication by x” operator
of Exercise 2.5.19 on the space L2(R2,dμ), where μ is a certain positive measure μ on
R2.17 As stated without proof just before Exercise 2.5.19, spectral theory asserts that a
general self-adjoint operator is (essentially) not more complicated than this “multiplication
by x” operator. So to assess the credibility of (14.23) we might as well assume that the state
space is this L2, and that H is of this type. In this case the time-evolution U (t) is simply
multiplication by exp(−itx).What are then the reasonable hypotheses one should make
about μ? First, without loss of generality we may assume that the physical vacuum |Ω〉 has
zero energy,H |Ω〉 = 0, by adding a constant toH if necessary. Also, a standard hypothesis
is that the ground state for H is unique (all eigenstates of zero energy are proportional to
the physical vacuum). According to Exercise 2.5.18 the hypothesis that the multiplication
by x operator has zero as an eigenvalue translates into

μ({0} × R) = μ({(0,y) ; y ∈ R}) > 0. (14.24)

17 It might be difficult to fully appreciate the material that follows unless one has some idea about what a
positive measure is, other than a measure defined by a density, or concentrated at a few points. I did learn this
in my third year of college, but I am unsure that this is taught properly at every institution. If you do not know
this, please jump to a few lines before (14.32).
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Each element of L2(R2,dμ) that is not zero only for x = 0 provides an eigenvector with
eigenvalue zero. The hypothesis that the eigenspace corresponding to the eigenvalue zero
has dimension 1 implies that for some y0 we have18

μ({(0,y0)}) = μ({(0,y) ; y ∈ R}) > 0. (14.25)

Thus the ground state |Ω〉 corresponds to the function χ of L2(R2,dμ) given by χ (x,y) =
1/
√
μ({(0,y0)}) if (x,y) = (0,y0) and by χ (x,y) = 0 otherwise. Hence, for a function

g ∈ L2, ∫
dμgχ = μ({0,y0})χ (0,y0)g(0,y0) =

√
μ({0,y0})g(0,y0).

If f is an element of L2(R2,dμ) which we denote |ξ 〉 in Dirac’s notation, then 〈ξ |Ω〉 is the
inner product (f,χ ),

〈ξ |Ω〉 =
∫

dμf ∗χ =
√
μ({(0,y0)})f ∗(0,y0). (14.26)

Let us now assume that

|Ω〉 is the only eigenstate. (14.27)

As the next exercise shows, this is the case for free particles, so that the assumption is not
unreasonable. Let us stress that here we talk about any eigenstate at all, independently of
the eigenvalue, and we talk about true states, elements of H. The “improper states of given
momentum” of physics do not qualify as true states!

Exercise 14.3.4 Prove that the Hamiltonian (5.36) on the boson Fock space has only
multiples of the vacuum as eigenvectors.

According to Exercise 2.5.18 this condition translates into

∀x �= 0 ; μ({(x,y) ; y ∈ R}) = 0. (14.28)

Now, it holds that

〈ξ |U (t)|0〉 =
∫

dμ(x,y)f (x,y)∗h(x,y) exp(−itx),

where f and h are the elements of the state space L2(R2,dμ) which we have denoted |ξ 〉
and |0〉 in Dirac’s notation. Assuming that 〈ξ |Ω〉 = 0, by (14.26) we have f (0,y0) = 0.
From (14.25) we get∫

{x=0}
dμ(x,y)f (x,y)∗h(x,y) exp(−itx) = μ({(0,y0)})f (0,y0)∗h(0,y0) = 0

18 This is because the only spaces L2(ν) that are one-dimensional are those for which ν is concentrated at one
point.
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so that

〈ξ |U (t)|0〉 =
∫
{x �=0}

dμ(x,y)f (x,y)∗h(x,y) exp(−itx). (14.29)

As the integral is now restricted to x �= 0 the term exp(−itx) provides oscillatory behavior
at t →∞. Several textbooks at this point appeal to the “Riemann–Lebesgue Lemma”. This
lemma states that for a Lebesgue integrable function g

lim
t→∞

∫
dxg(x) exp(−itx) = 0. (14.30)

It is proved (once one knows something about the Lebesgue integral) by approximating g
by a continuous function with compact support. From a purely mathematical point of view
it is not quite true that the hypothesis (14.28) implies that the term in (14.29) goes to zero.19

In order to appeal to the Riemann–Lebesgue lemma one certainly has to assume more than
(14.28),20 but assuming this extra regularity is again completely reasonable by analogy with
the case of free particles.

In conclusion, we have waved our hands in believing that (14.16) should “typically” be
true and that it is safe to use the Gell-Mann−Low “theorem”.

14.4 Adiabatic Switching of the Interaction

In this section we support the plausibility of the Gell-Mann−Low theorem (14.18) from a
related but different direction. Our previous analysis relied on arguing that the quantity∫

{x �=0}
dμ(x,y)f (x,y)∗h(x,y) exp(−itx) (14.31)

of (14.29) goes to zero as t → ∞. A particularly effective way to achieve this is to insert
a factor exp(−εt |x|) in the integrand.21 In this section we investigate the related idea of
adiabatic switching of the interaction. The word “adiabatic” comes from Thermodynamics,
where it refers to processes without exchange of heat between the system and the outside
world. The important case is when these processes are “infinitely slow” and here the word
“adiabatic” refers to this. The interaction is turned on “infinitely slowly” by considering for
ε > 0 the Hamiltonian

Hε(t) = H0 + g exp(−ε|t |)HI, (14.32)

and letting ε→ 0. To clarify the following discussion let us call adiabatic evolution22 of a
state |α〉 the following procedure (which assumes that all goes well). We start with the state

19 The point here is that there exist positive measures ν on R of finite mass such that ν({x}) = 0 for each x, but
for which

∫
dν(x) exp(−itx) �→ 0 as t →∞.

20 Specifically one should assume that image of μ by the projection on the x-axis has a density with respect to
Lebesgue’s measure.

21 Since exp(−itx) exp(−εtx) = exp(−itx(1− iε)) = exp(−it̂x) where t̂ = t(1− iε), this is what motivates the
“imaginary times” t(1− iε) in Peskin and Schroeder’s book [64], the idea being to let t →∞ and then ε→ 0.
Unfortunately, even at the informal level, the details of recovering (14.18) with this approach lack appeal.

22 I am making up this non-standard terminology for clarity
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|α〉 at time t = −∞ and we turn on the interaction very slowly.23 The state we obtain at
time t = 0 is the adiabatic evolution of the original state |α〉 (by definition of adiabatic
evolution). The basic expectation in the approach is that if all goes well, the adiabatic
evolution of the ground state of H0 = Hε(−∞) is the ground state of Hε(0) = H , the full
Hamiltonian.

In the first part of this section we concentrate on this phenomenon, and at the end
of the section we explain why our results provide a set of conditions under which
(14.18) holds.

The adiabatic evolution of the ground state of H0 was originally studied by Gell-Mann
and Low in the theory of multiparticle systems.24 The arguments supporting the main result,
Theorem 14.4.1, look closer to respectable mathematics than the previous considerations,
but the conclusion of that theorem is somewhat different from what we need. It simply
says that the adiabatic evolution of an eigenvector of the non-interacting system (and in
particular the ground state of this system) is an eigenvector of the interacting system. It
does not say that the adiabatic evolution of the ground state of the non-interacting system
is the ground state of the interacting system. There are natural models (in the theory of
multiparticle systems) where this is not the case, refer to Fetter and Walecka’s book [29].
Nonetheless we may expect that “usually” this will be the case, and this belief provides
further support for (14.18). A reasonable (and very common) hypothesis one might make
about Hamiltonians in Quantum Field Theory is the existence of a mass gap. Assuming that
we have added a constant to the Hamiltonian to ensure that |Ω〉 has energy zero, this means
that anything that is orthogonal to the vacuum |Ω〉 will have energy ≥ μ0 > 0. One can
express this by requiring that

〈Ω|ξ 〉 = 0⇒ 〈ξ |H |ξ 〉 ≥ μ0〈ξ |ξ 〉. (14.33)

Intuitively this means that μ0 “is the smallest mass in the universe”.25 One might believe
that if for each 0 ≤ λ ≤ 1 there is a “mass gap” for the interaction with Hamiltonian
H0+λgHI , then there are far better chances that the adiabatic evolution of the ground state
of H0 is the true ground state of the interacting system, for the simple reason that under this
hypothesis the ground state of the interacting system is “far more distinguished”. The mass
gap hypothesis looks reasonable when studying models involving a single massive particle.

We now start the detailed study of the adiabatic evolution of the ground state of H0. Let
us explain the setting. We start with a Hamiltonian H0 and a true eigenstate |η〉,

H0|η〉 = E0|η〉.
We consider a perturbation of this Hamiltonian,

H = H0 + gHI,

23 That is, as will be made precise later, taking the limit of the previous procedure as ε→ 0.
24 Consequently, Theorem 14.4.1 is also called “the Gell-Mann−Low theorem”, just as Theorem 14.3.3, greatly

contributing to the linguistic confusion.
25 This is a bit informal. An eigenvalue of the Hamiltonian is an energy, and technically μ0 is an energy. In our

unit system where the speed of light is c = 1, there is equivalence between energy and mass.
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and for ε > 0 we consider the time-dependent Hamiltonian (14.32). Generally speaking
the time-evolution U (t) of a time-dependent Hamiltonian H (t) satisfies26 idU (t)/dt =
H (t)U (t).27 As usual we denote by U0(t) the time-evolution under the Hamiltonian H0,
and we denote by Ūε(t) the time-evolution under the Hamiltonian Hε(t) of (14.32). We
consider the operators Vε(t) := U0(−t)Ūε(t), which satisfy the equation

i
∂

∂t
Vε(t) = −U0(−t)H0Ūε(t)+ U0(−t)(H0 + g exp(−ε|t |)HI )Ūε(t)

= g exp(−ε|t |)HI (t)Vε(t), (14.34)

where HI (t) = U0(−t)HIU0(t), a relation that is itself equivalent to

i
d

dt
HI (t) = −[H0,HI (t)]. (14.35)

Because of the exponential decay in (14.34), we believe that the limits Vε(±∞) :=
limt→±∞ Vε(t) exist. For the time being we consider only t ≤ 0 and we define Vε(t,t0) :=
Vε(t)Vε(t0)−1. Since Vε(0) is the identity, we have Vε(0,t0) = Vε(t0)−1. Furthermore
(14.34) implies

i
∂

∂t
Vε(t,t0) = g exp(εt)HI (t)Vε(t,t0). (14.36)

These formulas contain a dependence on g which is kept implicit, but which motivates the
use of the partial derivatives below. We define

|ψε〉 = Vε(0, −∞)|η〉 = Vε(−∞)−1|η〉. (14.37)

Theorem 14.4.1 Assume the following limits exist:

|ψ〉 = lim
ε→0

|ψε〉
〈η|ψε〉 (14.38)

lim
ε→0

iεg
∂

∂g
log〈η|ψε〉, (14.39)

0 = lim
ε→0

ε
∂

∂g

|ψε〉
〈η|ψε〉 . (14.40)

Then typically28 |ψ〉 is an eigenvector of H of eigenvalue

E = E0 + lim
ε→0

iεg
∂

∂g
log〈η|ψε〉. (14.41)

The actual computation (14.41) of the eigenvalue is remarkable. You would not see
conditions (14.39) and (14.40) in physics papers since no physicist is going to worry about
these limits which have no particular reason not to exist. Rigorous mathematical results exist

26 Recalling that we take h̄ = 1 in this chapter.
27 It is by no means obvious when this actually exists but we stay here at the heuristic level.
28 The purpose of the word “typically” is to remind you that this is not a mathematical theorem, and that it is not

guaranteed that its conclusions hold with absolute certainty.
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in the direction of Theorem 14.4.1 as in Nenciu and Rasche’s paper [60], but unfortunately
they require hypotheses that are not satisfied in the cases of interest here.

To understand better Theorem 14.4.1, it helps to investigate the trivial case where
H0 = 0 (or more generally where H0 is a multiple of the identity). Then HI (t) = HI and
the equation (14.36) has the solution

Vε(t,t0) = exp
(gHI

iε
(exp(εt)− exp(εt0))

)
.

Then if |η〉 is an eigenvector of HI , HI |η〉 = α|η〉,
|ψε〉 = Vε(0, −∞)|η〉 = exp

(gα
iε

)
|η〉.

Thus |ψε〉 will not have a limit as ε→ 0 because of the oscillating factor exp(gα/iε).29 On
the other hand |ψε〉/〈η|ψε〉 = |η〉/〈η|η〉 is independent of ε and g, so that (14.40) holds
and furthermore

lim
ε→0

iεg
∂

∂g
log〈η|ψε〉 = gα.

Based on this example we may believe that condition (14.40) is reasonable, and that the
partial derivative in g has a tendency to stay bounded as ε→ 0.

Another equally trivial example is of interest: In dimension two, consider the case where
H0 is diagonal with diagonal elements 1 and −1, and denote by | ± 1〉 the corresponding
eigenvectors. Take HI = −2H0 and g = 1. Then |η〉 = | − 1〉 is the ground state of H0.
Obviously in the present case the operators Vε(t,t0) are diagonal, so that the vector |ψ〉 of
(14.38) is |η〉 itself, but this is not the ground state of H = −H0. This is related to the
fact that a singular situation occurs for H0 + 1/2HI , where the ground state is not unique.
This does not contradict the theorem, which does not claim that |ψ〉 should be the ground
state, but it dashes our hopes that |ψ〉 should be the ground state unless pathology occurs.
As the type of phenomenon occurring in this example is however ruled out if one assumes
that there is a mass gap for any strength of the interaction, we may still hope that everything
will be fine in the cases we need.

Lemma 14.4.2 We have

[H0,Vε(t,t0)] = −g exp (εt)HI (t)Vε(t,t0)

+ g exp (εt0)Vε(t,t0)HI (t0)+ iεg
∂

∂g
Vε(t,t0). (14.42)

Supporting argument. It holds that

i
∂

∂t
[H0,Vε(t,t0)] = [H0,i

∂

∂t
Vε(t,t0)]

= [H0,g exp(εt)HI (t)Vε(t,t0)], (14.43)

29 The purpose of the denominator 〈η|ψε〉 in (14.38) is to cancel this factor.



434 Interacting Quantum Fields

using (14.36) in the last line. Next, we use the formula [A,BC] = [A,B]C+B[A,C]
to obtain

i
∂

∂t
[H0,Vε(t,t0)] = g exp(εt)

(
[H0,HI (t)]Vε(t,t0)+HI (t)[H0,Vε(t,t0)]

)
.

Recalling that [H0,HI (t)] = −idHI (t)/dt from (14.35), we have shown that the
operator-valued function S(t) := [H0,Vε(t,t0)] satisfies the differential equation

DS(t) = −ig exp(εt)
d

dt
(HI (t))Vε(t,t0), (14.44)

where the differential operator D is given by

DS(t) = i
∂

∂t
S(t)− g exp(εt)HI (t)S(t). (14.45)

Let us denote by W (t) the right-hand side of (14.42). Then, since Vε(t0,t0) = 1
we have W (t0) = S(t0) = 0. We will then show that W (t) satisfies the differential
equation (14.44). Thus G(t) := S(t)−W (t) satisfies G(t0) = 0 and DG(t) = 0 and
hence G(t) = 0 for all t , concluding the proof.

Let us denote by W1(t), W2(t), W3(t) the three terms in the right-hand side of
(14.42). Then

DW1(t) = −ig
d

dt
(exp(εt)HI (t))Vε(t,t0)

− ig exp(εt)HI (t)
d

dt
Vε(t,t0)− g exp(εt)HI (t)W1(t),

and using (14.36) the last two terms cancel out so that

DW1(t) = −igε exp(εt)HI (t)Vε(t,t0)− ig exp(εt)
d

dt
(HI (t))Vε(t,t0). (14.46)

Next, using (14.36) again, we find D(W2(t)) = 0. Finally, using (14.36) in the second
equality,

i
∂

∂t
W3(t) = iεg

∂

∂g
(i
∂

∂t
Vε(t,t0))

= iεg
∂

∂g
g exp(εt)HI (t)Vε(t,t0)

= iεg exp(εt)HI (t)Vε(t,t0)+ iεg2 exp(εt)HI (t)
∂

∂g
Vε(t,t0)

= iεg exp(εt)HI (t)Vε(t,t0)+ g exp(εt)HI (t)W3(t), (14.47)

and thus

DW3(t) = iεg exp(εt)HI (t)Vε(t,t0). (14.48)

Combining the previous relations we obtain that indeed

DW (t) =
∑
i≤3

DWi(t) = −ig exp(εt)
d

dt
(HI (t))Vε(t,t0) = DS(t).



14.4 Adiabatic Switching of the Interaction 435

The preceding argument has no claim to constitute a proof as a mathematician would
understand it. As soon as we consider the derivative of an operator-valued function, there
are issues as to what this really means and where it is defined. One would need in particular
to investigate under what conditions one can actually prove that DA(t) = 0 and A(t0) = 0
imply A(t) = 0.

Supporting argument for Theorem 14.4.1 We use (14.42) for t = 0 and t0 → −∞
and apply the resulting equality to |η〉 to obtain, since |ψε〉 = Vε(0, −∞)|η〉,

[H0,Vε(0, −∞)]|η〉 = −gHI |ψε〉 + iεg
∂

∂g
|ψε〉. (14.49)

Since H0|η〉 = E0|η〉 the left-hand side of (14.49) is (H0 − E0)|ψε〉 and therefore

H |ψε〉 = E0|ψε〉 + iεg
∂

∂g
|ψε〉. (14.50)

Using the relations

∂

∂g

|ψε〉
〈η|ψε〉 =

1

〈η|ψε〉
∂

∂g
|ψε〉 − |ψε〉

〈η|ψε〉2
∂

∂g
〈η|ψε〉 ; ∂

∂g
log〈η|ψε〉 = 1

〈η|ψε〉
∂

∂g
〈η|ψε〉,

we obtain the identity

1

〈η|ψε〉
∂

∂g
|ψε〉 = ∂

∂g

|ψε〉
〈η|ψε〉 +

|ψε〉
〈η|ψε〉

∂

∂g
log〈η|ψε〉,

which we use to transform (14.50) into(
H − E0 − iεg

∂

∂g
log〈η|ψε〉

) |ψε〉
〈η|ψε〉 = iεg

∂

∂g

|ψε〉
〈η|ψε〉,

and letting ε→ 0, using (14.38) to (14.40) concludes the argument.

We end this section by showing how Theorem 14.4.1 provides support for (14.18).
Consider ε > 0 and define gε(t) = g exp(−ε|t |). Consider the time-evolution Ūε(t) of the
system under the Hamiltonian Hε(t) := H0 + gε(t)HI of (14.32). Recalling (14.4), let us
define the quantum field ϕε by

ϕε(t,x) = Ūε(t)
−1 ◦ ϕ0(0,x) ◦ Ūε(t). (14.51)

One can then copy the proof of (14.7) (in the specific case |ξ 〉 = |ψ〉 = |0〉 and t− = −∞,
t+ = ∞) to obtain (please compare (11.35) and (11.36) to understand the mechanism)

〈0|Vε(∞)T ϕε(y1) . . . ϕε(yk)Vε(−∞)−1|0〉 =
∑
n≥0

(−i)n

n!

∫ ∞
−∞

dθ1 . . .

∫ ∞
−∞

dθnKn,

(14.52)

where

Kn = gε(θ1) . . . gε(θn)〈0|T ϕ0(y1) . . . ϕ0(yk)HI (θ1) · · ·HI (θn)|0〉.
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We set |η〉 = |0〉 and we use the notation (14.37): |ψε〉 = Vε(−∞)−1|0〉. Since |0〉 is an
eigenvector of H0, if all goes well we can use Theorem 14.4.1. Then the limit

|ψ〉 = lim
ε→0

|ψε〉
〈0|ψε〉 (14.53)

exists, and is an eigenvector of H = Hε(0). This eigenvector is likely (especially under the
mass gap hypothesis) to be a ground state, so that it is proportional to |Ω〉 : |ψ〉 = λ|Ω〉.30

We may then reformulate (14.53) as saying that as ε→ 0,

Vε(−∞)−1|0〉 = |ψε〉 � λ〈0|ψε〉|Ω〉.
Using the same procedure for t →∞, as ε→ 0 we should have 〈0|Vε(∞) � λ′〈0|ψ ′ε〉〈Ω|.
We may now believe that as ε→ 0 the left-hand side of (14.52) behaves as

λλ′〈0|ψε〉〈0|ψ ′ε〉〈Ω|T ϕ(y1) . . . ϕ(yk)|Ω〉.
Using the same result for k= 0 and taking the ratio cancels the unknown factor
λλ′〈0|ψε〉〈0|ψ ′ε〉 and provides for us an expression of the Green functions. As ε → 0
the terms gε(θi) in the right-hand side of (14.52) have limit g and we have recovered the
formula (14.18).

14.5 Diagrammatic Interpretation of the Gell-Mann−Low Theorem

Although some arguments are quite general, from this point on we assume that in the
interaction picture the interacting Hamiltonian is given by a density H(x) as in (13.10).
Then (14.19) becomes

A =
∑
n≥0

(−ig)n

n!

∫
d4x1 . . .

∫
d4xn〈0|T ϕ0(y1) . . . ϕ0(yk)H(x1) . . .H(xn)|0〉. (14.54)

We will further assume that the Hamiltonian density is one of our favorite types :ϕ0(x)3: /3!
or the similar case :ϕ0(x)4: /4!.31These two cases differ only by the fact that in the first case,
in Feynman diagrams (and in the other types of diagrams we will consider), three lines come
out of each internal vertex while in the second case four lines come out of such vertices.
The mass associated to the free field ϕ0 will be calledm. All pictures will pertain to the case
of φ3 theory.

From now on many expressions we write will be considered as formal series in g. The
reader who has never thought about formal series should greatly benefit from the following
exercise.

Exercise 14.5.1 Formal series in g are expressions of the type
∑

n≥0 ang
n. Provided

with the natural addition and multiplication, the set of formal series in g form a
commutative ring.
(a) Prove that if a0 �= 0 then the element

∑
n≥0 ang

n has an inverse.

30 Applying 〈0| to the previous equality implies 1 = λ〈0|Ω〉, so that here again the approach can make sense
only if 〈0|Ω〉 �= 0.

31 Let us recall that the corresponding models are called respectively φ3 and φ4 theory.
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(b) Let us now think of g as a formal series g= g′ +∑n≥1 an(g′)n in the new quan-
tity g′. Prove that each formal series in g becomes a formal series in g′, and that
conversely g′ may be expressed as a formal series in g.

In this section we interpret the formula (14.18) in terms of Feynman diagrams. The right-
hand side of (14.18) is considered as a formal series in g (see Exercise 14.5.1)32 so the result
is a statement about the coefficients of this formal series. All the infinite sums in this section
are similarly considered as formal series in g. We will use Wick’s theorem to compute

〈0|T ϕ0(y1) . . . ϕ0(yk)H(x1) . . .H(xn)|0〉,
just as in the case of the S-matrix, and to understand why Proposition 14.5.3 is true, the
reader should be familiar with the contents of Section 13.8 and Sections 13.12–13.16. Each
term of the series above (which is a function of y1, . . . ,yk) can be represented as a “sum of
the values of certain Feynman diagrams” of a slightly new type (but the name “Feynman
diagram” will be strictly reserved for the usual Feynman diagrams). In these diagrams,
each term ϕ0(yj ) is represented by an external vertex (adjacent to a single line), and the
external vertices no longer represent incoming or outgoing particles. There will also be
internal vertices corresponding to the terms (H(xi))i≤n.

The value of a diagram depends both on its “shape” and on the quantities y1, . . . ,yk . In
the long run it clarifies matters to adopt a notation that brings forward these two sources
of dependence, in particular because our arguments will involve many summations over
various diagrams. Thus the value of the diagram is going to be expressed as a function
ID(y1, . . . ,yk) of y1, . . . ,yk where D is an object that describes the “shape” of the diagram.
This object is itself a diagram, and we next describe it.

We introduce a class of diagrams which we will call diagrams with k external vertices
labeled 1 to k, although for simplicity most of the time we will simply say “diagrams with
k external vertices”. These diagrams have k ≥ 0 external vertices, which are labeled 1 to k.
They have also n ≥ 0 internal vertices. The idea is that the external vertex labeled j

corresponds to the term ϕ0(yj ). In such a diagram, each external vertex is adjacent to a
single line, and sits at one end of this line. A line adjacent to an external vertex is called an
external line. An external line may connect two external vertices (in which case the whole
diagram is not connected), or it may connect an external vertex and an internal vertex. The
internal vertices are adjacent to three lines for the density :ϕ0(x)3: /3! and four lines for the
density :ϕ0(x)4: /4!. No line joins a vertex to itself. The diagrams need not be connected,
even if there is no line joining two external vertices.

Given a diagram D with k external vertices, we define a function ID(y1, . . . ,yk) where
yj ∈ R1,3. (When k = 0 there are no variables and ID is just a number.) The idea of the
notation is that ID(y1, . . . ,yk) represents the value of the diagram of shapeD when the value
yj is assigned to the external vertex labeled j . Recalling that �F,m denotes the Feynman
propagator corresponding to the mass m of the free field this function is computed by the
following rules:

32 The denominator is not a problem there, since the quantity 1/B is a formal series in g, as is seen for the
identity (1− C)−1 =∑

n≥0 C
n used for C =∑

k≥1 akg
k .
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1 2 1 2

(a)
(b)

(c)

Figure 14.1 (a) The simplest diagram D0, with k = 2 and n = 0: two external vertices
labeled 1 and 2 joined by a line. (b) A more complicated diagram, with k = 2 and n = 2.
(c) A vacuum bubble with k = 0 and n = 2.

• For j ≤ k attach the number yj to the external vertex labeled j .
• Label the n internal vertices from 1 to n any way we want.
• To the internal vertex labeled by i attach a variable xi , and a factor −ig.
• To each external line between the external vertex labeled yj and the internal vertex

labeled i attach the factor −i�F,m(xi − yj ).
• To each internal line between the internal vertices labeled i and j attach the factor
−i�F,m(xj − xi).33

• To each external line between the external vertices yj and yj ′ attach the factor
−i�F,m(yj ′ − yj ).

• Take the product of all the previous factors and integrate over the variables xi .
• Divide by the symmetry factor S.34

Here, just as in the case of Feynman diagrams, where we think of the external lines as
being completely identified by the particles they represent, (so that these lines cannot be
exchanged when computing symmetry factors) we think of the external vertices as com-
pletely identified by their label. For example, the symmetry factor of the diagram (a) of
Figure 14.1 is 1 and the symmetry factor of the diagram (b) is 2 (corresponding to the
exchange of the two internal lines) and the symmetry factor of the vacuum bubble (c) of
this figure is 2 × 3!, where the factor 2 corresponds to the exchange of the two internal
vertices and the factor 3! to the permutations of the internal lines.

Lemma 14.5.2 The functions ID are translation invariant, ID(y1, . . . ,yk) = ID(y1+
y, . . . ,yk + y).

Proof This is obvious by the change of variables xi → xi + y.

For the diagramD0 labeled (a) in Figure 14.1, we have ID0 (y1,y2) = −i�F,m(y2−y1) =
〈0|T ϕ0(y1)ϕ0(y2)|0〉. The following should be obvious from the work of Chapter 13.

Proposition 14.5.3 Recalling the quantity A of (14.54) we have the identity

A =
∑
D

ID(y1, . . . ,yk), (14.55)

where the sum is over all the diagrams with k external vertices.

33 One has to be more cautious in theories where the propagator is not an even function, as is often the case in
“real” theories such as Quantum Electrodynamics (QED).

34 Symmetry factors were studied in detail in Section 13.13 in the case of usual Feynman diagrams, and are
defined similarly here, although we will not perform a detailed analysis.
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We will call a vacuum bubble a subset of internal vertices that is connected by internal
lines and such that there is no line between a vertex of this subset and a vertex (external
or internal) which does not belong to this subset. The diagram (c) of Figure 14.1 is such a
vacuum bubble.

Proposition 14.5.4 We have the identity

G(y1, . . . ,yk) = 〈Ω|T ϕ(y1) . . . ϕ(yk)|Ω〉 =
∑
D

ID(y1, . . . ,yk) (14.56)

where the sum is over all diagrams with k external vertices containing no vacuum
bubble.

According to the case k = 0 of (14.55), the value of the quantity B of (14.20) is given by

B =
∑
D

ID, (14.57)

where the sum is over all diagrams with no external vertex, i.e. diagrams that are unions of
vacuum bubbles. In words, the meaning of Proposition 14.5.4 is that the vacuum bubbles
cancel between the numerator and the denominator of the right-hand side of (14.18).

Proof of Proposition 14.5.4 Let us denote by C the right-hand side of (14.56). We will
prove that the quantity A of (14.54) equals BC. The result then follows from (14.18).

Given a diagramD with k external vertices we will construct a pair (D1,D2) of diagrams
in such a way that

• D1 has k external vertices and contains no vacuum bubble.
• D2 has no external vertex so is a union of vacuum bubbles.
• The map D �→ (D1,D2) is one-to-one between the set of diagrams with k external

vertices and the set of pairs (D1,D2) as above.
• Given y1, . . . ,yk we have

ID(y1, . . . ,yk) = ID1 (y1, . . . ,yk)ID2 . (14.58)

The required identity A = BC then follows by summation of the equality (14.58) over all
possible choices of D and using (14.55) and (14.57).

To proceed to this construction we consider a diagram D with k external vertices. Denot-
ing by D2 the union of the vacuum bubbles of D, we decompose D in a unique way as the
union of two Feynman diagrams D1 and D2 such that

• D1 and D2 are disjoint.
• D1 has k external vertices and contains no vacuum bubble.
• D2 is a union of vacuum bubbles and therefore has no external vertex.

It should be obvious that the map D �→ (D1,D2) is one-to-one from the set of diagrams
with k external vertices to the set of pairs (D1,D2) as above.

To complete the proof, it suffices to prove the relation (14.58). To compute the value
of ID(y1, . . . ,yk) we use the rules stated above. That is, we construct a certain function of
the variables attached to the internal vertices, we integrate this function and divide by the
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symmetry factor. It should be obvious from the rules that the function attached to D is just
the product of the functions attached to D1 and D2, and that these depend on disjoint sets
of variables. The issue then is to prove that the symmetry factor S of D is the product of
the symmetry factors S1 and S2 of D1 and D2. For this it is better to stay at the intuitive
level than to give a formal proof. The symmetry factor of a diagram with k external vertices
is simply (as shown by the appropriate version of Lemma 13.13.2) the cardinality of the
group of symmetries of this diagram. Symmetries fix external vertices and external lines,
and exchange internal vertices and internal lines without changing the diagram. The vertices
belonging to D1 are exactly those vertices of D that are connected by a path in D to an
external vertex. This makes it obvious that a symmetry can exchange only the vertices
of D1 with vertices of D1 and the vertices of D2 with vertices of D2. That is, the group
of symmetries of D is naturally the product of the group of symmetries of D1 and the
group of symmetries of D2, so that its cardinality is the product of the cardinalities of these
two groups.

14.6 Road Map II

Now that we have established our main tool, Proposition 14.5.4, the main story can start.
A central part of this story is the fundamental matter of mass renormalization, and we first
try to describe it at a high level.

Let us review first some conclusions of Section 13.17. To make sense of the divergent
integrals, we introduce a cutoff θ . Our interaction Hamiltonian contains a parameter g, the
coupling constant, which models the strength of the interaction. However we realized that
the parameter g is not the coupling constant glab which is measured in the lab. Furthermore
to make sense of the model we must assume that the parameter g is cutoff-dependent.

A somewhat similar story occurs for the other parameter of the model, m, which every-
thing in our analysis made us believe should represent the mass of the particle we study, as
we measure it in our lab. This however turns out to be wrong. This phenomenon is called
mass renormalization. A shocking conclusion is that while taming divergent integrals, the
parameter m of our model will also have to be made cutoff-dependent. However, the story
of diverging integrals and the story of mass renormalization are intertwined but different.
As we will explain, mass renormalization occurs even in the absence of divergent integrals.

To make sure that we do not confuse the parameter m of our model and the mass μ we
measure in our lab, we call μ, the mass we measure, the physical mass. The expression
“physical mass” does not refer to any new concept: it is the mass as it appears to be in
everyday physics.

A major problem is then to find how the physical massμ fits in the model (which involves
parameters m and g). There is a two-pronged attack to the problem:

• In Section 14.8 we perform the key analysis through the study of the most impor-
tant Green function, the two-point function 〈Ω|T ϕ(y1)ϕ(y2)|Ω〉. We relate through
physical arguments the location of the singularities of (the Fourier transform of) this
function with the physical mass. This is the Källén–Lehmann representation.
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• In Section 14.9 we compute the same two-point Green function, using an entirely
different approach, diagrammatics, from the parameters of the model.

• In Section 14.10 we compare both expressions to relate the parameters of the model
and the physical mass of the particle it studies.

Before performing diagrammatic computations, we must however take care of a technical
matter. It is not the functions ID(y1, . . . ,yn) of Proposition 14.5.4 which are convenient to
work with, but their Fourier transforms, which we learn how to compute in Section 14.7. At
the same time we discover an important link between the S-matrix and the Green functions,
revealing their fundamental importance.

We are then ready, in Section 14.9, to diagrammatically compute the value of the two-
point Green function, or, more precisely of its Fourier transform.

The last step of the program is performed in Section 14.10: The comparison of the
two very different-looking expressions for the two-point Green function teaches us how
to relate the parameters m and g of the model with the physical mass μ of the particle the
model studies. The reconciliation of these two very different expressions is however a rather
delicate balancing act, and the tight-rope walking to that effect continues in Section 14.11.

Conquering mass renormalization is however not the end of the story, and even darker
mysteries are revealed in Section 14.12.

14.7 Green Functions and S-matrix

In this section we prove a Fourier transform identity of interest for general Green functions.
This identity will be used in a crucial way starting with Section 14.9. It also brings forward
the link between Green functions and the S-matrix.

In Section 14.5 we introduced the concept of diagrams with k external vertices labeled
1 to k. For such a diagram D we defined a function ID(y1, . . . ,yk), using the version of
the “Feynman rules in position state space” stated on page 437. We assume from now on
that D is connected. In particular for k ≥ 3 there do not exist lines joining two external
vertices, because then the diagram consisting of these vertices and the line connecting
them is not connected to the rest. From the “Feynman rules in position state space”, we
will deduce “Feynman rules in momentum state space”35 by using formula (13.59) for
each propagator.

In order to state our result properly, we introduce a new type of diagram: diagrams
with k external lines labeled 1,2, . . . ,k. For simplicity, we will often simply call these
diagrams “diagrams with k external lines”. You may worry about meeting a third type of
diagram. However you will soon realize that these diagrams are in fact a rather straight-
forward generalization of the usual Feynman diagrams. (Furthermore, you will also realize
the diagrams with k external lines are a subclass of diagrams with k external vertices.)
Diagrams with k external lines have internal vertices. They have internal lines, connecting
two internal vertices (but a line never connects a vertex to itself). They have external lines,

35 As on page 390.
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each connected to one single internal vertex. As the name indicates, there are k such external
lines, which are labeled 1 to k. There is an external vertex at the end of each external line.
Each internal vertex is adjacent to three lines for the density :ϕ0(x)3: /3! and four lines for
the density :ϕ0(x)4: /4!

To each diagram D with k external lines labeled 1, . . . ,k and each ε > 0 we associate a
function JD(p1, . . . ,pk,ε) in the variables p1, . . . ,pk ∈ R1,3 as follows:

• For each j ≤ k, we assign to the external line labeled j a four-momentum pj flowing
from the internal vertex to the external vertex.36

• We orient each internal line any way we like and assign a four-momentum p flowing
in that direction. We then assign to the line the factor −i/(−p2 +m2 − iε).

• To each internal vertex we assign the factor−ig(2π )4δ(4)(�) where� is the algebraic
sum of all the four-momenta flowing on the lines adjacent to this vertex.

• We take the product of the corresponding factors.
• We integrate this product over all momenta corresponding to the internal lines.
• We divide by the symmetry factor S.

The integral over the internal momenta might not (and usually will not) be convergent, but
implicitly we are using cutoffs to make sure this does not happen. Let us note the role of
the external lines: no factor is attached to these. As in the case of Feynman diagrams, we
expect that at least in the sense of distributions we may make sense of

JD(p1, . . . ,pk) := lim
ε→0+

JD(p1, . . . ,pk,ε).

The rules by which we compute the function JD(p1, . . . ,pk) are very similar to the rules
by which we compute the value of a Feynman diagram, so it is worth understanding clearly
the differences:

• We do not assume that p2
i = m2.

• We do not distinguish between initial and final vertices (so we have only external
vertices), and that each external line is conventionally oriented from the internal
vertex to the corresponding external vertex.

This should make it clear that the value of a given Feynman diagram will always be
obtained as the value of a certain function JD . As we are going to see now, the functions JD
are naturally related to Green functions. Thus, through the functions JD , Green functions
are related to Feynman diagrams and to scattering amplitudes.

A diagram D with k external lines labeled 1 to k can be considered as a diagram with k
external vertices labeled 1 to k simply by attaching to the external vertex at the end of an
external line the label of this line.37 For such a diagram D we now relate the functions
ID and JD .

36 This is conventional.
37 Conversely a connected diagram with k external vertices has k external lines since no two external vertices

may be joined with each other by a line.
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Lemma 14.7.1 The Fourier transform of the function ID(y1, . . . ,yk) is given by

ÎD(p1, . . . ,pk) = lim
ε→0+

JD(p1, . . . ,pk,ε)
∏
j≤k

−i

−p2
j +m2 − iε

. (14.59)

This is of course in the sense of distributions. In some imprecise way the contribution
of the external lines to ÎD(p1, . . . ,pk) is represented in the previous formula by the factors
−i/(−p2

j +m2− iε) (as the external lines do not contribute to the value of JD(p1, . . . ,pk)).

Proof We express the function ID(y1, . . . ,yk) using the “Feynman rules in position state
space” stated on page 438. It gives a value of the type

ID(y1, . . . ,yk) = 1

S

(−ig)n

n!

∫
dx4

1 . . .

∫
dx4

n�

where S is the symmetry factor and � is a product of quantities of the type−i�F,m(z), one
for each line of the diagram. If the line is an internal line between vertices labeled xi and xj ,
then z = xj − xi . If the line is the external line between the internal vertex labeled xi and
the external vertex labeled yj then z = yj − xi . For each such quantity we use the formula
(13.59),

�F,m(z) = lim
ε→0+

∫
d4p

(2π )4

exp(−i(z,p))

−p2 +m2 − iε
, (13.59)

pretending as in (13.103) that we can use it within ill-defined products of propagators. This
introduces a variable of integration p for each line of the diagram. We call pj the variable
corresponding to the external line labeled j , adjacent to the external vertex labeled j . Thus
if the other end of this external line is the internal vertex numbered i and associated to the
variable xi , the propagator corresponding to this external line is

�F,m(yj − xi) = lim
ε→0+

∫
d4pj

(2π )4

exp(−i(yj − xi,pj ))

−p2
j +m2 − iε

.

Using the formula (1.19) to perform the integration in the variables xi we then obtain the
expression

ID(y1, . . . ,yk) = lim
ε→0+

∫
d4p1

(2π )4 . . .

∫
d4pk

(2π )4 J (p1, . . . ,pk,ε)
∏
j≤k

−i exp(−i(yj,pj ))

−p2
j +m2 − iε

.

Taking the Fourier transform of both sides (and of course assuming that there is no problem
with the limit ε→ 0+) implies (14.59).

The formula (14.59) brings forward the fact that the function ÎD(p1, . . . ,pk) has singu-
larities when p2

j = m2. When computing the S matrix, we will need to use this formula
when the pj represent four-momenta of incoming or outgoing particles of mass m, which
precisely satisfy the relation p2

j = m2. Still, one may hope that even then it makes some
sense to rewrite (14.59) as

JD(p1, . . . ,pk) = (i)k lim
∏
j≤k

(−q2
j +m2)ÎD(q1, . . . ,qk), (14.60)
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where the function in the limit in the right-hand side is well-defined when q2
j �= m2 for each

j and the limit is taken as qj → pj , q2
j �= m2 for each j .

Let us now turn to the relation between the S-matrix and Green functions, which we will
state on a (rather generic) example. Consider four-momenta p1, . . . ,pk .38 Our goal is to
establish the following relation between the scattering amplitude 〈0|a(p3) · · · a(pk)Sa†(p1)
a†(p2)|0〉 and the Green functions.

The Tentative Lehmann–Symanzik–Zimmermann (LSZ) reduction formula. Assume
that no strict subset of outgoing particles has the same total four-momenta as a subset of
the incoming particles.39. Then we have the formula

〈0|a(p3) . . . a(pk)Sa†(p1)a†(p2)|0〉 = (i)k lim
∏
j≤k

(−q2
j +m2)Ĝ(−q1, − q2,q3, . . . ,qk),

(14.61)

where we expect the right-hand side to be defined when each q2
j is close to m2 but not equal

to it, and where the limit is taken as qj → pj .

In this manner we have computed the scattering amplitude from the Green function.
We have used the word “tentative” in this statement because we will further analyze the
Green functions, and discover that, for a rather subtle reason, the formula (14.61) has to
be modified.40 Let us also mention that(14.61) extends to the case of several incoming
particles.41

In order to establish (14.61) we first consider the scattering amplitude in the left-hand
side. In Chapter 13 we have seen that this scattering amplitude is the sum of the values
of certain Feynman diagrams which contain no vacuum bubbles.42 (More accurately,
and this is important for the sequel, we hand-waved ourselves into believing this.) As
we noticed already, the values of Feynman diagrams are closely related to the quantities
JD(p1, . . . ,pk) and our next goal is to rephrase the value of a scattering amplitude in terms
of these quantities.

Tentative Lemma. Assume that no strict subset of outgoing particles has the same total
four-momenta as a subset of the incoming particles. Then we have the formula

〈0|a(pk) · · · a(p3)Sa†(p1)a†(p2)|0〉 =
∑
D

JD(−p1, − p2,p3, . . . ,pk), (14.62)

where the sum is over all connected diagrams D with k external lines.

38 The four-momenta here are those of the incoming and outgoing particles. After we understand the difference
between the physical mass μ and the parameter m, it will become obvious that these four-momenta should be
computed using the physical mass μ, not the parameter m.

39 When this condition is not satisfied, there is still a formula, but it is quite more complicated.
40 In plain language, (14.61) is wrong. Unlike mathematics, physics progresses toward the truth through a

sequence of approximations.
41 It is this more general version which should properly be called the LSZ formula.
42 Let us recall that on page 386 we decided to exclude diagrams containing vacuum bubbles.
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Figure 14.2 (a) A Feynman diagram. (b) The corresponding diagram D with five external
lines. (c) The assignment of four-momenta to these external lines for the computation of
JD(−p1, − p2,p3,p4,p5).

We call this result “tentative” because unfortunately the formula (14.62) is wrong, as we
will see later. The problem is not with the derivation below, but stems from the fact that our
formula for expressing scattering amplitudes as a sum of values of Feynman diagrams is
itself incorrect. We will discover the correct formula later, in Section 14.12.

Proof We (wrongly) convinced ourselves that the scattering amplitude to the left is the
sum of the values of the Feynman diagrams with the appropriate external lines. We will
show first that the Feynman diagrams that are not connected have value zero. Indeed, as the
Feynman diagrams do not contain vacuum bubbles, each connected part must have some
external line attached to it (for otherwise this part would be a vacuum bubble). Let us denote
bypin the sum of the four-momenta of the incoming particles on these external lines entering
this connected part (respectively pout the sum of the four-momenta of the particles on the
external lines leaving the connected part). Unless the connected part is the whole diagram,
by our hypothesis we have pin �= pout. As explained on page 391, the value of the Feynman
diagram consisting of this connected part is then zero. The value of the whole Feynman
diagram is then zero because it is the product of the values of the connected parts.

Next we express the value of a connected Feynman diagram with k external lines as
follows. To this diagram we associate a diagram D with k external lines labeled 1 to k as
follows: We assign the label j to the external line corresponding to the four-momentum
pj .43 Now, comparing the Feynman rules in momentum space on page 390 and the rules
on page 442 makes it obvious that the value of the Feynman diagram is simply JD(−p1, −
p2,p3, . . . ,pk), see Figure 14.2. The reason for the minus sign in front of p1 and p2 is
that when computing JD we orient all external lines from the internal vertex toward the
corresponding external vertex. In the case where the external line is attached to an initial
vertex, this is the opposite orientation to what was chosen for the computation of the value
of the Feynman diagram.

43 We also forget the information about the four-momenta flowing through the external lines, as this information
is not part of a diagram with k external lines.
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Let us now go back to Green functions.

Lemma 14.7.2 Consider four-momenta p′1, . . . ,p
′
k . Assume that no strict subset of

these four-momenta has sum zero. Then the Fourier transform Ĝ(p′1, . . . ,p
′
k) of the

Green function satisfies

Ĝ(p′1, . . . ,p
′
k) =

∑
D

ÎD(p′1, . . . ,p
′
k), (14.63)

where the sum is over all the possible connected diagrams D with k external vertices.

Proof Taking the Fourier transform of (14.56) we obtain a sum as in (14.63) but with
the sum over all possible D diagrams with k external vertices. It suffices to prove that
the disconnected diagrams do not contribute. According to Lemma 14.5.2, the function
ID(y1, . . . ,yk) is translation invariant, ID(y1, . . . ,yk) = ID(y1 + y, . . . ,yk + y), so that
its Fourier transform contains a factor δ(4)(p′1 + · · · + p′k) (see Lemma 14.9.2). When the
diagram is not connected, the corresponding function ID(y1, . . . ,yk) is a product of the
functions corresponding to the connected parts (which depend on disjoint sets of variables),
and its Fourier transform is the product of the corresponding Fourier transforms. These
contain delta functions whose arguments are sums of the values of certain p′j and these
sums are not zero according to our hypothesis.

Supporting argument for the LSZ formula (14.61) Consider four-momentap1, . . . ,pk

as in (14.62), such that no strict subset of the outgoing four-momenta p3, . . . ,pk has
a sum that is equal to either p1 or p2, and set p′1 = −p1,p

′
2 = −p2,p

′
j = pj for

3 ≤ j ≤ k. Then it is easy to see that no strict subset of p′1, . . . ,p
′
k has sum zero and

therefore (14.63) implies

Ĝ(−p1, − p2,p3, . . . ,pk) =
∑
D

ÎD(−p1, − p2,p3, . . . ,pk), (14.64)

where the sum is over all the possible connected diagrams D with k external vertices.
In a connected diagram with k ≥ 3 external vertices labeled 1, . . . ,k, each external

vertex connects to an internal vertex.44 Thus such a diagram is obtained from a con-
nected diagram D with k external lines as in (14.59), by labeling j the external vertex
at the end of the external line labeled j . That is, combining (14.60) with (14.64) and
comparing with (14.62) we reach (14.61), where we expect the right-hand side to be
defined when each q2

j �= m2 and where the limit is taken as qj → pj .

We have justified the LSZ formula as an identity between two expressions which are
sums of diagrams, because it is the simplest way to bring it about. This aspect is however
fallacious.45 Our shaky derivation of the formula for the S-matrix was based on frantic hand-
waving. The correct analysis first establishes the LSZ formula, and then deduces from it the
correct expression of the S-matrix in terms of Feynman diagrams.46 We will come back to
that in Section 14.12.

44 This is wrong for k = 2, as the two external vertices may be connected by an external line.
45 I was confused here for a long time by the presentation in Folland’s textbook [31] which does not make this

point clear.
46 This aspect is clearly put forward in the textbook of Peskin and Schroeder [64].
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14.8 The Dressed Propagator in the Källén–Lehmann Representation

The goal of this section is to relate the simplest Green function, the two-point function
〈Ω|T ϕ(y1)ϕ(y2)|Ω〉, to certain physical features of the system, in particular the physical
mass.

It follows from (14.1) and the invariance of the vacuum under the action of the Poincaré
group that the two-point Green function depends only on the difference y1 − y2. It is
conventional to define the following version of this function.

Definition 14.8.1 The dressed propagator � is defined by

−i�(y1 − y2) = 〈Ω|T ϕ(y1)ϕ(y2)|Ω〉. (14.65)

One should hope that this makes sense at least as a tempered distribution. We should not
confuse the dressed propagator � with the Feynman propagator �F , which, according to
Lemma 13.10.2 satisfies

−i�F (y1 − y2) = 〈0|T ϕ0(y1)ϕ0(y2)|0〉.
This motivates the factor −i in the previous definition. As will become apparent soon the
dressed propagator is far more complicated than the Feynman propagator.

Closely related to the dressed propagator (14.65) is the “function” W given by

W (y1 − y2) = 〈Ω|ϕ(y1)ϕ(y2)|Ω〉. (14.66)

The similarities and differences with (14.65) should be observed now.
In axiomatic Quantum Field Theory (a taste of which is given in Appendix M), it is part

of the axioms thatW has to be a tempered distribution. Just by using the fact that it is Lorentz
invariant, we show in this appendix that one obtains the following. Recalling the measure
dλm of (4.36), for some constant c and some non-decreasing function ρ on R+ such that
ρ(s) ≤ sk for s large and a certain k one has

W (x) = c +
∫ ∞

0
dρ(s)

∫
dλs(p) exp(−i(x,p)), (14.67)

see (M.54). Here (assuming without loss of generality that ρ is right-continuous) dρ means
that we integrate with respect to the unique measure dν on R such that ρ(s) = ν((0,s]).47

A physicist would write ρ′(s)ds instead of dρ(s), but ρ′(s) need not be a real function, it can
be a distribution.48 The growth condition on ρ is a consequence of the technical condition
that W is a tempered distribution.

In this section we do not work in the setting of axiomatic Quantum Field Theory. We do
not make the assumptions of Appendix M, which should be considered as an independent
story. Rather, we derive (14.67) and obtain information on the form of ρ from the physics
of the system, in particular bringing the physical mass into the picture.

Let us derive the formula (14.67) as a physicist might do. The reader can look into
Srednicki’s book [77, Chapter 13], or Peskin and Schroeder’s book [64, Section 7.1] for

47 Please note for further use that for any s we have ν({s}) = ρ(s)− lims′→s,s′<s ρ(s′).
48 These technicalities are unimportant here.
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examples of this approach. We try to use a more mathematical language, but the arguments
are definitely not rigorous. There are a large number of reasonable but unproven assump-
tions. The first step is to write

〈Ω|ϕ(y1)ϕ(y2)|Ω〉 =
∑
α

〈Ω|ϕ(y1)|α〉〈α|ϕ(y2)|Ω〉. (14.68)

Here α denotes the label of a “continuous basis” of states of given total four-momenta. By
definition “continuous basis” means that it satisfies the completeness relation1= ∑

α|α〉〈α|,
of which (14.68) is a consequence. The sum

∑
α is highly symbolic, as a continuous basis

is not countable. A physicist would say that such a basis exists because the momentum
operators commute between themselves. A mathematician would describe the same result
by saying that the unitary operators U (c,1) commute between themselves and thus have a
common spectral resolution.

Saying that the states |α〉 have a definite four-momentum means that for certain
pα ∈ R1,3 we have

U (c,1)|α〉 = exp(i(c,pα))|α〉. (14.69)

(Compare with (4.66).) As a special case of (14.1) we get

ϕ(y) = U (y,1) ◦ ϕ(0) ◦ U (y,1)−1. (14.70)

Combining with (14.69), and since by assumption U (y,1)−1|Ω〉 = |Ω〉49 we obtain

〈α|ϕ(y2)|Ω〉 = 〈α|U (y2,1)ϕ(0)|Ω〉 = exp(i(y2,pα))〈α|ϕ(0)|Ω〉. (14.71)

One might object that since ϕ is a distribution, ϕ(0) makes no sense and neither does (14.70).
However, based on the case of the free field, one may believe that the quantity 〈α|ϕ(0)|Ω〉
is a well-defined number and that (14.71) does hold. We will also assume that ϕ(x) is self-
adjoint so that (as is easily seen by going back to the mathematical notation)

〈Ω|ϕ(0)|α〉 = 〈α|ϕ(0)|Ω〉∗ (14.72)

and (14.68) becomes

〈Ω|ϕ(y1)ϕ(y2)|Ω〉 =
∑
α

exp(i(y2 − y1,pα))|〈α|ϕ(0)|Ω〉|2. (14.73)

Before we analyze this expression, let us bring forward the main tool, Lorentz invariance.

Lemma 14.8.2 For C ∈ SO↑(1,3) we have

〈α|ϕ(0)|Ω〉 = 〈α|U (0,C)ϕ(0)|Ω〉 = 〈Cα|ϕ(0)|Ω〉, (14.74)

where |Cα〉 = U (0,C)−1|α〉, see Exercise 2.5.20.

Proof Indeed (14.1) implies that for C ∈ SO↑(1,3),

U (0,C) ◦ ϕ(0) ◦ U (0,C)−1 = ϕ(0),

and the invariance of Ω under U (0,C)−1 yields (14.74).

49 This simply asserts that the vacuum has zero four-momentum.



14.8 The Dressed Propagator in the Källén–Lehmann Representation 449

Let us now investigate what kind of states |α〉 form our (continuous) basis of states of
given four-momentum. Certainly this basis should include the vacuum |Ω〉. According to
(14.72), the number A := 〈Ω|ϕ(0)|Ω〉 is real, so the term for α = Ω in the sum in (14.73)
is exp(i(y2−y1,pα))A2 = exp(i(y2−y1,pα))|A|2 . To proceed further we make some more
assumptions on the content of the theory.

We assume first that our theory describes a single type of particle of physical mass
μ. In accordance with Section 14.1 the state space contains a subspace H1 (with H1 �
L2(Xμ,dλμ)) describing these particles. This subspace H1 contains (improper) states |p〉
for p ∈ Xμ (i.e. p2 = μ2) which describe a single occurrence of this particle when it has
momentum p. Then the operator

∫
dλμ(p)|p〉〈p| is valued in H1. According to (4.70), this

operator is the identity on H1, and since it is Hermitian, it coincides with the orthogonal
projection 1H1 on H1:

1H1 =
∫

dλμ(p)|p〉〈p|.
The contribution of the basis elements |p〉 to (14.73) should then be (reproducing the com-
putation that leads to (14.73))

〈Ω|ϕ(y1)1H1ϕ(y2)|Ω〉 =
∫

dλμ(p) exp(i(y2 − y1,p))|〈p|ϕ(0)|Ω〉|2. (14.75)

As a consequence of (14.74) and since SO↑(1,3) acts transitively50 on Xμ, the quantity
|〈p|ϕ(0)|Ω〉| does not depend on p ∈ Xμ. According to (14.75) the contribution of the
basis elements |p〉 to (14.73) is then

Z

∫
dλμ(p) exp(i(y2 − y1,p)), (14.76)

where

Z := |〈p|ϕ(0)|Ω〉|2 (14.77)

is a positive number. Furthermore, we assume, as is reasonable, that there exists no object
in the theory which is lighter than a single particle. It is reasonable to propose that the
states contributing to the sum (14.73), besides the vacuum and the single-particle states,
will consist of multiple particles. Let us say that a system consisting of several particles is
in a bound state51 if the energy of the total system is less than the sum of the energy of the
individual particles.52 We assume from now on that such bound states do not exist.53We
show then that all multiparticle states will have a four-momentum pα with p2

α ≥ 4μ2. To
see this we compute the four-momentum in a frame of reference where the momentum is
zero, so that pα = (p0

α,0,0,0) and then p2
α = (p0

α)2. But since we assume that the state
is not a bound state, p0

α , the energy of the multiparticle state, is at the least the sum of the
energy of the individual particles, each of which is at least μ and thus p2

α ≥ 4μ2.

50 That is, given any two points of Xμ, one may find an element of SO↑(1,3) which sends the first point to the
second one.

51 This is very close to the concept of bound state of a particle interacting with a potential considered on page
329.

52 Thus, one has to spend energy to separate these particles from each other.
53 However the existence of such bound states does not fundamentally change the following analysis.
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The next stage is to argue that the multiparticle states should contribute to the sum (14.73)
as a (continuous) sum of terms of the type

∫
dλs(p) exp(i(y2−y1,p)) where s ≥ 2μ. For this

we assume that our continuous basis has been chosen with the property that if |α〉 belongs
to the basis and C ∈ SO↑(1,3) then U (0,C)|α〉 also belongs to the basis.54 We then group
together the multiparticle states |α〉 which are related by a transformation U (0,C), or in
more mathematical terms we consider the equivalence relation R given by |α〉R|β〉 if and
only if there exists C ∈ SO↑(1,3) such that |α〉 = U (0,C)|β〉. As Peskin and Schroeder
[64] put it, “the states organize themselves into hyperboloids”. For linguistic simplicity, let
us call an “hyperboloid”(i.e. an equivalence class of the relation R) of states |α〉 a class. As
a consequence of (14.74) the value of |〈α|ϕ(0)|Ω〉|2 is constant over a given class.

The contribution to the sum (14.73) of the terms for which |α〉 is in a given class should be
of the type

∫
dμ(α) exp(i(y2−y1,pα)) where μ is a measure on that class which is invariant

under the transformations U (0,C), because this is the only Lorentz invariant method to
“sum” such contributions. Therefore it should be a multiple of

∫
dλs(p) exp(i(y2 − y1,p)),

where s2 is the common value of the p2
α for |α〉 in this class, because the image of μ under

the map α �→ pα is an invariant measure on Xs and hence is proportional to λs . Summing
over the classes55 produces a continuous sum of such contributions. The mathematical way
to express this continuous sum is that there is a non-decreasing function ρ for which

〈Ω|ϕ(y1)ϕ(y2)|Ω〉 = A2 +
∫ ∞

0
dρ(s)

∫
dλs(p) exp(i(y2 − y1,p)). (14.78)

Furthermore, we have assumed that in our continuous basis, the only states α for which
0 < p2

α < 4μ2 are the one-particle states |p〉 for whichp2
α = μ2. This translates into the fact

that ρ is zero on the interval (0,μ), has a jump of exactlyZ atμ and then is constant again in
the interval (μ,2μ). The jump of ρ atμ captures the contribution of the single-particle states,
and the increments of ρ beyond the value 2μ capture the contributions of the multiparticle
states. Another property which we use later is that we expect ρ to be strictly increasing
and continuous on the interval (2μ,∞). This is because given p with p2 ≥ 4μ2 there
exist two-particle systems of total four-momentum p. This is seen by computing the total
four-momentum (2

√
μ2 + v2,0) in the center of mass referential, where v and −v are the

velocities of the two particles. In some sense, this parameter v spreads out the contributions
of the two-particle states over the whole range p2 ≥ 4μ2. The same spreading should occur
for multiparticle systems and we therefore expect that ρ will be continuous and strictly
increasing on the range (2μ,∞).

Taking into account (14.66), (14.78) coincides with the formula (14.67) but now with the
extra information c = A2 and precise information on the structure of ρ (although we have
not shown that ρ(s) ≤ sk for large s).

We now show that the formula (14.78) actually gives an explicit expression of the dressed
propagator as a mixture of the Feynman propagators�F,s of a free field of mass s as s varies.

54 This is not unreasonable since the continuous basis of H1, namely the set of single-particle states |p〉, has
exactly this property, see Proposition 4.10.1.

55 There may be many classes with a given value of s2.
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Proposition 14.8.3 (Källén–Lehmann representation) It holds that

�(x) = iA2 + Z�F,μ(x)+
∫ ∞

2μ
dρ(s)�F,s(x). (14.79)

The fundamental point here bears repetition: μ is the physical mass of the particle, the
mass you measure in your lab by whatever experiment you design for this purpose. Again,
this number need not be the value of any parameter called “mass” in the Hamiltonian.56 As
we will see in Section 14.10, in our class of models μ and m will be different. This is the
phenomenon of mass renormalization.

Proof Assume first that the product ϕ(y1)ϕ(y2) is already time-ordered. Then by (14.65)

�(y1 − y2) = i〈Ω|ϕ(y1)ϕ(y2)|Ω〉.
The time-component of y1− y2 is > 0 and using the first part of (13.57) as well as (13.56),
the Feynman propagator �F,s of the free field of mass s satisfies

�F,s(y1 − y2) = i
∫

dλs(p) exp(i(y2 − y1,p)),

and then (14.78) yields

�(y1 − y2) = iA2 +
∫ ∞

0
dρ(s)�F,s(y1 − y2). (14.80)

When ϕ(y2)ϕ(y1) is time-ordered, one has to replace y1−y2 by y2−y1 in the right-hand side,
but this is the same formula as (14.80) because �F,s(y) = �F,s(−y). Therefore (14.80)
holds for any values of y1 and y2. This implies (14.79) where Z equals the jump of ρ at
μ.

Taking the Fourier transform of (14.79) and using (13.60) we obtain

�̂(p) = −iA2(2π )4δ(4)(p)+ lim
ε→0+

(
Z

−p2 + μ2 − iε
+
∫ ∞

2μ
dρ(s)

1

−p2 + s2 − iε

)
.

(14.81)

A very important feature of this formula is that it exhibits μ2 as the smallest value of
p2 > 0 for which �̂(p) has a singularity. To make this more formal we will compute the
imaginary part Im �̂ of �̂. This distribution is defined by∫

d4p

(2π )4
ξ (p)Im �̂(p) := Im

( ∫ d4p

(2π )4
ξ (p)�̂(p)

)
for each real-valued test function ξ . To compute Im �̂ we write Im (1/(x − iε)) = ε/

(x2 + ε2), and the change of variables x → εx shows that in the sense of distributions57

lim
ε→0+

Im (1/(x − iε)) = πδ(x). (14.82)

56 As physicists put it, “the self-interaction of the particles changes the apparent mass”.
57 For more details, the reader is referred to Appendix P at this point.
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Assuming reasonably that in (14.81) the number Z is real, (14.81) yields the formula

Im �̂(p) = −A2(2π )4δ(4)(p)+ πZδ(p2 − μ2)+ π

∫
s≥2μ

dρ(s)δ(p2 − s2). (14.83)

We can informally state the following conclusion, which will be crucially used in the sequel.
Assuming that our theory describes a particle of physical mass μ, then

Im �̂(p) =
{

0 if 0 < p2 < μ2 or μ2 < p2 < 4μ2

�= 0 if p2 = μ2 or p2 > 4μ2.
(14.84)

It is the last term in (14.83), together with the fact that dρ(s) > 0 for s > 2μ which implies
that Im �̂(p) �= 0 for p2 > 4μ2. Furthermore, we expect that Im �̂(p) depends on p2 only,
has a delta function at p2 = μ2 and is strictly increasing and continuous on the interval
p2 ≥ 4μ2.

The next lemma sheds some light on the value of Z. It shows that if we normalize ϕ in a
natural way, then 0 ≤ Z ≤ 1.58

Lemma 14.8.4 If the quantum field ϕ satisfies the equal-time commutation relations
(6.62), then dρ is a probability measure, i.e.

∫∞
0 dρ(s) = 1.

So if ϕ satisfies the equal-time commutation relations, then 1 = Z+ ∫∞2μ dρ(s) and thus
0 ≤ Z ≤ 1.

Proof From (14.78) we obtain

〈Ω|[ϕ(y1),ϕ(y2)]|Ω〉 =
∫ ∞

0
dρ(s)

∫
dλs(p)(exp(i(y2 − y1,p))− exp(i(y1 − y2,p))),

so that differentiating in the time-component of y2, and setting π = ∂ϕ/∂t ,

〈Ω|[ϕ(y1),π (y2)]|Ω〉 = i
∫ ∞

0
dρ(s)

∫
dλs(p)p0(exp(i(y2 − y1,p))+ exp(i(y1 − y2,p))).

(14.85)

Let us then assume the canonical commutation relations, [ϕ(t,y1),π (t,y2)]= iδ(3)(y1 −
y2)1. When y1 = (t,y1) and y2 = (t,y2) we have (y2−y1,p) = −(y2−y1) ·p and (14.85)
yields

δ(3)(y1 − y2) =
∫ ∞

0
dρ(s)

∫
dλs(p)p0(exp(i(y1 − y2) · p)+ exp(i(y2 − y1) · p)

)
.

Since
∫

dλs(p) . . . = ∫
d3p/((2π )32p0) . . ., the equality (2π)3δ(3)(x) = ∫

dp3 exp(ix · p)
shows that the right-hand side is just δ(3)(y1−y2)

∫∞
0 dρ(s), and this proves the result.59

58 We will however learn in Section 14.12 that this is not the correct way to normalize ϕ.
59 This irresistibly convincing argument is probably one of the lowest points of this book. Rigorous results,

bearing on models which are much tamer than the physicist’s objects, predict only that ρ(s) does not grow
faster than a certain power of s as s →∞ while here we have *proved* that ρ ≤ 1. The problem is probably
that the assertion that the field satisfies the canonical commutation relations is not tenable.
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Figure 14.3 A disconnected diagram without bubbles.

14.9 Diagrammatic Computation of the Dressed Propagator

In this section we compute the dressed propagator through the parameters of the model.
Let us recall that the quantity 〈Ω|ϕ(y)|Ω〉, being Lorentz invariant, is a constant, which we
called A. We recall that in Section 14.5, we defined diagrams with k external lines and for
such a diagram D the function ID(y1, . . . ,yk).

Proposition 14.9.1 We have

−i�(y1 − y2)− A2 =
∑
D

ID(y1,y2),

where the sum is over all connected diagrams with two external vertices labeled
1 and 2.

The sum includes the diagramD0 of Figure 14.1, and ID0 (y1,y2) = 〈0|T ϕ(y1ϕ(y2)|0〉 =
−i�F,m(y1 − y2).

Supporting argument for Proposition 14.9.1 According to Definition 14.8.1 and
Proposition 14.5.4, −i�(y1 − y2) = ∑

D ID(y1,y2) where the sum is over all
diagrams with two external vertices which contain no vacuum bubble. Therefore it
suffices to prove that

A2 =
∑
D

ID(y1,y2),

where the sum is over all disconnected diagrams with two external vertices which
contain no vacuum bubble. Figure 14.3 shows an example of such a diagram. As in
the proof of Proposition 14.5.4, this sum is shown to be C(y1)C(y2) where C(y) =∑

D I (y), for a sum over the connected diagrams with one single external vertex
labeled y. (These diagrams are called tadpoles.) But according to Proposition 14.5.4,
C(y) = A.

Our goal is to compute the Fourier transform �̂(p) of the dressed propagator from
Proposition 14.9.1, and to compare it with the expression (14.81). The key consideration
is the location of the singularities of �̂(p), and for this the value of A is irrelevant, so we
lighten presentation by pretending that A = 0.60 But we need some preparations before we
can start computing �̂(p).

60 Only minor changes are required to take A into account, but one may fear that the integrals involved in its
computation are divergent.
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Lemma 14.9.2 Consider a function V of one variable, and the function H (y1,y2) =
V (y1 − y2). The Fourier transform Ĥ (p1,p2) of H (y1,y2) is given by the formula

Ĥ (p1,p2) = (2π )4δ(4)(p1 + p2)V̂ (p1). (14.86)

Proof This is straightforward. We write

Ĥ (p1,p2) =
∫∫

d4y1d4y2V (y1 − y2) exp(i(y1,p1)+ i(y2,p2))

=
∫

d4y3V (y3) exp(i(y3,p1))
∫

d4y2 exp(i(y2,p1 + p2)), (14.87)

using the change of variables y1 = y2 + y3.

Given a diagram D with two external lines and given ε > 0, in Section 14.7 we
have constructed the distribution JD(p1,p2,ε). This distribution is supported by the set
p1 + p2 = 0. This is because when JD(p1,p2,ε) �= 0 all the delta functions enforcing
conservation of momentum at each vertex of the graph are non-zero. Thus four-momentum
is conserved at each vertex and no net momentum can enter or leave the graph. We have in
fact the following more precise result.

Lemma 14.9.3 We have

JD(p1,p2,ε) = (2π )4δ(4)(p1 + p2)KD(p1,ε) (14.88)

for a nice function KD(p1,ε).

Here again we assume that we have made a cutoff so that all integrals are convergent.
At the intuitive level the result is obvious,61 and we are really making our lives miserable
by using distributions here. When p1 + p2 = 0 the constraints that the algebraic sum
of the momenta entering each internal vertex are zero are compatible, and just amount
to choosing certain four-momenta flows on the internal lines with respect to which we
integrate, expressing the other four-momenta as functions of these. As we will use this later,
it is worth stating the rules to compute the function KD(p,ε):

• We assign to the external line labeled 1 a four-momentum p flowing from the internal
vertex to the external vertex and to the external line labeled 2 a four-momentum −p
flowing from the internal vertex to the external vertex.

• We orient each internal line the way we like and we assign a four-momentum q

flowing in that direction. We then assign to the line the factor −i/(−q2 +m2 − iε).
• To each internal vertex we assign the factor−ig(2π )4δ(4)(�) where� is the algebraic

sum of all the four-momenta flowing on the lines adjacent to this vertex.
• We make the product of the corresponding factors.
• We integrate over all momenta corresponding to the internal lines.
• We divide by the symmetry factor S.

61 A complete proof of a more general statement will be given later in Theorem 15.7.2.
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We recall that the dressed propagator (14.65) is a function of a single variable, and we
denote by �̂(p) its Fourier transform.

Proposition 14.9.4

−i�̂(p) = lim
ε→0+

( −i

−p2 +m2 − iε
+ ( −i

−p2 +m2 − iε

)2 ∑
D

KD(p,ε)
)
, (14.89)

where the sum is over all connected diagrams D with two external lines.

Supporting argument. We apply Lemma 14.9.2 to the functionG(y1,y2) = −i�(y1−
y2) = 〈Ω|T ϕ(y1ϕ(y2)|Ω〉 to obtain

Ĝ(p1,p2) = (2π )4δ(4)(p1 + p2)
(−i�̂(p1)

)
. (14.90)

On the other hand, according to Proposition 14.9.1, and recalling that we assume A =
0, Ĝ(p1,p2) =∑

D ÎD(p1,p2), where the sum is over all possible connected diagrams
with two external vertices.

One of these diagrams is very special, the diagram D0 of Figure 14.1, for which
ID0 (y1,y2) = V (y1 − y2) where V (y) = −i�F,m(y) and −iV̂ (p) = limε→0+

(−i/(−p2 +m2 − iε)), so that

ÎD0 (p1,p2) = (2π )4δ(4)(p1 + p2) lim
ε→0+

−i

−p2
1 +m2 − iε

. (14.91)

Any other connected diagram with two external vertices labeled y1 and y2 has at least
one internal vertex and two external lines. Thinking of this diagram as a diagram D

with two external lines we may appeal to the case k = 2 of (14.59) to obtain

ÎD(p1,p2) = lim
ε→0+

JD(p1,p2,ε)
∏
j=1,2

−i

−p2
j +m2 − iε

(14.92)

and combining with (14.88), we obtain

ÎD(p1,p2) = lim
ε→0+

(2π )4δ(4)(p1 + p2)
( −i

−p2
1 +m2 − iε

)2
KD(p1,ε). (14.93)

Therefore by summation of these relations we have obtained the expression

Ĝ(p1,p2) = (2π )4δ(4)(p1 + p2)

× lim
ε→0+

( −i

−p2
1 +m2 − iε

+ ( −i

−p2
1 +m2 − iε

)2 ∑
D

KD(p1,ε)
)
,

where the sum is over all connected diagrams with two external lines. Comparing with
(14.90) supports (14.89).

Our next goal is to study connected diagrams with two external lines.

Definition 14.9.5 A diagram is 1-particle irreducible (1-PI) if it cannot be split into
two disjoint parts by removing an internal line.
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Figure 14.4 A sausage with three links.

The obvious but important fact is the “sausage theorem”: A connected diagram with two
external lines has the following structure: one external line, followed by a 1-PI blob, which
is linked by a single internal line to another 1-PI blob, etc., ending with the second external
line, see Figure 14.4.

Each 1-PI blob has two distinguished vertices, and if we attach external lines to these
vertices we obtain a diagram with two external lines. These diagrams will be called the
components of D.

Lemma 14.9.6 Consider a diagram D with two external lines, and its 1-PI compo-
nents D1, . . . ,Dk . Then

KD(p,ε) =
( −i

−p2 +m2 − iε

)k−1
KD1 (p,ε) . . . KDk

(p,ε). (14.94)

Proof If the momentum through one external line isp, conservation of momentum ensures
that the momentum through each of the internal lines joining two consecutive blobs is alsop.
The result should be obvious from the rules of computation of KD(p,ε) .

Let us define the function �(p,ε) by:

− i�(p,ε) is the sum of the functions KD(p,ε) corresponding
to all the 1-PI diagrams D with two external lines. (14.95)

This quantity has to be understood as a formal series in g, where the coefficients of the
powers of g are functions of p. The factor −i is conventional. Let us try to motivate this
factor. When computing the value of a diagram, there is a factor i for each vertex, and a
factor i in the numerator of each propagator. The computation of the value of the diagram
involves the computation of a certain integral (as will be detailed later in Section 15.7). This
computation will create a factor i “for each loop variable occurring in this integral” when
performing a Wick rotation. If there are L internal lines and V internal vertices, we will
prove later in Section 15.7 that there are L − V + 1 such loop variables, so that we get as
grand total the odd number 2L + 1 of factors i. Therefore “in �(p,ε) there are 2L factors
i and we may expect that �(p,ε) should have a tendency to be real” (although it will still
often have an imaginary part).

Theorem 14.9.7 As a formal series in the coupling constant we have

�̂(p) = lim
ε→0+

1

−p2 +m2 − iε +�(p,ε)
. (14.96)
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Proof We compute the sum
∑

D KD(p,ε) in (14.89) by summation of the formula (14.94)
over all possible values of k and of D1, . . . ,Dk . Writing

B(p,ε) = −i

−p2 +m2 − iε
,

and summing (14.94) over all possible 1-PI components62 yields∑
D

KD(p,ε) =
∑
k≥1

Bk−1(p,ε)(−i�(p,ε))k,

and thus

B(p,ε)+ B(p,ε)2
∑
D

KD(p,ε) =
∑
k≥0

Bk+1(p,ε)(−i�(p,ε))k = B(p,ε)

1+ iB(p,ε)�(p,ε)
,

which is the desired result.

The equality (14.96) is between formal series in g.63 Still, in the next section we will
basically pretend that it is an equality between functions, and that the values of p where the
denominator vanishes correspond to singularities of �̂(p), a huge leap of faith indeed.

14.10 Mass Renormalization

The main topic of the present section is the phenomenon of mass renormalization, which is
created by the self-interaction of the particle. It has nothing to do with diverging integrals.
To make this clear in this section and the next we work in the so-called φ3

2 theory, where the
interaction term is g :ϕ3

0 : /3! and where space-time has dimension two. As we will prove in
the next chapter, in this theory all the Feynman diagrams are convergent.64 Besides g, the
theory has one other parameter, the mass m of the free field.

We then may compute in perturbation theory the values of all S-matrix elements, and we
have (order by order in perturbation theory) a complete theory which models the interactions
between different particles of the same type.

To use this theory, the question is then to decide which are the appropriate values of
the parameters m and g. Obviously we can choose these parameters only by requiring
that certain predictions of the theory fit the measurements in our lab. We will examine
this question in full in Section 14.13, but here we examine how to fix the parameters65

m and g so that the physical mass μ predicted by the theory coincides with the physical
mass we actually measure. The key point we make in this section is that the physical mass
μ does not coincide with the parameter m. It is this phenomenon which is called “mass
renormalization”.

62 Such a component can be any 1-PI diagram with two external legs.
63 Formal summation of a geometric series may yield non-sensical results as exemplified by the well-known

identity −1 =∑
n≥0 2n.

64 The problem of possible singularities as ε→ 0+ remains, but we ignore it.
65 These parameters are called the bare parameters in physics. They cannot be directly measured.



458 Interacting Quantum Fields

Within our theory66 we can compute �̂(p) and its imaginary part via (14.96). The plan
is to compare the result of this computation with what we learned on general grounds
in Section 14.8 about �̂(p) for a theory modeling a particle of physical mass μ, and in
particular (14.84):

Im �̂(p) =
{

0 if 0 < p2 < μ2 or μ2 < p2 < 4μ2

�= 0 if p2 = μ2 or p2 > 4μ2,

with furthermore Im �̂ having a delta function at p2 = μ2.
How can (14.96) produce an imaginary part? To investigate this we make a series of

reasonable assumptions (which become all the more reasonable after one learns to compute
the value of diagrams). We pretend that limε→0+ �(p,ε) exists. By Lorentz invariance this
limit should be a function �(p2) of p2. First it may happen that �(p2) has a non-zero
imaginary part. This will be examined in the next section. Another way for �̂ to get an
imaginary part is from (14.82), when −p2 +m2 + �(p2) = 0 and we examine it now. Let
us consider the smallest root θ of the equation

−θ +m2 + �(θ ) = 0. (14.97)

For p2 close to θ we have �(p2) � �(θ ) + �′(θ )(p2 − θ ). Crossing our fingers we may
expect that for some number A(p2) one has

�(p,ε) � �(p,0)+ A(p2)ε = �(p2)+ A(p2)ε. (14.98)

Then for p2 close to θ the formula (14.96) becomes

�̂(p) = lim
ε→0+

1

(−p2 + θ )(1− �′(θ ))+ A(θ )ε − iε
.

We can repeat the argument of (14.82) to obtain that if α is a complex number with Reα > 0
then limε→0+ 1/(x − iαε) = πδ(x). Using this for x = (−p2 + θ )(1 − �′(θ )) and α =
1+ iA(θ ), and assuming ImA(θ ) < 1 so that Reα > 0, this gives

Im �̂(p) = πδ((−p2 + θ )(1− �′(θ )) = π

|1− �′(θ )|δ(p2 − θ ),

where we use (1.15) in the second equality. This should account for the delta function part
of Im �̂ at p2 = μ2 in (14.84) i.e. the term πZδ(p2 − μ2) in (14.83). This motivates a
fundamental fact:

If our theory describes a particle of physical mass μ then θ = μ2. (14.99)

This also motivates the relation

Z = 1

|1− �′(μ2)| . (14.100)

In particular, the physical mass μ satisfies the equation

−μ2 +m2 + �(μ2) = 0. (14.101)

66 And in contrast with (14.79) which is based on very general arguments.
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p1 p2

p3

p4

Figure 14.5 The one-loop diagram.

Unless �(m2) = 0 (which has no special reason to hold) then μ �= m. The parameter m of
the model does not represent the physical mass of the particle under study.

Again, everything is meant order by order in perturbation theory. For example, if�(p2) =
g2�2(p2)+O(g4) then (14.97) gives θ = m2 + �(θ ) = m2 + g2�2(θ )+O(g4). Plugging
back the expression θ = m2+ g2�2(θ )+O(g4) into �2(θ ) gives �2(θ ) = �2(m2)+O(g2)
and hence θ = m2 + g2�2(m2)+O(g4).

Exercise 14.10.1 Check that if �(p2)= g2�2(p2) + g4�4(p2) + O(g6) then
θ = m2 + g2�2(m2)+ g4(�2(m2)�′2(m2)+ �4(m2))+O(g6).

Let us now check by a concrete computation that all the optimistic hypotheses we
made are sensible. We consider the one-loop diagram D of Figure 14.5 and we compute
JD(p1,p2,ε) according to the rules on page 442:

JD(p1,p2,ε) = (−ig)2(−i)2
∫∫

d2p3

(2π )2

d2p4

(2π )2 δ
1

(−p2
3 +m2 − iε)

1

(−p2
4 +m2 − iε)

where δ = (2π )4δ(2)(p1+p3+p4)δ(2)(p2−p3−p4), and, as predicted by Lemma 14.9.3

JD(p1,p2,ε) = (2π )2δ(2)(p1 + p2)KD(p1,ε)

for the nice function

KD(p,ε) = g2
∫

d2k

(2π )2

1

(−k2 +m2 − iε)

1

(−(p + k)2 +m2 − iε)
.

Using Feynman parameters and Wick rotation, that is, copying the arguments which lead to
(13.124) we obtain

KD(p,ε) = ig2
∫ 1

0
du
∫

d2k

(2π )2

1

(‖k‖2 − u(1− u)p2 +m2 − iε)2 . (14.102)

Exercise 14.10.2 Prove that in φ3
d theory, a diagram with two external lines has an

even number of internal vertices.

According to (14.95) and the previous exercise, we obtain �(p,ε) = iKD(p,ε)+O(g4),
because all the other diagrams in the sum have at least four internal vertices and contribute
as O(g4). Thus

�(p,ε) = −g2
∫ 1

0
du
∫

d2k

(2π )2

1

(‖k‖2 − u(1− u)p2 +m2 − iε)2 +O(g4). (14.103)
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For p2 < 4m2 we have inf0≤u≤1 m
2− u(1− u)p2 > 0 and we can expand the integrand as

(a − iε)−2 � a−2 + 2iεa−3 to obtain (14.98) with

�(p2) = −g2
∫ 1

0
du
∫

d2k

(2π )2

1

(‖k‖2 − u(1− u)p2 +m2)2 +O(g4), (14.104)

A(p2) = −ig2
∫ 1

0
du
∫

d2k

(2π )2

2

(‖k‖2 − u(1− u)p2 +m2)3 +O(g4). (14.105)

so that�(p2)< 0 and ImA(p2)< 0. Since�(p2)< 0 at order g2 and−μ2+m2+�(μ2) = 0
by (14.97), we should have μ < m: Mass renormalization decreases the mass, at least at
order g2.

In a more realistic theory such as φ4
4 theory some diagrams will diverge. We introduce a

cutoff to make sure that everything is welldefined. We argued in Section 13.17 that it is not
possible to directly measure the “bare” coupling constant g, and to get a sensible model we
must make g depend on the cutoff.67 It is not possible to measure the bare mass m either. It
turns out that as the cutoff gets removed, in order that the physical mass remains constant,
the bare mass must go to infinity, just like the bare coupling constant (everything here makes
sense order by order in perturbation theory).

For further use let us end this section by one more observation, going back to φ3
2 theory.

We expect that for p2 �= μ2 but close to μ2 we will have −p2 + m2 + �(p2) �= 0 so that
�̂(p2) is well defined and equals 1/(−p2 +m2 + �(p2)). By L’Hospital rule we get

lim
p2→μ2

(p2 − μ2)�̂(p) = 1

−1+ �′(μ2)
. (14.106)

14.11 Difficult Reconciliation

Let us go back to the problem of the reconciliation of (14.96) with (14.83). We still assume
that we are in the φ3

2 theory in two space-time dimensions. All physical quantities are given
by formal series in g, with well-defined coefficients. This is also the case of the quantity θ
given by the equation (14.97).

We recall that we assume that �(p2) := limε→0+ �(p,ε) exists. Then (assuming that the
denominator is not zero)

Im �̂(p) = −Im�(p2)

(−p2 +m2 + Re (�(p2)))2 + (Im�(p2))2
, (14.107)

Thus Im �̂(p) �= 0 if Im�(p2) �= 0. But what are the values of p for which Im�(p2) �= 0?
At a given order n of perturbation theory,

Im�(p2) =
∑

2≤k≤n
gkfk(p2)+O(gn+1) (14.108)

67 The term “bare” is physics terminology. It refers to a parameter of the model which cannot be directly
measured.
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for certain functions fk . It is a simple exercise to show that, with the exception of maybe
countably many values of g, the support of a function of the type

∑
0≤k≤n gkfk is the union

of the supports of the functions fk .

The support of Im �(p2) is generically independent of g. (14.109)

On the other hand, according to (14.84) we rather expect the support of Im �(p2) to be
[4μ2,∞) where μ is the physical mass. Since the physical mass μ satisfies the equation
(14.101) which depends on g, we do not expect μ2 to be independent of g. This seems to
contradict (14.109).

Before we pursue this matter, let us work a bit harder to actually compute exactly the
union of the supports of the functions fk . As we have seen from (14.104) the one-loop
diagram does not produce an imaginary part in �(p2) when p2 < 4m2. Once one has
learned how to compute the values of more complicated diagrams one may show that each
of the other diagrams contributing to �(p2) can produce an imaginary part only for p2 >

4m2. Therefore the support of Im �(p2) is contained in [4m2,∞). One may also show
from (14.103) that g2f2(p2) is not zero for p2 > 4m2.68 Consequently the union of the
supports of the functions fk is the interval [4m2,∞) and we have improved (14.109) into
the following.

The support of Im �(p2) is generically [4m2,∞). (14.110)

In conclusion:

• According to (14.107), at any order of expansion in powers of g, generically
Im �̂(p) = 0 for 4m2 < p2 < ∞ but Im �̂(p) = 0 for m2 < p2 < 4m2.

• According to (14.84) and (14.99), Im �̂(p) = 0 for 4μ2 < p2 < ∞ but Im �̂(p) = 0
for μ2 < p2 < 4μ2.

• Typically m = μ.

This discrepancy stems from the fact that we have done wrong physics in the previous
argument. It is the observable physical mass μ which should be taken as a parameter for
the model, not the un-observable m. Similarly it is a certain “observable version” ρ of the
interaction strength which should be taken as a parameter, not the un-observable g. Such a
change of parameterization is called a finite renormalization. Then at given μ, m and g are
determined by ρ (as formal power series).69 When ρ = 0 there is no interaction and we
have m = μ, so we expect the series for m to start as m = μ + · · · . We also expect the
series for g to start as g = ρ + · · · because for ρ small, ρ and g should be nearly equal. In
summary we expect that m = μ + O(ρ) and g = ρ + O(ρ2). The functions fk of (14.108)
also depend on m2, so we denote them by fk(p2,m2). To obtain the expansion of Im �̂(p)
in powers of ρ we simply substitute in (14.108) the expression of g and m as power series
in ρ to obtain an expression

68 This non-trivial fact will look less mysterious after you study Chapter 18. You should even be able to give a
complete proof, using the fact proved there that the integral in k can be explicitly performed.

69 One of the conditions determining m and g is the equality μ2 = θ .
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Im�(p2) =
∑

2≤k≤n
ρkhk(p2)+O(ρn+1). (14.111)

Since m2 = μ2 + O(ρ) the first term ρ2h2(p2) is ρ2f2(p2,μ2) which we have shown to
be non-zero exactly for p2 > 4μ2. Furthermore, for any k the function hk(p2) is zero for
p2 < 4μ2 because all the functions m �→ f�(p2,m2) are identically zero for p2 < 4m2 and
because μ2 < m2. Thus the union of the supports of the functions hk is [4μ2,∞). Let us
stress what happened:

After the finite renormalization it appears from (14.111) that Im �̂(p) �= 0 for p2 > 4μ2

and Im �̂(p) = 0 for μ2 < p2 < 4μ2.

This is now consistent with (14.84).70 However hard it is to accept the first time one sees
it, the finite renormalization changes the apparent support of Im �̂(p).

The previous argument is not fallacious. The situation may seem strange to a mathemati-
cian because she is not used to working in perturbation theory. In perturbation theory, we
have only access to a finite number of terms of the series (14.111), from which we cannot
reconstruct the expression (14.108).71

The previous arguments showed how tricky perturbation theory can be. Still we trusted it
in Section 14.10 to detect the shift in the smallest value of p2 for which there is a singularity
of �̂(p). This provides the correct answer, but the mathematical value of this procedure is
infinitesimal.

14.12 Field Renormalization

The matter of field renormalization is related to the factor Z in (14.77), and it is a real
challenge to clearly understand it.72 The present section will probably look to the reader
as the most puzzling of the entire book, so a few words of orientation might help. As for
the practical matter of assigning a finite value to each diagram, we will describe in Chapter
17 an algorithm to that effect. The matter of “field normalization” is perfectly clear at the
level of this algorithm: it requires adding certain “counter-terms” to cancel divergences. The
considerations of the present section attempt to somehow justify this mysterious procedure.
One of the reasons for which the present section is puzzling is that (at least in the eyes of
this author) the attempt is only partially successful.

There are ominous signs of trouble in our picture. On the one hand, the relation (14.61)
seems to indicate that the functions Ĝ(−q1, − q2,q3, . . . qk) blow up at q2

j → m2 (so that
the left-hand side is not zero). On the other hand, combining (14.90) and (14.106) show
that the singularities of Ĝ(p1,p2) occur not for p2

j = m2 but for p2
j = μ2. Why should

the Green function of two variables behave in a fundamentally different way than the Green
function of three variables? Further, by comparing (14.106) with (14.100) we see that the
quantity Z should play a role. This problem will be solved in this section.

70 It took me a looong time to figure this out, and I thank Marc Srednicki for putting me on the right track.
71 Obviously the situation is not fully satisfactory, and yet we cannot really argue that it is non-sensical.
72 The difficulty might be measured by the fact that despite us having brilliantly proved that 0 ≤ Z ≤ 1, when

computing Z in perturbation theory it has an irresistible tendency to be infinite.
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One may picture the quantum field ϕ as creating both single-particle states and more
complicated states when applied to the vacuum. Arguing at a (truly!) heuristic level, it is
not really the whole field ϕ which matters when studying the S-matrix, but “only that part of
ϕ which creates single particles”.73 This argument looks flimsy at first, but it is not. Within
axiomatic Quantum Field Theory a rigorous theory of scattering has been developed, the
Haag-Ruelle scattering theory.74 This theory proceeds to a rigorous construction of the out
and in states, and the first part of the construction is precisely to isolate “the part of the
quantum field which creates single particles”. It is this part of the field which should be
properly normalized, not the whole field. (For example, in Lemma 14.8.4 we normalized the
whole field by imposing the equal-time commutation relations.) If one does not work within
the framework of axiomatic Quantum Field Theory, but heuristically as in Section 14.8 “the
part of the quantum field which creates single particles” is identified by the equation (14.77).
To ensure that this part of the field is properly normalized, one has to “renormalize the field
by multiplying it by a factor Z−1/2”. The LSZ formula (14.61) then has to be modified in
two different ways:

• One has to insert a correction factor Z−k/2 in the right-hand side.
• The term

∏
j≤k (−q2

j +m2) has to be replaced by
∏

j≤k (−q2
j + μ2).

The first modification accounts for field renormalization, and the second one for mass
renormalization. Thus, the formula (14.61) has to be replaced by

〈0|a(p3) . . . a(pk)Sa†(p1)a†(p2)|0〉
= Z−k/2(i)k lim

∏
j≤k

(−q2
j + μ2)Ĝ(−q1, − q2,q3, . . . ,qk). (14.112)

Let us face it: This is not an easy result. The main difficulty is that it no longer works to
be cavalier about the in and the out states: One has to find a way to express these using the
field ϕ, and it is at that stage that the mysterious factor Z come out, through (14.77). In
the framework of axiomatic Quantum Field Theory, to construct the in and out states and
to prove the LSZ formula at the level of detail of this book would require several chapters.
As for heuristic approaches, we recommend Coleman’s book [13] or Ticciati’s book [85].75

Different approaches may be found in Peskin and Schroeder’s book [64] or, for the truly
daring, in Weinberg’ book [87, Section 10.2]. We do not enter these arguments here. We
will have a very limited use of the LSZ formula, in Chapter 17. Furthermore, as we explain
below, the way the LSZ formula is actually used requires a considerable act of faith76 (with
no rigorous support), so that it is hardly fundamental for us to try to carefully justify the
formula itself.

Let us go back to the problem of computing the scattering amplitude using Feynman
diagrams. We established our tentative version (14.61) of the LSZ formula from our naive

73 This is to be taken as an image and not as a technical statement.
74 The very accessible textbook of Jost [45] covers this topic well. One may also look in Duncan’s textbook [24,

Chapter 9].
75 It is again very difficult to learn this result on your own because several of the main physics textbooks simply

sweep the difficulties under the rug. But Coleman’s textbook [13] is remarkable in truly confronting
difficulties.

76 I am much grateful again here to J. B. Zuber for helping me understand this point, as this inglorious aspect of
QFT is certainly not put forward clearly in any of the main books.
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hand-waving computation of this amplitude using Feynman diagrams. The fact that we have
to modify (14.61) indicates that this naive computation is wrong. The plan now is to travel
backward along the same road we traveled to prove (14.61). We start from (14.112) and our
goal is to deduce from this formula the correct way to compute scattering amplitudes using
Feynman diagrams.

To perform the main step of the computation we compute the Fourier transform of a
Green function as a sum over diagrams, and we reorganize this sum. Since none of this
really holds at the mathematical level, let us simplify matters by pretending that we are
dealing with functions rather than distributions and that we may just take ε = 0 (so that
dependence on ε of all our quantities is removed). Thus we simply write (14.59) as

ÎD(p1, . . . ,pk) = JD(p1, . . . ,pk)
∏
j≤k

−i

−p2
j +m2

. (14.113)

Definition 14.12.1 A diagram with k external lines is said to be amputated if one
cannot disconnect an external line from all the other external lines by removing one
single internal line.

We also define an amputated Feynman diagram exactly the same way. For example, the
diagram (1) of Figure 13.15 is not amputated (and the present section will motivate our
decision not to include it in the computation of the scattering amplitude).

Proposition 14.12.2 The following formula holds, where Ĝ(p1, . . . ,pk) is the Fourier
transform of the Green function:

Ĝ(p1, . . . ,pk) =
∏
j≤k

(−i�̂(pj ))
∑
D′

JD′ (p1, . . . ,pk), (14.114)

where the sum of over all amputated diagrams D′ with k external lines.

Proof Taking the Fourier transform of (14.56) and combining with (14.113) we obtain

Ĝ(p1, . . . ,pk) =
∏
j≤k

−i

−p2
j +m2

∑
D

JD(p1, . . . ,pk), (14.115)

where the sum is over all diagramsD with k external vertices labeled 1, . . . ,k and containing
no vacuum bubbles.

The reader is referred to Figure 14.6 to follow the diagram surgery which we perform. We
consider a diagram D with external lines labeled 1, . . . ,k. Given an external line labeled j ,
there are two cases to consider. First it may happen that one cannot disconnect this external
line from the rest of the diagram by removing a single internal line. In that case we say that
the external line is thin. The second case is when this can be done. We then say that the
external line is fat. When the external line labeled j is fat, starting from it there is a last77

internal line such that removing this internal line disconnects this external line from the rest
of the diagram. (This line is called a in the example of Figure 14.6.) Let us call this part

77 In the sense that it is the furthest from the external line as measured by the graph distance, the length of the
shortest path between vertices.
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b

a

1

2 3

4 1

2 3

4

(a) (b)

Figure 14.6 (a) The fat line corresponding to the external line labeled 1 consists of this
external lines, the internal lines labeled a and b and the two blobs in between. The lines
labeled 2 to 4 are thin. The big blob is shaded to convey the idea that it is solid: You cannot
separate an external line from the rest of the blob by cutting a single internal line. (b) The
corresponding amputated diagram.

of the diagram, including the external line labeled j and the last internal line the fat line
labeled j . Seen by itself, the fat line labeled j is just a diagram D(j ) with two external
lines. One of these external lines is an internal line of D (this is again the line called a in the
example of the picture). To the diagram D we can associate a diagram D′ by “amputating
the fat lines”. Each fat line is removed and replaced by an ordinary external line (with the
same label). It should be obvious that D′ is amputated.

Looking78 at the rules used to compute JD(p1, . . . ,pk) one obtains

JD(p1, . . . ,pk) = JD′ (p1, . . . ,pk)
∏
j≤k

A(j ), (14.116)

where the quantity A(j ) equals 1 if the external line labeled j is thin, and where

A(j ) = −i

−p2
j +m2

KD(j )(pj ), (14.117)

otherwise, whereD(j ) is the diagram with two external lines corresponding to the fat line j ,
and where the function KD occurs in Lemma 14.9.3. The factor −i/(−p2

j + m2) occurs
because when computing either JD′ (p1, . . . ,pk) or KD(j )(pj ) the external lines of these
diagrams do not contribute, but here we have added an internal line connecting Dj with the
rest of the diagram. (This is again the internal line labeled a in Figure 14.6.) Thus, if we
sum the quantities (14.116) over all diagrams D for which D′ has a given value, we obtain
the quantity

JD′ (p1, . . . ,pk)
∏
j≤k

(
1+ −i

−p2
j +m2

∑
D′′

KD′′ (pj )
)
,

78 You may have to think a few minutes here to convince yourself that this is the case.
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where the sum is over all diagrams D′′ with two external lines. Going back to (14.115),
summing over all values of D and using (14.89) we have proved (14.114).

Combining (14.112) and (14.114) we obtain

〈0|a(p3) . . . a(pk)Sa†(p1)a†(p2)|0〉 (14.118)

= Z−k/2(i)k lim
∏
j≤k

(
(−q2

j + μ2)(−i�̂(qj ))
)∑

D′
JD′ (−q1, − q2,q3, . . . ,qk),

where the limit is as qj → pj and the sum is over amputated diagrams D′. According to
(14.81) we get

lim
q2→μ2

(−q2 + μ2)�̂(q) = Z, (14.119)

and (14.118) becomes

〈0|a(p3) . . . a(pk)Sa†(p1)a†(p2)|0〉 = Zk/2
∑
D′

JD′ (−p1, − p2,p3, . . . ,pk), (14.120)

which is our corrected version of (14.62).
If we recall how we relate the value of a Feynman diagram with a certain function JD (as

is explained a few lines above Figure 14.2 and as was used in deriving (14.62)), the following
is now transparent: To compute the scattering amplitude 〈0|a(p3) . . . a(pk)Sa†(p1)a†(p2)|0〉,

We multiply by the factor Zk/2 the sum of the values of
corresponding amputated Feynman diagrams. (14.121)

Thus our naive method has to be modified in two ways. First, we consider only amputated
diagrams.79 Second we multiply the result by a factor Zk/2.

How, then, are we supposed to use this formula? Let us recall here that we have been
working in perturbation theory, using the “bare mass”m in the interaction Hamiltonian, and
using a cutoff to make all integrals convergent. For the model to make sense, the bare mass
and the interaction strength have to be cutoff-dependent. How then do we extract informa-
tion as the cutoff gets removed? At the end of Chapter 13 we showed how to assign values
to one-loop and two-loop diagrams as the cutoff gets removed, by introducing “counter-
terms”. There was however very little theoretical support that the values thus assigned
contain any information whatsoever about the true behavior of the model, see page 395.
In Part IV, we will generalize these procedures, producing a “renormalized theory”, which
assigns a “renormalized value” to each diagram. We also generalize the leap of faith80

made in Chapter 13 that the renormalized values of the diagrams actually contain relevant
information. The basic act of faith is the following:

79 Note however that we need to consider diagrams which are not necessarily 1-PI. Removing an internal line
may split the diagram into two parts, but at least two external lines are attached to each of the parts.

80 If I understand correctly, the theoretical support for this fundamental point is not stronger than, say, the
theoretical support we have to believe that (13.117) is a prediction of reality. Furthermore this whole
procedure is kept largely implicit in the major textbooks, probably because in the minds of the authors, it goes
without saying that this is the correct approach. They are certainly supported by experimental evidence. The
resulting formulas are very predictive.
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All the previous considerations are assumed to be relevant when the values of the
diagrams are replaced by their renormalized values. (14.122)

In other words, to compute the scattering amplitudes in the renormalized theory we will
mimic the previous procedure, and we take as an act of faith that this works.81 Let us
explain how this is done. The renormalized theory depends on two parameters m and g and
will allow us to assign a well-defined value82 to each Feynman diagram.83 As we assign
a (renormalized) value to each diagram, we may compute the function −i�renorm(p2), the
sum of the (renormalized) values of all the 1-PI diagrams with two external lines, and the
function

�(p2) = 1

−p2 +m2 + �renorm(p2)
. (14.123)

Here again �renorm is a formal series in g, and all computations are performed at a given
order of perturbation theory, that is at order k one keeps only the terms with powers of g that
are ≤ k. The function �(p2) of (14.123) has a singularity at the smallest value p2 = μ2,
and μ is the physical mass of the particle. There is no reason why one should have μ = m.
One may then consider84

z := lim
p2→μ2

(−p2 + μ2)�(p2). (14.124)

Let us then accept without further justification85 that the correct way to compute the
scattering matrix is the formula (14.121) where the diagrams are now renormalized and
where Z is replaced by z. That is:

The scattering amplitude is zk/2 times the sum of the values of the
corresponding renormalized amputated Feynman diagrams. (14.125)

Exercise 14.12.3 Prove that if �renorm(m2) = �′renorm(m2) = 0 then m = μ and
z = 1.

14.13 Putting It All Together

In this section we give more details on how to make predictions about scattering amplitudes
in φ3

2 theory. The situation is made simpler by the fact that no renormalization is required
(so that in particular �renorm = �), but the procedure would be exactly the same if the theory
had to be renormalized. One would use the renormalized values of the diagrams rather than
their actual values.

81 Again, this is justified by the tremendous agreement with the experiments.
82 At least in the sense of distributions. The present discussion is imprecise and only provided for global

orientation.
83 The way we will proceed to renormalization does not use cutoffs at all. Diverging integrals are made

convergent not by introducing cutoffs, but by modifying the integrand.
84 Again, this definition is motivated by (14.119), but there is no direct relationship between Z and z. We are

simply reproducing, within the setting of the normalized theory, the (presumably correct) method (14.121) to
compute scattering amplitudes, and we cross our fingers that we obtain the correct result.

85 To the best of my understanding such a justification does not exist, at least in the sense a mathematician
would understand it.
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The model depends on two un-observable parameters g and m. We will show how to
determine (order by order) these parameters as a function of two observable parameters,
and how we can then make physical predictions. One of the parameters is the physical mass
μ. The other is a scattering amplitude ρ that we define below.

We will study the scattering amplitude of two particles of momenta86 p1,p2 into two
particles of momenta p3,p4, which we may measure in the lab. Let us lighten notation by
writing δ := (2π )2δ(2)(p1+p2−p3−p4). Among many other possible sensible choices let
us define ρ such that δρ is the amplitude at small velocity for the incoming and the outgoing
particles,

p1 = p2 = p3 = p4 = p∗ := (μ,0). (14.126)

This is our second parameter.
The goal is now to relate μ,ρ,m and g. Let us consider the function

F (p2,m) :=
∫ 1

0
du
∫

d2k

(2π )2

1

(‖k‖2 − u(1− u)p2 +m2)2
, (14.127)

so that (14.104) becomes �(p2) = −g2F (p2,m) + O(g4). The relation (14.101) −μ2 +
m2 + �(μ2) = 0 becomes m2 = μ2 − g2F (μ2,m) + O(g4). Since m = μ + O(g2) we
have m2 = μ2 − g2F (μ2,μ)+O(g4) and (14.123) becomes

�(p2) = 1

−p2 + μ2 − g2F (μ2,μ)+ g2F (p2,μ)
+O(g4),

so that using L’Hospital rule (14.124) gives

z = lim
a→0

a

a + g2(F (μ2 − a,μ)− F (μ2,μ))
+O(g4)

= 1

1− g2G(μ)
+O(g4) = 1+ g2G(μ)+O(g4), (14.128)

where G(μ) := dF (x,μ)/dx
∣∣
x=μ2 . We recall that there are three different channels, see

Figure 13.10.87 We set s = (p1 + p2)2,t = (p1 − p3)2,u = (p1 − p4)2. At a given order
g2n, the scattering amplitude is given by z2 times88 the sum of the values of the amputated
diagrams with at most 2n internal vertices. Assuming that we are in the generic situation
where s,t,u �= m2, the sum of the diagrams with two internal vertices is

δ(−ig)2(−i)
∑

θ=s,t,u

1

−θ +m2 =: g2δU (s,t,u,m). (14.129)

It is more complicated to compute the sum V (s,t,u,m) of all amputated diagrams with four
internal vertices, as these are of several types, some of which are illustrated in Figure 14.7.

86 These are no longer four-momenta, since we now have only two dimensions for space.
87 Don’t be confused though that this figure pertain to φ4 theory while here we work in φ3 theory and there is

only one internal line, and the momentum flowing through this line is completely determined!
88 The exponent of z is half the number of particles, and there are four particles here.
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Figure 14.7 Several types of amputated diagrams with four internal vertices and four
external vertices.

This is nonetheless possible with a bit of patience. Taking into account that m2 = μ2 −
g2F (μ2,μ)+O(g4) we can eliminate m in the expressions U (s,t,u,m) and V (s,t,u,m) at
order O(g4) and find for the scattering amplitude an expression of the type

δ(g2A(s,t,u)+ g4B(s,t,u))+O(g6), (14.130)

where A(s,t,u) and B(s,t,u) depend on μ but do not depend on m or g. We observe that
both mass renormalization and (14.128) do contribute to the term B(s,t,u). Defining v :=
(2p∗)2, and specializing to the case (14.126), (14.130) gives

δ(g2A(v,0,0)+ g4B(v,0,0))+O(g6) = δρ. (14.131)

We solve this equation, yielding the value of g2 as a function of the observable parameters
μ and ρ:

g2 = ρ
1

A(v,0,0)
− ρ2 B(v,0,0)

A(v,0,0)3
+O(ρ3).

We then plug back in (14.130) to get our prediction for the scattering amplitude:

δ

(
ρ
A(s,t,u)

A(v,0,0)
+ ρ2A(v,0,0)B(s,t,u)− A(s,t,u)B(v,0,0)

A(v,0,0)3

)
+O(ρ3).

14.14 Conclusions

Mathematicians and physicists are unlikely to agree about how convincing the arguments
presented in this chapter are. As a mathematician I feel that whereas our theoretical work
describes convincing little pieces of structure, in the end, however, this information justifies
the correct computational procedure (14.125) only in a rather general sense. I regret that the
status of these arguments is not explained in a clearer way in textbooks of physics, and I
found the authoritative way these arguments are presented very confusing, although again
this is a cultural problem. In particular the very important point (14.122) is certainly not put
forward clearly, and I might never have figured it out myself had not J. B. Zuber explained
it to me.

Key ideas to remember:

• The Green functions 〈Ω|T ϕ(y1) . . . ϕ(yk)|Ω〉 encompass many properties of an inter-
acting quantum field.

• As a consequence of the Gell-Mann−Low “theorem”, the Green function is the sum
of the values of the diagrams with k external vertices containing no vacuum bubble.
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• The dressed propagator (which is basically the two-point Green function) is expressed
as a mixture of Feynman propagators in the Källén–Lehmann representation.

• Comparison of the Källén–Lehmann representation with the diagrammatic computa-
tion of the propagator forces the conclusion that the parameter m in the model is not
the same as the physical mass μ of the particle.

• Our naive formula to compute scattering amplitudes was wrong. One has to account
for field renormalization through the LSZ formula.

• The LSZ formula is (magically) valid for the “renormalized theory” where the dia-
grams have been made finite through a certain “renormalization procedure”.



Part IV

Renormalization

From now on integrals occurring in the computation of Feynman diagrams will be called
diagram integrals.

As we have now experienced many times, the study of diagram integrals runs into
difficulties of different natures. On the one hand, integrals may diverge because the
integrands do not decrease fast enough at infinity. On the other hand, singularities arise
as ε → 0+. The first problem is by far the most difficult. Renormalization is the art to
attack it. Several lifetimes would be required to learn all aspects of this topic, so obviously
choices have to be made. We will study in depth the first truly successful approach,
the so-called Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) method. Mathematically
speaking, its appeal is that the underlying mathematics are both elementary and extremely
ingenious.∗ Physically speaking, its appeal is that it connects very well with the physicist’s
methods (as is explained in Chapter 17). The main idea is that the diverging integrals are
tamed by replacing the integrand F by a regularized version RF with better properties.
The description of the procedure and the analysis of its consequences are the object
of Chapter 16, whereas the proof that the procedure actually succeeds is the object of
Chapters 18 and 19.

If the goal is simply to define renormalized amplitudes, there exist somewhat shorter
methods; refer to Bergère’s work [7]. However, these methods use the specific form of the
propagator, a parametric representation of this propagator, and the computations are not
intuitive. As a mathematician, I am far more comfortable with the methods presented here
which rely on far more general principles.†

Among later and more advanced approaches to renormalization many follow a differ-
ent route. They concentrate their efforts on the “Euclidean case”(where one replaces the
Fourier transform 1/(−p2+m2− iε) of the Feynman propagator by its “Euclidean version”
1/(‖p‖2 +m2)). They then prove that if one can build a Euclidean theory with sufficiently

∗ Furthermore, this approach does not seem to have been presented in book form, and the original papers are not
easy to follow.

† And my goal is not brevity but conceptual clarity.
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nice properties, one can deduce a satisfactory theory for the true propagator. This is a
difficult theorem, which we will avoid entirely by not following this path.‡ There is no
doubt however that these methods deepen the understanding of renormalization; refer to
Rivasseau’s book [70].

‡ Another problem with this approach is that building a Euclidean theory which satisfies the hypothesis of this
theorem is not a goal within easy reach. This problem is serious enough that it has not been solved for either of
the models we consider here, φ4

4 and φ3
6 .



15

Prologue: Power Counting

In the present chapter, we perform preliminary work in different directions, so the chapter
consists of several parts which are independent of each other to a large extent. The first
direction of investigation addresses the problem of the integrands that do not decrease fast
enough at infinity, trying to reach a precise understanding of the problem before attempting
to solve it. This topic occupies Sections 15.1 and 15.2. One removes the secondary problem
of the singularities as ε → 0+ by replacing the Fourier transform 1/(−p2 + m2 − iε) of
the Feynman propagator by its “Euclidean version” 1/(‖p‖2+m2).1 Diagram integrals are
then of the form

∫
dnxP (x)/Q(x), where P and Q are polynomials (with P = 1 and Q of

a very special form). We study in a rather general setting the absolute convergence of such
integrals. The basic idea is that “the degree of the denominator has to be sufficiently larger
than the degree of the numerator”. Estimating these degrees is called “power counting”
in physics, and the central result concerning such integrals is Weinberg’s power counting
theorem, Theorem 15.2.1.

In the second part of the chapter, starting with Section 15.3 we then apply these gen-
eral results to actual diagram integrals (still in the Euclidean setting). Recalling that the
Feynman rules in momentum space impose at each vertex a delta function that enforces the
conservation of four-momentum at this vertex, we study the space kerL of four-momenta
which satisfy this condition. We compute its dimension. We also develop basic concepts of
graph theory which play a fundamental role in the sequel. Finally in the last section, Section
15.7, we learn how to parameterize diagram integrals.

15.1 What Is Power Counting?

The simplest form of power counting is as follows.

Lemma 15.1.1 Consider two polynomials P and Q in the variable x with P �= 0
(and of course Q �= 0). If the integral∫ ∞

0
dx

∣∣∣∣P (x)

Q(x)

∣∣∣∣
converges, then degP − degQ < −1.

1 At first sight the Euclidean propagator looks much smaller than Feynman propagator. As we will gradually
understand, matters are more subtle however, because there is a lot of cancellation in integrals involving the
Feynman propagator. This cancellation is brought forward by Wick rotations.

473
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Proof For large x, we have P (x)/Q(x) ∼ cxdegP−degQ where c �= 0 and the integral∫∞
1 dx xk converges only for k < −1.

A complex-valued function P on Rn is called a polynomial if it is of the type

P (x) =
∑

ν1,...,νn≥0

αν1,...,νnx
ν1
1 . . . xνnn ,

where x1, . . . ,xn are the coordinates of x, where ν1, . . . ,νn are integers and where only
finitely many coefficients αν1,...,νn are not zero. A term in the summation is called a mono-
mial, and the degree of this monomial is ν1 + · · · + νn. The degree of the polynomial is the
degree of its monomial of largest degree with a non-zero coefficient. A polynomial is called
homogeneous of degree k if all the monomials that occur in it are of degree k. A polynomial
decomposes in a unique manner as a sum of homogeneous polynomials of different degrees.

If A is a linear operator from Rm → Rn and if P is a polynomial on Rn then it is rather
obvious that Q(y) := P (A(y)) is a polynomial on Rm with degQ ≤ degP . In particular
we have the following.

Exercise 15.1.2 Prove that a change of basis in Rn transforms a polynomial into a
polynomial of the same degree.

Throughout this chapter we denote by ‖x‖ the Euclidean norm of x ∈Rn. Since
|xi | ≤ ‖x‖, a polynomial of degree k satisfies an estimate

|P (x)| ≤ C(‖x‖k + 1) (15.1)

for a constant C independent of x. It is however false that |P (x)| looks like ‖x‖k whenever
‖x‖ is large, as is shown by the example P (x) = xk1 .

In the present section we need some basic concepts of measure theory, and first of all
the concept of a set of measure zero. This will be used only for the n-dimensional volume
measure on Rn, or for the uniform measure on a sphere. The reader who has not studied
measure theory should not be afraid of this, as nothing of any depth takes place here. A set
of measure zero is in a precise technical sense a “small set”. A single point is of measure
zero. One basic property of sets of measure zero is that a countable union of such sets is still
of measure zero, and in particular a countable set is of measure zero. Say we have a certain
property that depends on a point y ∈ Rk . It will happen that this property is not true for all
values of y, but that there are only a few exceptional values of y for which it fails. Saying
that this set of exceptional values is of measure zero is just a technical way to quantify that
these values are exceptional.

A property of a point x in a measure space is said to be true for almost all x if the set
of points where it fails is of measure zero. In particular a function is said to be zero almost
everywhere (a.e.) if the set of points where it is not zero is of measure zero. If a function
f ≥ 0, which may take infinite values, is of integral zero, it is zero a.e. If its integral is
finite, it is finite a.e.
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Many arguments rely on the Fubini–Tonelli theorem, one of the basic theorems of mea-
sure theory. Consider a function f on a product space of two measure spaces. Then if |f |
is integrable for the product measure, Fubini’s theorem states that∫∫

dμ(x)dν(y)f (x,y) =
∫

dμ(x)

(∫
dν(y)f (x,y)

)
, (15.2)

whereas Tonelli’s theorem states that is also the case if f ≥ 0. We will use this only when
dν is the usual measure on some Rm and when μ is either the usual measure on some Rk or
on a sphere. When f ≥ 0, among the most notable consequences of this formula:

• If the left-hand side of (15.2) is finite, then the integral
∫

dν(y)f (x,y) is finite for
almost all x.

• The left-hand side is zero if and only if the integral
∫

dν(y)f (x,y) is zero for almost
all x.

Lemma 15.1.3 If a polynomial P on Rn is not identically zero then the set of its zeros
is of measure zero.

If you are not familiar with the notion of set of measure zero, the intuitive meaning that
“the set of zeros of a non-zero polynomial is a very small set” suffices perfectly.

Proof The proof goes by induction on n. For n = 1 the result follows from the fact that
a non-zero polynomial has a finite number of zeros. For the induction step from n− 1 to n
we group the terms in P to write

P (x) =
∑
ν≥0

wν(x2, . . . ,xn)xν1,

where wν is a polynomial. Since P is not zero, then there exists ν such that wν is not zero.
By the induction hypothesis, the set where wν(x2, . . . ,xn) is zero is of measure zero. When
wν(x2, . . . ,xn) �= 0, there are only finitely many values of x1 for which P (x1,x2, . . . ,xn) =
0. This makes the set of zeros of P appear as the union of following two sets: the set of
points (x1,x2, . . . xn) where wν(x2, . . . ,xn) = 0 and a set that has a finite intersection with
every set of the type R× (x2, . . . ,xn). Both sets are of measure zero, as one sees applying
(15.2) to the indicator function of the second set.2

Corollary 15.1.4 If a homogeneous polynomial P on Rn is not identically zero, the
set of its zeros on the sphere S of radius 1 is of measure zero for the surface measure
μ on S.

Proof Since P is homogeneous, for x �= 0, P (x) = 0 if and only if P (x/‖x‖) = 0. The
result then follows from Lemma 15.1.3, computing the measure of the set of zeros of P in
polar coordinates and using (15.2).

2 Again don’t worry about the details if you have not learned measure theory, the argument should make it clear
that the set of zeros of P is really small.
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The following extends Lemma 15.1.1.

Lemma 15.1.5 Consider two polynomials P and Q on Rn with P �= 0 (and of course
Q �= 0). If the integral ∫

dnx

∣∣∣∣P (x)

Q(x)

∣∣∣∣ (15.3)

is convergent, then degP − degQ < −n.

The basic reason why this is true is that the integral
∫
‖x‖≥1 dnx‖x‖k is finite only for

k < −n. Furthermore, |P (x)| is about as large as ‖x‖degP (and hence |P (x)/Q(x)| is about
as large as ‖x‖degP−degQ) in sufficiently many directions for the conclusion to be correct.

Writing this argument in a precise way requires a little bit of work. We will use polar
coordinates. We denote by S the sphere of radius 1 of Rn and dμ its surface measure. Given
x ∈ S we denote degt P (tx) the degree of the polynomial t �→ P (tx).

Lemma 15.1.6 For all x ∈ S outside a set of μ-measure zero one has degt P (tx) =
degP .

Proof Let us write P =P0 + P1 where P0 �= 0 is homogeneous of degree degP
whereas degP1 < degP . According to Corollary 15.1.4 we have P0(x) �= 0 outside a set of
μ-measure zero. Moreover since degt P1(tx) ≤ degP1 and P0(tx) = tdegPP0(x) it holds
that degt P (tx) = degP whenever P0(x) �= 0.

Corollary 15.1.7 For all x ∈ S outside a set of μ-measure zero, for large t it holds
that ∣∣∣∣P (tx)

Q(tx)

∣∣∣∣ � Cxt
degP−degQ, (15.4)

for a number Cx > 0 independent of t .

Proof For x ∈ S outside a set of μ-measure zero one has degt P (tx) = degP and
degt Q(tx) = degQ.

Proof of Lemma 15.1.5 Passing to polar coordinates and using (15.2), the convergence of
the integral (15.3) implies the convergence of the integral∫

S

dμ(x)

(∫ ∞
0

dt tn−1
∣∣∣∣P (tx)

Q(tx)

∣∣∣∣).

Then outside a set of measure zero the inner integral is finite and (15.4) holds, so that deg
P − degQ < −n.

Now, we would like to go into the reverse direction of Lemma 15.1.5, to find conditions
on the degree of P and Q to ensure the convergence of the integral (15.3). An instructive
example is given for n = 2 by the case P (x) = 1 and Q(x) = xm1 + 1 for some m ≥ 1.
It shows that a condition of degree does not suffice, as even when m is large there is a
divergence when we try to integrate in x2, i.e. in the direction of the second vector basis.
Such a problematic direction need not be parallel to a space generated by coordinate vectors
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as shown by the example Q(x) = (x1−x2)m+1. In the rest of this section we put forward a
stronger necessary condition than that of Lemma 15.1.5. This condition will also be shown
to be sufficient for the special type of polynomials that are relevant to us. To understand
the idea of this condition, consider k ≤ n, so we may think of x ∈ Rn as a pair (y,z) with
y ∈ Rk and z ∈ Rn−k . Using (15.2) the integral (15.3) is then∫

dky

(∫
dn−kz

∣∣∣∣P (y,z)

Q(y,z)

∣∣∣∣). (15.5)

As explained above, when this integral is finite, Tonelli’s theorem implies that outside a set
of measure zero the integral ∫

dn−kz
∣∣∣∣P (y,z)

Q(y,z)

∣∣∣∣ (15.6)

is finite. Denoting by p and q the degrees of the polynomials z �→ P (y,z) and z �→ Q(y,z),
Lemma 15.1.5 shows that the convergence of the integral (15.5) imposes the condition
p−q < −(n−k). This condition does not follow from the condition degP −degQ < −n.

We have obtained a non-trivial condition by decomposing Rn = Rk ⊕Rn−k but we will
also obtain non-trivial conditions by decomposing Rn = E⊥ ⊕ E for any subspace E. We
now explore this idea, in sufficient generality for further use.

Definition 15.1.8 Consider a polynomial P on Rn and a subspace E of Rn,
E �= {0}. Then given a point f of Rn and a basis f1, . . . ,fk of E, the function
PE,f (u1, . . . ,uk) := P (f +∑j≤k ujfj ) is a polynomial in the variables u1, . . . ,uk ,
whose degree is independent of the basis f1, . . . ,fk . The maximum degree of this
polynomial as f varies is denoted by degE P .

That the degree of PE,f is independent of the choice of the basis follows from Exercise
15.1.2. One should think of degE P as “the degree of P in the direction of E”. This inter-
pretation will become transparent after we examine the case where E is given by setting
some of the coordinates equal to 0.

Exercise 15.1.9 Consider the case n = 2 and P (x) = x2
1 . Show that when E is of

dimension 1, then degE P = 2 unlessE is the subspace of equation x1 = 0. Assuming
now P (x) = (x1 − x2)2 show that when E is of dimension 1 then degE P = 2 unless
E is the subspace of equation x1 = x2.

As we are going to show, for the typical value of f , the polynomial PE,f is of degree
degE P . It is only for a few exceptional values of f that PE,f can be of degree < degE P .
Our goal in this section is the following.

Proposition 15.1.10 If the integral (15.3) is convergent then for each subspace E of
Rn, E �= {0}, we have

degE P − degE Q < − dimE. (15.7)
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Consider k,m with n = k + m, y ∈ Rk , z ∈ Rm and x = (y,z) ∈ Rk+m = Rn. Thus a
polynomial P (x) is a finite sum

P (x) =
∑

aν1,...,νk,μ1,...,μmy
ν1
1 . . . y

νk
k z

μ1
1 . . . zμmm , (15.8)

over integers ν1, . . . ,νk,μ1, . . . ,μm ≥ 0. We defined the degree degP of P as the largest
value of ν1+ · · ·+ νk +μ1+ · · ·+μm for which the corresponding coefficient is not zero.
In a similar manner we define the degree degz P in the variable z as the largest value of
μ1 + · · · + μm for which there exists ν1, . . . ,νk such that aν1,...,νk,μ1,...,μm �= 0. We may
group the terms in (15.8) as

P (x) =
∑

μ1,...,μm

Rμ1,...,μm (y)zμ1
1 . . . zμmm , (15.9)

where Rμ1,...,μm (y) are polynomials in y, and degz P is the largest value of μ1 + · · · + μm

for which the polynomial Rμ1,...,μm(y) is not identically zero.

Definition 15.1.11 Consider a polynomial P (x) as in (15.8), where x = (y,z). Then,
given y ∈ Rk we define the polynomial Py in z by Py(z) = P (y,z).

The tricky part of the notation is that here we think of y as a fixed point in Rk whereas
when we write P (x) for x = (y,z) we think of it as a variable. Again, to obtain the
polynomial Py we replace each variable quantity yi by its numerical value, and obtain a
polynomial in z only. For example, if P (y,z) = yz then P2(z) = 2z but P0(z) = 0. On the
other hand, for this polynomial, degz P = 1.

Lemma 15.1.12 We have degPy ≤ degz P and the set of y for which degPy < degz P
is of measure zero. Finally, if E = {0} × Rm = {(y,z) ∈ Rk × Rm;y = 0} then
degE P = degz P .

Proof It should be obvious that degPy ≤ degz P . Recalling (15.9), by definition of degz P
we may find μ1, . . . ,μm with μ1+· · ·+μm = degz P and the polynomial Rμ1,...,μm is not
the zero polynomial. Then outside a set of measure zero Rμ1,...,μm (y) �= 0 and then Py is
of degree μ1 + · · · + μm = degz P . To prove the last assertion, we use the canonical basis
(ek+1, . . . ,en) of E to compute degE P , so that if f = (f�)�≤n and f ′ = (f�)1≤�≤k then

PE,f (u) = P (f1, . . . ,fk,fk+1 + u1, . . . ,fn + um)

=
∑

μ1,...,μm

Rμ1,...,μm (f ′)(fk+1 + u1)μ1 . . . (fn + um)μm . (15.10)

The maximum possible degree in u as f varies is the largest possible sum μ1 + · · · + μn

for which Rμ1,...,μn is not the zero polynomial. That is degz P .

We are now ready to prove Proposition 15.1.10 in the special case where E is spanned
by a set of basis vectors.

Lemma 15.1.13 Assume that E = {0} × Rn−k . Assume that the integral (15.5) is
convergent. Then

degE P − degE Q < −(n− k) = − dimE.
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Proof By Tonelli’s theorem the integral (15.6) is convergent outside a set of y of measure
zero. We can find a value of y for which the integral (15.6) is finite, and at the same time
the polynomial z �→ P (y,z) is of degree degE P whereas the polynomial z �→ Q(y,z) is of
degree degE Q, because the set of points that fail these three conditions is of measure zero.
The result then follows from Lemma 15.1.5.

The following relation is almost obvious from the definitions, but it is important because
it allows us to reduce to the case where E is as above.

Lemma 15.1.14 Consider an invertible linear operatorA onRn, and for a polynomial
P on Rn consider the polynomial P ◦ A given by P ◦ A(x) = P (A(x)). Then for a
subspace E of Rn we have

degA(E) P = degE(P ◦ A). (15.11)

Proof of Proposition 15.1.10 Consider a linear transformation A such that A(E) is gener-
ated by basis vectors, so that it is of the type E = {0} × Rn−k . Consider the polynomials
P ′ = P ◦A−1 and Q′ = Q ◦A−1 so that the integral

∫
dnx|P ′(x)/Q′(x)| is convergent (as

is seen by change of variables) and therefore that integral
∫

dky
∫

dn−kz|P ′(y,z)/Q′(y,z)|
is convergent. It follows by Lemma 15.1.13 that degA(E) P

′ −degA(E) Q
′ < − dimA(E) =

− dimE. But degA(E) P
′ − degA(E) Q

′ = degE P − degE Q by (15.11).

Let us examine in detail a non-trivial example, which we urge the reader to fully under-
stand before proceeding further. The features of this example are quite representative of the
difficulties of the general situation to be studied in the next section. We take n = 2, and
Q(x1,x2) = (1+x2

1 )(1+x2
2 )(1+ (x1−x2)2) so that degQ = 6. Which are the polynomials

P that satisfy (15.7)? Using this condition forE = R2 means degP ≤ 3. Furthermore when
dimE = 1 condition (15.7) means degE P − degE Q < −1 i.e. degE P ≤ degE Q − 2.
This is a non-trivial condition whenE is given by the equation x1 = 0 or x2 = 0 or x1 = x2,
since in each of these cases degE Q = 4 < degQ = 6. So that we must then also have
degE P ≤ 2 for each of the three preceding choices of E. The first two cases imply that
P may only contain monomials xa1x

b
2 with a,b ≤ 2 and since degP ≤ 3 it also holds that

a+ b ≤ 3. The case where E is given by the equation x1 = x2 imposes a further condition:
that the terms of degree 3 cancel out when x2 = x1. This means that these terms of degree
3 are of the type (x2 − x1)R where R is of degree 2. But since P contains only monomials
xa1x

b
2 for a,b ≤ 2, R has to be of the type ax1x2 for a ∈ C. In summary the conditions

(15.7) are satisfied exactly when P (x1,x2) = P1(x1,x2) + a(x1 − x2)x1x2 where P1 is of
degree 2 and a ∈ C.

It turns out that for these P the integral (15.3) is convergent. The reader can convince
herself that this is not a completely trivial statement.

We end this section by gathering tools for later purposes.

Lemma 15.1.15 Consider a polynomial P on Rn and its decomposition P =∑
� P�

as a sum of homogeneous polynomials of different degrees. Then for each subspace E
of Rn and each � we have

degE P� ≤ degE P . (15.12)
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Proof We use (15.11) as well as the fact that P ◦A =∑
� P� ◦A is the decomposition of

P ◦A into a sum of homogeneous polynomials to reduce to the situation where E is of the
type E = {0} × Rn−k . The result is then obvious by Lemma 15.1.12.

Lemma 15.1.16 Consider x ∈Rk+m as a pair (y,z) ∈ Rk ×Rm. Consider a polyno-
mial

P (x) =
∑

ν1,...,νk≥0

y
ν1
1 . . . y

νk
k Sν1,...,νk (z), (15.13)

where each Sν1,...,νk is a polynomial in z. Recall that given y ∈ Rk , Py denotes the
polynomial in z given by Py(z) = P (y,z). Consider a subspace E′ of Rm and the
subspace E = {0} × E′ of Rk+m. Then it holds that

sup
y

degE′ Py = sup
ν1,...,νk

degE′ Sν1,...,νk = degE P . (15.14)

To understand this statement, observe first thatPy and Sν1,...,νk are polynomials in z ∈ Rm

so that it makes sense to consider degE′ for these polynomials whereE′ is a subspace of Rm.
On the other hand, P is a polynomial on Rk+m and it makes sense to consider degE P since
E is a subspace of Rk+m.

The first equality in (15.14) has a remarkable consequence. Let us think of Py as a
polynomial in z that depends also on the parameter y. If it is true that whatever the choice
of the parameter y it holds that degE′ Py ≤ r then it is already the case that each of the
polynomials Sν1,...,νk satisfies degE′ Sν1,...,νk ≤ r (the converse being obvious).

Proof By linear change of variables we may assume that E′ is the space given by
z1 = . . . = zm′ = 0 for some m′ ≤ m, so that E = {0} × Rm−m′ . Then according
to Lemma 15.1.12, degE P is simply the degree of P in the variables zm′+1, . . . ,zm. Since
degE′ Sν1,...,νk is the degree of Sν1,...,νk in the same variables, this should make it obvious
that supν1,...,νk

degE′ Sν1,...,νk ≤ degE P . It should also be obvious that for each y we
have degE′ Py ≤ supν1,...,νk

degE′ Sν1,...,νk . Finally, Lemma 15.1.12 asserts that simply by

avoiding a set of measure zero in Rk+m′ we may choose y ∈ Rk and z1, . . . ,zm′ such that
fixing the values of these variables the resulting polynomial in the variables zm′+1, . . . ,zm

is of degree degE P . This choice of z1, . . . ,zm′ witnesses then that degE′ Py = degE P .

15.2 Weinberg’s Power Counting Theorem

Our goal in this section is to study a “Euclidean version” of diagram integrals. Matters are
greatly clarified by adopting a sufficiently general setting as we do now. Consider some
integer n′ and for 1 ≤ i ≤ s consider linear maps Ti : Rn → Rn′ and wi ∈ Rn′ . Consider a
polynomial P (x) on Rn. We are interested in the convergence of the integral

I (w1, . . . ,ws) :=
∫

dnx
|P (x)|∏

i≤s
(∥∥Ti(x)+ wi

∥∥2 + 1
) . (15.15)
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Let us consider the polynomials

Q(x) :=
∏
i≤s

(‖Ti(x)‖2 + 1
) ; Qw(x) :=

∏
i≤s

(‖Ti(x)+ wi‖2 + 1
)
. (15.16)

Theorem 15.2.1 (Weinberg’s power counting theorem3) Recalling (15.16), given
any values of w1, . . . ,ws the integral (15.15) is absolutely convergent if and only if
for each subspace S �= {0} of Rn we have

degS P − degS Q < − dim S. (15.17)

We start the proof by a simple observation.

Lemma 15.2.2 We have

degS Q = degS Qw. (15.18)

Proof Given f ∈ Rn and a basis f1, . . . ,fk of S, the polynomial ‖Ti(f +
∑

j≤k ujfj )+
wi‖2 + 1 in the variables uj is of degree 0 if Ti(fj ) = 0 for each j ≤ k and of degree 2
otherwise, independently of the value of wi . Thus both degS Q and degS Qw equal twice
the number of indices i for which Ti(fj ) �= 0 for some j ≤ k, or equivalently for which Ti
is not identically zero on S.4

The necessity of the condition (15.17) in Weinberg’s theorem then follows from Propo-
sition 15.1.10 since degS P − degS Q = degS P − degS Qw.

We now start the preparations for the hard part of the proof of Theorem 15.2.1, that
(15.17) suffices for the convergence of the integral.

Lemma 15.2.3 If ‖wi‖ ≤ B for i ≤ s then

1∏
i≤s

(‖Ti(x)+ wi‖2 + 1
) ≤ C(B,s)∏

i≤s
(‖Ti(x)‖2 + 1

), (15.19)

where C(B,s) depends on B and s only.

Proof Using the inequality ‖x − y‖2 ≤ 2(‖x‖2 + ‖y‖2) in the second line we obtain

‖Ti(x)‖2 + 1 = ‖Ti(x)+ wi − wi‖2 + 1 (15.20)

≤ 2(‖Ti(x)+ wi‖2 + B2)+ 1

≤ (2+ 2B2)
(‖Ti(x)+ wi‖2 + 1

)
.

The proof of Theorem 15.2.1 proceeds by induction over n. Without loss of generality
we assume that Ti �= 0 for i ≤ s. According to (15.12) we may and do assume that P is
homogeneous. Given j ≤ s, we consider the set

Dj := {
x ∈ Rn ; ∀i ≤ s , ‖Tj (x)‖ ≤ ‖Ti(x)‖}. (15.21)

3 This theorem is proved in Weinberg’s paper [86] but the idea of power counting occurs in a much earlier paper
of F. Dyson, refer to [26, page 1746].

4 I will help you later to make this important argument absolutely clear in your mind.
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Since the sets Dj for j ≤ s cover Rn, using Lemma 15.2.3, it suffices to prove that for
any j , ∫

Dj

dnx
|P (x)|∏

i≤s
(‖Ti(x)‖2 + 1

) <∞. (15.22)

We fix j until the end of the proof. Making a suitable linear change of variables we may
assume that ‖Tj (x)‖2 =∑

�≤k x2
� , where k > 0 is the rank of Tj . Let m := n− k < n and

write x ∈ Rn as (y,z) ∈ Rk × Rm, so we have ‖Tj (x)‖ = ‖y‖. We have to show that∫∫
Dj

dkydmz
|P (y,z)|∏

i≤s
(‖Ti(y,z)‖2 + 1

) <∞. (15.23)

We will split the integral over y in the domains ‖y‖ ≤ 1 and ‖y‖ ≥ 1. It follows from the
next result that the integral on the first domain is finite.

Lemma 15.2.4 If ‖y‖ ≤ 1 then∫
dmz

|P (y,z)|∏
i≤s

(‖Ti(y,z)‖2 + 1
) ≤ C, (15.24)

where C is independent of y.

It turns out that the integral is finite for any value of y, but the uniform bound holds only
for ‖y‖ bounded.

Proof We write P (x) = ∑
ν1,...,νk≥0 y

ν1
1 . . . y

νk
k Sν1,...,νk (z) as in (15.13). Since ‖y‖ ≤ 1

we have |yj | ≤ 1 for j ≤ k. Since Ti(y,z) = Ti(y,0) + Ti(0,z) it suffices from Lemma
15.2.3 to prove that for each ν1, . . . ,νk∫

dmz
|Sν1,...,νk (z)|∏

i≤s
(‖Ti(0,z)‖2 + 1

) ≤ C. (15.25)

Since m < n we may appeal to the induction hypothesis. We have to show that the hypothe-
ses of Weinberg’s theorem are satisfied here. Consider a subspace E′ ⊂ Rm, and the space
E = {0} × E′ ⊂ Rn. Then dimE = dimE′. The hypothesis (15.17) implies degE P −
degE Q < − dimE. First, the last equality in (15.14) implies degE′ Sν1,...,νk ≤ degE P .
Second, denoting by Q′(z) the denominator in (15.25) we have degE′ Q

′ = degE Q = 2a
where a is the number of 1 ≤ i ≤ s such that Ti is not identically zero onE. This implies that
degE′ Sν1,...,νk − degE′ Q

′ ≤ degE P − degE Q < − dimE = − dimE′ as required.

Recalling that ‖Tj (x)‖ = ‖y‖, we have x = (y,z) ∈ Dj if and only if z ∈ D(y) :=
{z;∀i ≤ s,‖Ti(y,z)‖ ≥ ‖y‖}. Consequently to prove (15.23) and conclude the proof of
Weinberg’s theorem it suffices to show that∫

{‖y‖≥1}
dky

∫
D(y)

dmz
|P (y,z)|∏

i≤s
(‖Ti(y,z)‖2 + 1

) <∞. (15.26)
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To compute the first integral we move to polar coordinates. Let t = ‖y‖ and y′ = y/t .
In the inner integral, we make the change of variables z = tz′. Thus, if dμ is the surface
measure of the unit sphere of Rk , the previous integral is proportional to∫

t≥1
dt tn−1

∫
dμ(y′)

∫
D(y′)

dmz′
|P (ty′,tz′)|∏

i≤s
(
t2‖Ti(y′,z′)‖2 + 1

), (15.27)

where D(y′) = {
z′ ; ∀i ≤ s , ‖Ti(y′,z′)‖ ≥ 1

}
. We use that for a number B ≥ 1 and t ≥ 1

one has t2B + 1 ≥ t2(B + 1)/2 to obtain∏
i≤s

(
t2‖Ti(y′,z′)‖2 + 1

) ≥ ( t2
2

)s∏
i≤s

(‖Ti(y′,z′)‖2 + 1
)
.

Also, since we assume that P is homogeneous, we have |P (ty′,tz′)| = tdegP |P (y′,z′)|.
Combining these estimates we bound the integral (15.27) by∫ ∞

1
dt tn−1+degP−2sC1 (15.28)

where

C1 = 2s
∫

dμ(y′)
∫

dmz′
|P (y′,z′)|∏

i≤s
(‖Ti(y′,z′)‖2 + 1

) (15.29)

is finite by Lemma 15.2.4. Furthermore the integral (15.28) is finite because

n− 1+ degP − 2s = n+ degP − degQ− 1 ≤ −2.

15.3 The Fundamental Space kerL
Given a Feynman diagram, the graph of interest to us is the graph consisting of its internal
vertices and its internal edges. We denote by E the set of internal edges and by V the
set of internal vertices. This notation is used throughout the rest of the book and must be
remembered. The graph thus associated to a Feynman diagram is not naturally oriented, but
we turn it into an oriented graph by picking an arbitrary orientation for each edge. Given
an edge e we denote by eo and et its originating and terminating vertices, which we always
assume to be different. There can be many edges with the same originating and terminating
vertices. A vertex v is adjacent to an edge e if either v = eo or v = et .

The edges of a Feynman diagram carry four-momentum. The four-momenta carried by
the edges will be described by a point x of (R1,3)E , so xe represents the four-momentum
carried by the edge e. A fundamental property of the Feynman rules in momentum space
stated on page 390 is that they enforce conservation of momentum at each internal vertex:
The algebraic sum of the four-momenta (including four-momenta flowing on the external
lines) entering5 each internal vertex is zero.

5 Choice of this orientation is conventional and unimportant: If four-momentum p enters a vertex,
four-momentum −p leaves the same vertex.
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To make this formal we denote by L the map from (R1,3)E to (R1,3)V which calculates
at each vertex the amount of four-momentum that enters this vertex through the adjacent
internal edges, by the formula

L(x)v =
∑
et=v

xe −
∑
eo=v

xe. (15.30)

Going back to Feynman diagrams, let us denote by wv the amount of four-momentum
leaving the vertex v through the external lines adjacent to v. (Thus wv = 0 where there are
no such external lines.) Conservation of four-momentum at vertex v means that L(x)v −
wv = 0.

According to the Feynman rules in momentum space, the value of a Feynman diagram
is given (forgetting some numerical coefficients6) by

lim
ε→0+

∫
· · ·

∫ ∏
e∈E

d4xe

(2π )4
f (xe)

∏
v∈V

(2π )4δ(4)(L(x)v − wv), (15.31)

where f (xe) = −i/(−x2
e +m2 − iε). Here, the dependence of the propagators on ε is kept

implicit. The term δ(4)(L(x)v − wv) is simply the term δ(4)(�) where � is the algebraic
sum of the four-momenta entering the vertex v: Four-momentum L(x)v enters through the
internal lines and four-momentum −wv enters through the external lines.

Looking at (15.31) it is not difficult to guess the following fundamental fact (which we
will prove in detail later):

Diagram integrals are integrals over kerL. (15.32)

The space kerL is a finite-dimensional vector space. As such it has a translation-invariant
measure, which is entirely determined up to a multiplicative constant.7 The precise meaning
of (15.32) is that diagram integrals are integrals over kerL for such a translation-invariant
measure.

This brings forward the fundamental nature of kerL. We will later prove the following.

Theorem 15.3.1 The range of L is the space

N =
{
w = (wv)v∈V ∈ (R1,3)V ;

∑
v∈V

wv = 0
}
, (15.33)

and

dim kerL = 4( card E − cardV + 1). (15.34)

15.4 Power Counting in Feynman Diagrams

Leaving aside for the moment the proof of (15.32) and (15.34), let us denote by dμL a
suitable normalization of the translation-invariant measure on kerL. We will determine

6 That is, not writing some factors that are finite numbers.
7 In the case of the finite-dimensional space Rn, the usual volume measure is such a translation-invariant

measure.
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this normalization later, but its precise definition is irrelevant to the purpose of the present
section, which is to investigate through Weinberg’s theorem the convergence of the integral∫

dμL(x)
1∏

e∈E (‖xe + ye‖2 + 1)
, (15.35)

where ye are any points of R1,3. As we will see later in (15.46) such integrals are exactly
what we need to compute diagram integrals, except that here we have replaced the propa-
gators by their Euclidean version.

We will also introduce notions which will be essential in the next chapter in the study of
renormalization.

Definition 15.4.1 Given a subset E ′ of E , consider the subset V ′ of V consisting of the
vertices adjacent to E ′. The graph with set of edges E ′ and set of vertices V ′ is called a
subdiagram of the original Feynman diagram. The edges of E ′ are oriented the same
way as the edges of E .

As it is always understood in all our considerations that we start from a given Feynman
diagram, we will simply say “subdiagram” rather than “subdiagram of the original Feynman
diagram”. There is a largest subdiagram, with set of edges E and set of verticesV . It is simply
the original Feynman diagram to which one has removed external vertices and external
edges. This largest subdiagram will nearly always be denoted by γ .8

Definition 15.4.2 Given a subset V ′ of V , consider the subset E ′ of E consisting of all
edges between two vertices in V ′. The graph with set of vertices V ′ and set of edges
E ′ is called a subgraph of the original Feynman diagram.

A subgraph with no isolated vertices is a subdiagram (namely the subdiagram corre-
sponding to its set of edges), but a subdiagram need not be a subgraph. For a subdiagram,
there may exist a pair of vertices v1,v2 in V ′ and one edge e in E adjacent to both vertices
that does not belong to E ′.

Given a subdiagram with set E ′ of edges and set V ′ of vertices we may define a map
L′ : (R1,3)E

′ → (R1,3)V
′

as in (15.30). These maps will be of constant use. The following
fact is obvious from the definition of L, but it will also be of constant use.

Lemma 15.4.3 Consider a subdiagram with set of edges E ′ and set of vertices V ′.
Consider x = (xe)e∈E ∈ (R1,3)E and y = (ye)e∈E ′ ∈ (R1,3)E

′
. Assume that xe = 0 if

e �∈ E ′ and that ye = xe if e ∈ E ′. Then for v ∈ V ′ one has L(x)v = L′(y)v .

Definition 15.4.4 The superficial degree of divergence of a subdiagram with set of
edges E ′ is given by

d ′ := dim kerL′ − 2 card E ′. (15.36)

The reason for that name will become gradually clear. Our next goal is to prove the
following consequence of Theorem 15.2.1.

8 Please keep in mind that a subdiagram has no external lines, and that a Feynman diagram is not a subdiagram
of itself!
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Theorem 15.4.5 The integral (15.35) is convergent if and only if the superficial degree
of divergence of each subdiagram is < 0.

Proof Assume first that the superficial degree of divergence of each subdiagram is <0.
Consider a subspace S of kerL. Denote by E ′ ⊂ E the set of edges such that x �→ xe is not
identically zero on S. Then if Q(x) :=∏

e∈E (‖xe+ ye‖2+ 1) we have degS Q = 2 card E ′.
Consider the subdiagram with set of edges E ′. Consider the map �E ′ : RE → RE ′ given by
�E ′((xe)e∈E ) = (xe)e∈E ′ . Then, by definition of E ′ the map �E ′ is one to one on S, and by
Lemma 15.4.3, we have�E ′(S) ⊂ kerL′ so that dim S = dim�E ′(S) ≤ dim kerL′ and thus
dim S−degS Q ≤ dim kerL′−2 card E ′. By hypothesis we have dim kerL′−2 card E ′ < 0.
Thus we have proved (15.17) when P = 1 and by Theorem 15.2.1 the integral converges.9

Conversely assume that the integral converges. Consider a subdiagram with set of
edges E ′. Consider the subspace S of kerL ⊂ (R1,3)E defined by the equations xe ≡ 0
for e �∈ E ′, where we recall the notation x = (xe)e∈E . For y ∈ kerL′ ⊂ (R1,3)E

′
consider

x ∈ (R1,3)E defined by xe = ye if e ∈ E ′ and xe = 0 otherwise. Then by Lemma 15.4.3,
the map y �→ x is one-to-one and onto from kerL′ to S so that dim S = dim kerL′ and
since degS Q = 2 card E ′ we have dim kerL′ − 2 card E ′ < 0 by the necessary condition
of Theorem 15.2.1. That is, we have proved that the superficial degree of divergence of the
subdiagram with set of edges E ′ is < 0.

In the rest of the section we analyze the superficial degree of divergence of connected
subdiagrams in the case of φkd theory. This theory is a natural generalization of the φ4

4 theory
of (13.95). It has an interaction term :ϕk/k!: and it is assumed that space-time has dimension
d, i.e. R1,3 is replaced by R1,d−1. This might feel weird at first.10 The purpose of allowing d
space-time dimensions is to let us consider the so-called φ3

6 model, with interaction :ϕ3/3!:
in six space-time dimensions, which is a particularly instructive toy model.

Definition 15.4.6 A subdiagram is connected if it is connected as a graph, that is if
one cannot split its set of vertices in two non-empty parts such that there are no edges
linking a vertex of the first part and a vertex of the second part.

Definition 15.4.7 Two subdiagrams are disjoint if they have no vertex in common.

Observe that disjoint subdiagrams have no edges in common, but that subdiagrams with
no edges in common need not be disjoint. It should be obvious how to decompose a subdi-
agram as a union of disjoint connected subdiagrams, which are called its connected com-
ponents. The following should also be obvious.

Lemma 15.4.8 The superficial degree of divergence of a subdiagram is the sum of
the superficial degrees of divergence of its connected components.

We go back to the analysis of the superficial degree of divergence in φkd theory. We
consider a Feynman diagram, and a subdiagram with set of edges E ′ and set of vertices V ′.

9 If it is disturbs you that we apply Theorem 15.2.1 to kerL while this theorem is stated for Rn, just fix a basis
of kerL to identify this space with Rn.

10 Let us hurry to say that this has nothing to do with the extra dimensions considered by string theory.
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Let us consider the set E1 of edges of the Feynman diagram (including the external edges)
such that exactly one of their end vertices belongs to V ′. Let us consider the set E2 of edges
of the Feynman diagram such that both the end vertices belong to V ′. Thus E ′ ⊂ E2. Now,
since k lines go out of each internal vertex,

k cardV ′ = card E1 + 2 card E2,

which we rewrite as

2 card E ′ = k cardV ′ − b, (15.37)

where

b := card E1 + 2 card (E2 \ E ′). (15.38)

In picturesque terms, b counts the number of edges of the Feynman diagram, including the
external edges, which do not belong to E ′ but which spring out of one of the vertices of V ′.11

As will be apparent when we prove it, the proper version of (15.34) is that

dim kerL′ = d(card E ′ − cardV ′ + 1), (15.39)

where d is the dimension of space-time. Combining this relation with (15.37), the superficial
degree of divergence d ′ = d(card E ′ − cardV ′ + 1)− 2 card E ′ of the subdiagram satisfies

d ′ = (d − 2) card E ′ − d cardV ′ + d = (d − 2− 2d/k) card E ′ + d(1− b/k). (15.40)

When the quantity d − 2 − 2d/k is zero, something remarkable happens: The superficial
degree of divergence of a subdiagram depends only on b. This is certainly not obvious now,
but it turns out that the case d − 2 − 2d/k = 0 is the critical case for renormalization: In
this case renormalization is possible but hard (as we will experience).12 We concentrate our
efforts on this case d − 2 − 2d/k = 0. For our real world d = 4 this happens for k = 4,
but there are other integer solutions of this equation, and first of all the solution d = 6
and k = 3, the case of φ3

6 theory.13 The appeal of this case is that the smaller value of k
makes matters somehow simpler, so this case is an excellent toy model to understand the
case k = d = 4.14

Recalling that when k = 4 then b is even by (15.37), we state for further use:

Lemma 15.4.9 If d = k = 4 then b is even and

d ′ = 4(1− b/4), (15.41)

so that in particular d ′ = 0 if b = 4 and d ′ = 2 if b = 2.
If d = 6 and k = 3 then d ′ = 6(1 − b/3) so that d ′ = 0 if b = 3 and d ′ = 2 if

b = 2.

11 If two vertices of V ′ are linked by an internal edge that does not belong to E ′ this edge contributes twice to b,
one time for each of its endpoints.

12 In the case where d − 2− 2d/k < 0, e.g. in φ3
4 theory, there are only finitely many diagrams with d ′ ≥ 0 and

renormalization is easier. In the case where d − 2− 2d/k > 0 the theory is “non-renormalizable”.
13 When working in φ3

6 some minor changes have to be made, e.g. (2π )4δ(4) should be replaced by (2π )6δ(6),
etc. This is left to the reader.

14 We will not consider the case d = 3, k = 6 which is more complicated than the case d = k = 4 of main
interest.
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As a consequence of Theorem 15.4.5 and Lemma 15.4.9 we get the following.

Proposition 15.4.10 In φ3
6 theory, the Euclidean version of a diagram integral is

convergent if for each set of internal vertices containing at least two such vertices there
are at least four edges out of these vertices that lead to vertices (possibly external) not
in this set. In φ4

4 theory this is the case if for each set of internal vertices containing
at least two such vertices there are at least five edges out of these vertices that lead to
vertices not in this set.

This proposition unfortunately does not cover the case of many diagrams.
From now on “Feynman diagram” will always have to be understood as “connected

Feynman diagram”. Also, since from now on we almost always work in φ3
6 theory, where

the number of space-time dimensions is fixed to six, we change notation: We use the letter
d (rather than d ′) to denote the superficial degree of divergence of a subdiagram.

Proposition 15.4.11 In φ3
6 theory consider a Feynman diagram with at least two

external lines. Consider a subdiagram α that cannot be disconnected from the rest
of the Feynman diagram by removing a single internal edge of the Feynman diagram.
Then:
(a) The number c of edges (internal or external) of the Feynman diagram with exactly
one endpoint in α satisfies c ≥ 2.
(b) If d(α) ≥ 0 then α is a subgraph, c equal the number b of edges springing out of
a vertex of α and b = 2 or b = 3.

Proof (a) We cannot have c = 0 since the Feynman diagram is connected. Assume for
contradiction that c = 1, and denote by e the unique edge of the Feynman diagram out of
a vertex of α. First, e cannot be an internal edge because removing it would disconnect α
from the rest of the Feynman diagram, contrary to our hypothesis. Assuming now that e
is an external edge, let us prove then that the Feynman diagram consists of just α and this
external edge. For otherwise there are internal vertices that do not belong to α. But there is
no internal edge out of α to connect any of these vertices to α, so that the Feynman diagram
cannot be connected–a contradiction. But the Feynman diagram cannot consist of α and the
external edge e because we assume that it has two external edges.
(b) According to Lemma 15.4.9 we have d(α) = 6(1 − b/3) so that if d(α) ≥ 0 we have
b ≤ 3, that is there are at most three edges of the Feynman diagram springing out of vertices
of α which are not edges of α. If α is not a subgraph, there is an edge between two vertices
of α which is not an edge of α. This edge already accounts for two of the previous b ≤ 3
edges, so there is at most one other edge of the Feynman diagram with one endpoint in α.
This is impossible by (a). Thus α is a subgraph so that b = c and then 2 ≤ b ≤ 3.

Exercise 15.4.12 Let us say that a subgraph of a Feynman diagram is a biped if
two edges of the Feynman diagram (which may be external edges) have exactly one
endpoint in this subgraph, and that it is a quadruped if there are exactly four such
edges. In φ4

4 theory prove that if a subdiagram α of a connected diagram is different
from the diagram itself and has a superficial degree of divergence d(α) ≥ 0, then either
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it is a subgraph, or else it is obtained from a subgraph by deleting a single edge. More
precisely, either d(α) = 2 and α is a biped, or d(α) = 0 and either α is a quadruped
or is obtained from a biped by removing a single edge.

15.5 Proof of Theorem 15.3.1

Let us go back to the proof of Theorem 15.3.1. The reason for the factor 4 in (15.34) is
rather obvious: Since each of the four components of four-momentum gets conserved, we
have “four copies of the same situation”, a situation in which four-momentum is replaced by
a scalar that is conserved at each vertex. A typical such scalar quantity is electrical current.
This motivates us to start thinking of a graph as an electrical network, where the current is
conserved but is allowed to enter or leave the graph at each vertex. This simple idea will be
fundamental for renormalization.

We start with some definitions. Let us consider an oriented graph, with set of vertices V
and set of edges E . We say that two vertices v1 and v2 are connected by an edge e if either
v1 = eo and v2 = et or v1 = et and v2 = e0. A path is a sequence of vertices v1, . . . ,vk , all
different, such that any two consecutive vertices are connected by an edge.15 We then say
that the path connects v1 and vk .

Exercise 15.5.1 We have defined a connected graph as a graph such that the set of
vertices cannot be split into two subsets such that there is no edge linking a vertex of
the first set and a vertex of the second set. Prove that a graph is connected if and only
if any two different vertices can be connected by a path.

Observe that in a connected graph, each vertex is adjacent to at least one edge.
Let us now think of a graph as a part of an electrical network. The electrical network

consists of the graph, and of “feeding edges”, one of which is attached to each vertex of the
graph, allowing electrical current to leave or enter the graph through this vertex. To each
edge e ∈ E we attach a real number xe which we think of as describing the intensity of
the (time-independent) “electrical current” flowing through the oriented edge e. Thus the
current through each edge is described by x = (xe)e∈E ∈ RE . The current is conserved in the
network, in the sense that the algebraic sum of the current leaving each vertex through both
the edges of the graph and the feeding edge is zero. Consequently, the amount of current
leaving the graph through the feeding edge attached to the vertex v is given by

L0(x)v =
∑
et=v

xe −
∑
eo=v

xe. (15.42)

Formally this is identical to the formula (15.30). The difference is that here xe ∈ R whereas
in (15.30) xe ∈ R1,3. It is important to understand that “kerL consists of four copies of
kerL0”. To make this explicit, write xe ∈ R1,3 as xe = (xνe )0≤ν≤3. Then for x = (xe) ∈
(R1,3)E and 0 ≤ ν ≤ 3 we can define xν ∈ RE by xν = (xνe )e∈E . Then it should be obvious
that x ∈ kerL if and only if xν ∈ kerL0 for 0 ≤ ν ≤ 3.

15 Observe that we do not require that the orientation of the edges be consistent along the path.
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Exercise 15.5.2 Consider the subspace A of Rn given by the equation
∑

i≤n xi = 0.
Prove that this space is spanned by the vectors of A that have exactly two non-zero
components.

Theorem 15.3.1 is a consequence of the following.

Theorem 15.5.3 The range of the map L0 : RE → RV is the space

N0 :=
{
w = (wv)v∈V ∈ RV ;

∑
v

wv = 0
}
, (15.43)

and

dim kerL0 = card E − cardV + 1. (15.44)

Proof Since L0(x)v is the quantity of current leaving the network at vertex v, the fact
that the range of L0 is contained in N0 simply expresses conservation of current: The total
quantity of current leaving the network has to be zero. For a formal proof we use (15.42):
In the quantity

∑
v L0(x)v each term xe occurs once with positive sign for v = eo and once

with negative sign for v = et so that
∑

v L0(x)v = 0.
To prove that the range of L0 is N0 we consider two distinct vertices va and vb. Since we

assume that the graph is connected according to Exercise 15.5.1 we can find a path between
va and vb. That is we find vertices va = v1, . . . ,vk = vb and edges e1, . . . ,ek−1 such that
e� connects v� to v�+1. We construct an element x ∈ RE as follows. First, xe = 0 if e is not
an edge of the path. Next xe = 1 if e = e� is oriented from v� to v�+1 (that is eo = v� and
et = v�+1). Finally xe = −1 if e = e� is oriented from v�+1 to v�. It is straightforward to
see that L0(x)v is zero unless v = va or v = vb and that L0(x)va +L0(x)vb = 0. According
to Exercise 15.5.2 the elements of this type span N0, and this concludes the proof of (15.43).

Linear algebra tells us that dimRE = dim kerL0 + dim rangeL0 i.e. card E = dim ker
L0 + cardV − 1 and this proves (15.44).

15.6 A Side Story: Loops

A loop is a sequence of vertices v1, . . . ,vk−1,vk = v1, such that v1, . . . ,vk−1 are all differ-
ent, and a sequence of edges e1, . . . ,ek−1, which are all different,16 such that for 1 ≤ � ≤
k − 1 the edge e� connects v� and v�+1.

Consider a loop L defined by its vertices v1, . . . ,vk = v1 and the connecting edges
e1, . . . ,ek−1, so that for 1 ≤ � ≤ k − 1 the endpoints of e� are v� and v�+1, but e� may
be oriented from v� to v�+1 or the other way around. To this loop we associate the point
τ (L) ∈ RE as follows. First τ (L)e = 0 unless e is one of the edges e�. If e = e� then
τ (L)e = 1 if eo = v� and et = v�+1, that is if e� is oriented from v� to v�+1, whereas
τ (L)e = −1 if eo = v�+1 and et = v�, that is if e� is oriented from v�+1 to v�, and the loop
crosses this edge in the opposite direction of its orientation.

16 In particular when k = 2, to go back from v2 to v1 you have to use a different edge than the one you used to
go from v1 to v2.
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Definition 15.6.1 The number of independent loops of a graph is the largest inte-
ger n such that there exist loops L1, . . . ,Ln for which τ (L1), . . . ,τ (Ln) are linearly
independent.

As an example, consider the diagram with two vertices and three edges e1,e2,e3 directed
from the first vertex to the second one. Then there exist independent loops L1 and L2 with
τ (L1) = (1, − 1,0), τ (L2) = (0,1, − 1), whereas τ (L1) + τ (L2) = (1,0, − 1) := τ (L3)
for another loop L3, but the loops L1,L2,L3 are not independent. In this example, there are
two independent loops.

We will use several times the following general principle, where we recall the map L0

of (15.42).

Lemma 15.6.2 Consider a Feynman diagram with set E of internal edges, and e∗ ∈ E .
Assume that removing e∗ disconnects the Feynman diagram. Then for x ∈ kerL0 we
have xe∗ = 0.

Proof The argument is a refinement of the proof of Theorem 15.5.3. Obviously removing
e∗ decomposes the Feynman diagram in two components. Denote by V1 and V2 the sets of
vertices and by E1 and E2 the set of edges of the connected components remaining after if
e∗ has been removed. Consider the quantity

∑
v∈V1

L0(x)v . In this sum the values xe for
each e ∈ E2 never contribute because the edges of E2 are not adjacent to the vertices of V1.
The contributions of xe for e ∈ E1 cancel out because they occur two times with opposite
signs, corresponding to the two endpoints of e. But the term xe∗ occurs only once with a
± sign. Thus xe∗ = ±

∑
v∈V1

L0(x)v . Now, if x ∈ kerL0 we have L0(x)v = 0 for each v,
so that xe∗ = 0.

We note that there is another version of this lemma, with L instead of L0.

Theorem 15.6.3 (a) For each loop L we have τ (L) ∈ kerL0.
(b) The elements of the type τ (L) where L is a loop span kerL0.

In words: The number of independent loops of a graph is card E − cardV + 1 and the
independent loops span kerL0.

Proof It should be obvious that (a) holds true. We prove (b) by induction over card E .
The argument is important and will be used again. If there is only one edge, there are two
vertices and no loop and the result is proved since dim kerL0 = 0. Assume then that there
are at least two edges, and select one such edge e∗. Consider x ∈ kerL0. We have to show
that x is a combination of elements τ (L). Consider first the case where the graph obtained
after removing e∗ is not connected. It follows from Lemma 15.6.2 that xe∗ = 0, and the
conclusion follows by applying the induction hypothesis to the two components. Consider
next the case where the graph obtained upon removing e∗ is still connected. Thus there is
a path from the vertex e∗o to the vertex e∗t which does not use the edge e∗. Completing this
path by e∗ gives a loop L going through the edge e∗ and, as we have seen, τ (L) ∈ kerL0.
Since x ∈ kerL0, for t ∈ R we have x′ = x − tτ (L) ∈ kerL0. Since τ (L)e∗ �= 0 we may
find t for which x′e∗ = 0. We then apply the induction hypothesis to the graph from which
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e∗ has been removed to obtain that x′ is a linear combination of elements of the type τ (L′)
where L′ is a loop of that graph. Then x = x′ + tτ (L) is a linear combination of elements
of the type τ (L′).

The following is an immediate consequence of (b) of the previous result.

Corollary 15.6.4 Given x ∈ kerL0 any edge e such that xe �= 0 belongs to a loop.

15.7 Parameterization of Diagram Integrals

When we first met diagram integrals, we simply said that “we use the delta functions to
eliminate as many momenta xe as possible and we integrate over the remaining ones”. This
works fine in practice for small diagrams, but for theoretical considerations it pays to be
more systematic.

In the present section we make precise the idea put forward in (15.32), that diagram
integrals are integrals over kerL (where L is given by (15.30)). For this we will have a
closer look at the integrals∫

· · ·
∫ ∏

e∈E

d4xe

(2π )4F (x)
∏
v∈V

(2π )4δ(4)(L(x)v − wv), (15.45)

where F is a (sufficiently integrable17) function on (R1,3)E and w = (wv)v∈V ∈ (R1,3)V .
The following simple fact will play a fundamental part in our later constructions. We

denote by Q the orthogonal complement (kerL)⊥ of kerL (for the Euclidean structure on
(R4)E ).

Theorem 15.7.1 There exists a linear map Y from (R1,3)V to Q = (kerL)⊥ and a
normalization μL of the translation-invariant measure on kerL such that the integral
(15.45) equals

(2π )4δ(4)(∑
v∈V

wv

) ∫
dμL(x)F (x + Y(w)). (15.46)

Furthermore for e ∈ E we have Y(w)e =
∑

v∈V ye,vwv for real numbers ye,v .

Before we start the proof, we state the consequence we will actually use.

Theorem 15.7.2 For a certain normalizationμL of the translation-invariant measure
on kerL the integral∫

· · ·
∫ ∏

e∈E

d4xe

(2π )4F (x)
∏
v∈V

(2π )4δ(4)(L(x)v − wv),

17 The gist of the renormalization method that we will use in the next chapter is to modify the integrand in a way
that the integral becomes well-defined, so that this assumption is actually harmless.
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equals

(2π )4δ(4)(∑
j≤r

pj
) ∫

dμL(x)F (x + X (p)), (15.47)

whereX (p) ∈ Q ⊂ (R1,3)E is a linear function of the external momenta p = (pj )j≤r ,
which is of the type X (p)e =

∑
j≤r be,jpj for real numbers be,j .

Proof We use Theorem 15.7.1 in the case where wv is the sum of the momenta entering
the internal vertex v through external lines.

Proof of Theorem 15.7.1 It is usually fine to work with distributions at an intuitive level,
but in the present case I felt the need to go beyond that and to give a real argument. Please
accept the result if this proof puts you off. Let us set m = cardV . Given the function F , the
quantity (15.45) has to be understood as a distribution �(w) such that for a test function ξ
on (R1,3)V we have∫

d4mw

(2π )4m ξ (w)�(w) =
∫
· · ·

∫ ∏
e∈E

d4xe

(2π )4F (x)ξ (L(x)). (15.48)

The integral on the right is for the translation-invariant measure
∏

e∈E (d4xe/(2π )4) on
(R1,3)E = kerL⊕Q. This measure is the image of dμ′L⊗dμQ under the map (z,q) �→ z+q
for certain translation-invariant measures dμ′L and dμQ on kerL and Q. Therefore∫

· · ·
∫ ∏

e∈E

d4xe

(2π )4F (x)ξ (L(x)) =
∫∫

dμ′L(z)dμQ(q)F (z+ q)ξ (L(z+ q)).

Using Fubini’s theorem, and since z ∈ kerL so that L(z) = 0, we obtain∫
· · ·

∫ ∏
e∈E

d4xe

(2π )4F (x)ξ (L(x)) =
∫

dμQ(q)G(q)ξ (L(q)), (15.49)

where

G(q) =
∫

dμ′L(z)F (z+ q). (15.50)

Since Q is the orthogonal complement of kerL, the restriction of L to Q is one-to-one
from Q to the range N of L, where N is given by (15.33). This map therefore has an inverse
W : N → Q and Q = W(N ). There is a translation-invariant measure dμN on N whose
image under W is dμQ. Making the change of variable q = W(u) and combining (15.48)
to (15.50) yields ∫

d4mw

(2π )4m ξ (w)�(w) =
∫

dμN (u)G(W(u))ξ (u). (15.51)

On the other hand, it should be clear from the definition (15.33) of N that for all test
functions η one has∫

d4mw

(2π )4m (2π )4δ(4)(∑
v∈V

wv

)
η(w) =

∫
dμ′N (u)η(u), (15.52)
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where dμ′N is a translation-invariant measure onN , which is therefore proportional to dμN ,
i.e. of the type CdμN . Thus we may rewrite (15.52) as∫

dμN (u)η(u) = 1

C

∫
d4mw

(2π )4m (2π )4δ(4)(∑
v∈V

wv

)
η(w).

Applying this identity to the function η(w) = G(W(P (w)))ξ (w) where P is a linear
projection of (R(1,3))V onto N (so that P (u) = u for u ∈ N ), we obtain the identity∫

dμN (u)G(W(u))ξ (u) = 1

C

∫
d4mw

(2π )4m (2π )4δ(4)(∑
v∈V

wv

)
G(W(P (w)))ξ (w).

Therefore the left-hand side of (15.51) equals the right-hand side of the above identity. This
is true for each test function ξ , and therefore, as distributions, we have

�(w) = 1

C
(2π )4δ(4)(∑

v∈V
wv

)
G(W(P (w))).

Recalling (15.50), this proves (15.46) with Y(w) := W(P (w)) ∈ Q and dμL = C−1dμ′L.
It remains only to prove that Y(w)e =

∑
v∈V ye,vwv for real numbers ye,v , but we let the

reader convince herself of this.18

Exercise 15.7.3 Prove (15.52) in complete detail.

15.8 Parameterization of Diagram Integrals by Loops

In this section we describe the traditional parameterization of diagram integrals by loops,
which we will systematically use in our examples. One advantage of this parameterization
is that built into it is the important information that “kerL consists of four independent
copies of kerL0” (where L0 is defined in (15.42)), so it will be convenient to also use the
parameterization for arguments related to Lorentz invariance, which precisely rely on this
feature of kerL. This section is a continuation of Section 15.6. Given a loop L we have
constructed an element τ (L) = (τ (L)e)e∈E ∈ kerL0 ⊂ RE . Given k ∈ R1,3, the element
kτ (L) := (kτ (L)e)e∈E ∈ kerL ⊂ (R1,3)E . If there exist n independent loops L1, . . . ,Ln,
given k = (ki)i≤n where ki ∈ R1,3 the elements

x(k) :=
∑
i≤n

kiτ (Li) (15.53)

belong to kerL. If n is the largest possible number of independent loops every element of
kerL is of this type since the independent loops span kerL.19 One unimportant but amusing
feature here is that the components of x(k) are of the form

∑
i≤n ηiki where ηi ∈ {−1,0,1}.

The integral in (15.47) takes the form

18 The reason being “that we do four copies of the same thing for the indices ν = 0,1,2,3”.
19 This is for φ4

4 theory, the case of φ3
6 theory requires obvious modifications.
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∫
dμL(x)F (x + χ (p)) = C

∫
· · ·

∫ ∏
i≤n

d4ki

(2π )4
F (x(k)+ χ (p)) (15.54)

for a certain constant C. Another amusing but unimportant feature is that if we construct
the independent loops as in the proof of Theorem 15.6.3, the constant C in (15.54) equals 1.
As we will not use this fact, we leave it as a challenge to the reader.

Key ideas to remember:

• Computation of a diagram integral reduces to the computation of an integral of a
rational function over a linear space.

• The absolute convergence of this integral is decided by looking at the degree of this
rational function on the linear space and its subspaces.

• It is rare that the integral converges.
• The φ4

4 and φ3
6 theories are critical cases to understand renormalization.
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The Bogoliubov–Parasiuk–Hepp–Zimmermann Scheme

The Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ) scheme, which we study here in
Zimmermann’s version, allows us to consistently assign a definite value to a diagram inte-
gral with any number of loops. It is mathematically very clean. The divergent integrals are
tamed not by introducing cutoffs, but by modifying the integrand itself, very much in the
spirit of Section 13.21: One introduces “compensating terms” to remove the divergences.

While using no mathematics beyond calculus, the BPHZ scheme is an admirable achieve-
ment. Its relevance to the practice of Quantum Field Theory is however marginal. For real-
world calculations what matters are diagram integrals with a few loops,1 often only one
or two loops, and physicists have long known how to renormalize these. It is however one
thing to renormalize a diagram with a few loops, and quite another to conceive a scheme
that will work in the complicated configurations possible in large diagrams. Still, no major
physics textbook comes even close to explaining in detail the main features of the BPHZ
scheme.2 Even more conceptually oriented textbooks such as that of Duncan [24] refer
the reader to the original papers. Worse, many specialized physics textbooks dealing with
renormalization adopt the same attitude, see e.g. [1, 15].3

Mathematicians have developed renormalization theory along different lines, see e.g.
[25].4 There are several good reasons however to focus here on the BPHZ scheme: This
scheme is historically the first, it is the most elementary, and it connects clearly to the
counter-term method used in practice in physics. Reading the original papers is quite chal-
lenging, and specialized books such as those of Manoukian [52] and Rivasseau [70] require
a serious investment, so the beauties of the method are not easily accessible. To remedy
this, in the present chapter we describe the method in complete detail, not attempting yet to
prove that it succeeds. In our discussion preceding Lemma 15.4.9, in our class of φkd theories
we identified the important cases of the φ4

4 and φ3
6 theories, and we will cover both cases.

In our formulas we assume that we are in four space-time dimensions, e.g. by writing the

1 One of the triumphs of Quantum Electrodynamics is the computation of the “anomalous magnetic moment of
the electron”. This has been computed up to four loop diagrams. The properly cyclopean undertaking of
computing all diagrams up to five loops is underway.

2 Here is a quote from Zee’s book [93, page 179]: “If you demand rigor, you should consult the many field
theory tomes on renormalization theory, and I do mean tomes, in which such arcane topics as overlapping
divergences and Zimmerman’s forest formula are discussed in exhaustive and exhausting detail”.

3 A partial reason for this is that the conceptual understanding of renormalization has been deepened by the
ideas of the “renormalization group”, a more advanced topic which we cannot cover here.

4 Their work seems largely ignored by mainstream physics.
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delta functions as δ(4). The reader will have no difficulty making the necessary changes in
the case of φ3

6 theory (replacing everywhere four-vectors by “six-vectors”, since there are
six space-time dimensions in φ3

6 theory). The reason for considering φ3
6 theory is that it is

marginally simpler than φ4
4 theory, and all of our figures and examples pertain to this case.5

The relationship between the BPHZ method and the traditional counter-term method of
physics is the object of a separate chapter, Chapter 17. A completely rigorous self-contained
proof of the validity of the BPHZ scheme for both φ4

4 and φ3
6 theories (which are cases where

the difficulty of renormalization is rather generic) will be given in Chapters 18 and 19.

16.1 Overall Approach

Our goal is to assign a value to each Feynman diagram. Let us recall that in Theorem 15.7.2
we have reduced the computation of the value of a Feynman diagram to the computation of
an integral of the type

I (p,ε) =
∫

dμL(x)F (x + X (p)) (16.1)

where (keeping the dependence in ε implicit) F (x) is the product F (x) = ∏
e∈E f (xe) =∏

e∈E (−i/(−x2
e +m2 − iε)), where dμL is a certain normalization of the volume measure

on kerL and where X (p) ∈ (R1,3)E is a linear function of the external momenta of a
special type: X (p)e =

∑
j≤r be,jpj . For reasons which will soon become clear, we will

call throughout the chapter the computation of an integral such as (16.1) integrating over
the internal degrees of freedom.

Throughout the chapter (for reasons that will gradually become clear) we use the form
(13.66) of the Fourier transform of the propagator. To lighten notation, for a four-vector k
we write

Wε(k) = −(1+ iε)(k0)2 + k2, (16.2)

so that now6

f (xe) = −i

Wε(xe)+m2 , (16.3)

and the function F on (R1,3)E is given by

F (x) =
∏
e∈E

f (xe) =
∏
e∈E

−i

(Wε(xe)+m2)
. (16.4)

• The problem: the integral (16.1) diverges.
• The solution: replace the integrand F by a better-behaved regularized version RF .

Much of the present chapter is devoted to building the tools required to construct RF .
In Chapters 18 and 19 we will prove the following.

5 The φ3
6 theory is non-physical, as it can be shown that the Hamiltonian is not bounded below, but this is

irrelevant for our purposes.
6 As explained on page 391.
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Theorem 16.1.1 The integral
∫

dμL(x)RF (x + X (p)) is absolutely convergent. As
ε→ 0 its value converges in distribution to a well-defined Lorentz invariant distribu-
tion in the external momenta p of the Feynman diagram.7

Thus replacing F by RF has removed the dreaded divergences, and we can now (at least
in the sense of distributions) assign a value to each Feynman diagram.

To state this result in plain terms, using the notation of (15.45) and denoting by S the
symmetry factor we now compute the value of Feynman diagrams as8

lim
ε→0+

1

S

∫
· · ·

∫ ∏
e∈E

d4xe

(2π )4RF (x)
∏
v∈V

(2π )4δ(4)(L(x)v − wv).

Theorem 16.1.1 is far from trivial, so that the reader should not expect to have much
intuition about why it should be true even after studying the present chapter. The physical
content of this result is explored in Section 16.8.

A clean aspect of Zimmermann’s version of the BPHZ method9 is that the essential
structure is not so much the specific form (16.3) of the Fourier transform of the propagator
as the structure of the integrand F (x) =∏

e∈E f (xe) as a product, and for such a function F
we quite generally define its regularized version RF .10 This regularized version is obtained
by adding compensating terms designed to cancel the subdivergences. These compensating
terms are defined through a kind of Taylor operation which is described in the next section.
The function RF is given by an explicit formula, Zimmermann’s forest formula, as a (rather
large) sum of F and compensating terms. The construction is not really complicated. The
difficult part is to show that it succeeds, but we will worry about this in later chapters.

16.2 Simple Examples

Before we go into general considerations, let us treat two simple examples by hand. We
start with a diagram of the simplest type, one single loop, labeled (a) in Figure 16.1. Here
we have to integrate over q ∈ R1,3 and p1,p2 are parameters. Using (15.54) with C = 1
the value of this diagram is given by the integral∫

d4q

(2π )4 f (q + (p1 + p2)/2)f (q − (p1 + p2)/2)f (q − (p2 − p1)/2),

7 I try not to be pedantic, but in view of Theorem 15.7.2 one should really prove that the quantity
δ(
∑

j≤r pj )I (p,ε) converges in distributions. This time I am not cheating, the proof is the same.
8 Fine points about distributions are swept under the rug.
9 This approach is complicated by a number of technical considerations related to the need of specifying a

“routing”of a flow through a network. The need for these considerations is however an artifact of the
historical path through which the ideas developed, and we bypass it to a very large extent. This is just a matter
of presentation, we have no real improvement to offer to Zimmermann’s magnificent proof.

10 The shortest approach to the BPHZ theorem probably uses, as in Bergère’s paper [7] and subsequent work, a
representation of the propagator as an integral over a parameter, introducing then a space of parameters in
which one performs the required constructions.
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Figure 16.1 Simple diagrams.

which unfortunately diverges. To make it converge a natural procedure is to subtract a term
f (q)3 from the integrand.11 For reasons which will become clear in the next section, a better
choice is to subtract a term f (q − (p2−p1)/6)3, or, in other words, to add a compensating
term −f (q − (p2 − p1)/6)3.

Let us then look at diagram (b) of Figure 16.1, which has two loops. The value of
this diagram is given by (using notation which looks strange now but will be explained
fully later) ∫∫

d4q

(2π )4

d4�

(2π )4
F (x(k)+ X (p)), (16.5)

where

F (x(k)+ X (p)) := f (q + p/2)f (−q + p/2)f (q − �)f (−�+ p/2)f (�+ p/2)f (�).
(16.6)

The first problem is that the integral in q does not exist at a fixed value of �. (This phe-
nomenon is called a subdivergence.) This problem does not occur because of the whole
diagram, but only from the part of the diagram (c) of Figure 16.1. This part of the diagram
is identical to the diagram (a) of the figure for the choice p = p1+p2 and � = (p2−p1)/2.
This means that we have already solved the problem of this divergence. It is removed by
adding to the integrand F (x(k)+X (p)) the compensating term (using again notation which
will be explained later)

F1F (x(k)+ X (p)) := −f (q − �/3)3f (−�+ p/2)f (�+ p/2)f (�). (16.7)

11 It is not entirely obvious that after this subtraction the integral converges, but this will be taken care of in full
detail later. In the examples analyzed here, we stay at the heuristic level: Our compensating terms remove the
obvious power-counting obstacles to convergence.
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The integrand becomes

W (q,�,p) := F (x(k)+ X (p))+ F1F (x(k)+ X (p)) (16.8)

= (f (q + p/2)f (−q + p/2)f (q − �)− f (q − �/3)3)f (−�+ p/2)f (�+ p/2)f (�).

The integral in q now exists, but the integral in q and � does not exist. The remedy to this
will then be to replace W (q,�,p) by W (q,�,p) −W (q,�,0) (that is, in the language to be
developed, to apply the operator (1− T 0)).

We will return to this diagram on page 507 after we develop our general procedure which
will in that case coincide with what we just did.

The general procedure implements in a very clever way the basic idea to remove the
divergence recursively from small diagrams to larger and larger diagrams. This aspect is
somewhat hidden in the present (possibly too clever) formulation. It is apparent first in
Lemma 16.5.3. We will control the divergence of a diagram in two steps:

• In the first step we remove the divergences which already occur in smaller diagrams
(adding the compensating term (16.8) in the previous example).

• In the second step we remove the part of the divergence which is left in the whole
diagram (replacing W (q,�,p) by W (q,�,p)−W (q,�,0) in the previous example).

16.3 Canonical Flow and the Taylor Operation

Historically, the fundamental idea is as follows. Assume that you assign a momentum to
each internal line of a Feynman diagram. Consider a function of these momenta (such as
the integrand relevant to the computation of the value of this diagram). Then this function
can be seen in a canonical way as depending on the momentum flow through the external
lines and on other “internal degrees of freedom”. We may then compute Taylor polynomials
of the function seen as a function of this flow through the external lines, and subtract these
from the function to improve its integrability.

This idea is at the root of the entire process. In the present section we formulate it in
a more abstract manner.12 Let us consider generally an oriented graph with set of edges
E and set of vertices V and recall the map L : (R1,3)E → (R1,3)V of (15.30) given by
L(x)v =

∑
et=v xe −

∑
eo=v xe. We decompose

(R1,3)E = kerL⊕Q, (16.9)

where Q = (kerL)⊥. Here the orthogonality is for the ordinary Euclidean dot product of
(R1,3)E .13 We then define two orthogonal projections I and T by

x = I(x)+ T (x) ; I(x) ∈ kerL , T (x) ∈ Q = ker I. (16.10)

We will use countless times the fact that x = I(x) if and only if L(x) = 0.

12 This very simple shift of perspective produces considerable technical simplification.
13 If you wonder what the Euclidean dot product is doing here, you may use instead the dot product given

(x,y) =∑
e∈E (xe,ye) where (xe,ye) is the Lorentz dot product. This gives the same result, a fact which is

due to the special structure of “having four independent copies of RE ”.
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The idea is that I(x) represents the “internal degrees of freedom of x” whereas T (x)
represents the “part of x which is determined by how much momentum leaves each vertex”.
Let us explain this. Since kerL ∩Q = {0}, L is one-to-one from Q onto its range

N =
{
w ∈ (R1,3)V ;

∑
v∈V

wv = 0
}
,

and there is a linear map W from N to Q which is the inverse of L. Thus, given a point
w ∈ N ⊂ (R1.3)V , which describes how much four-momentum leaves the network at each
node there is a unique y = W(w) ∈ Q ⊂ (R1,3)E such that L(y) = w. This point y
represents a flow through the network: ye tells you how much momentum flows through
the edge e. We will call y the canonical flow of w through the network.14 (We already used
this map in the proof of Theorem 15.7.2, at the end of the previous chapter.)

Since y = W(L(y)) for y ∈ Q and since T (x) ∈ Q we have T (x) = W(LT (x)).
Since L(T (x)) = L(x) we obtain T (x) = W(L(x)). That is, T (x) is the canonical flow
corresponding to L(x), which is determined by L(x), that is by how much momentum enters
each vertex. The remainder x − T (x) = I(x) is in a sense not influenced by how much
momentum enters each vertex, so we might say that it represents the internal degrees of
freedom of x, with the word “internal” referring to the fact that nothing external to the
network (such as a four-momentum leaving through the external lines) is involved.

Let us go back to Feynman diagrams, where E is the set of internal edges of the diagram,
and where four-momentum is allowed to leave or enter only through the external edges.
In Figure 16.2 we have represented the canonical flow for a number of simple Feynman
diagrams in φ3 theory. The external edges and how much flow enters through them are also
represented in these diagrams.

The map x �→ (I(x),T (x)) provides a natural identification between (R1,3)E and
(kerL) × Q. The inverse map is given by (z,q) �→ z + q. In this manner a function F on
(R1,3)E may be considered as a function of z ∈ kerL and q ∈ Q. This idea is fundamental
for the entire construction. In particular it will allow us as we explain next to consider
derivatives with respect to q.

Let us recall that given a function H (q) on Rn, its dth-order Taylor polynomial at zero
is the polynomial in q given by

H (0)+
∑

1≤k≤d

1

k!

∑
i1,...,ik≤n

qi1 . . . qik
∂kH

∂qi1 . . . ∂qik

∣∣
q=0. (16.11)

More generally given a function H on a finite-dimensional space we may define its
dth-order polynomial by picking a basis and using the previous definition (16.11). It is
straightforward that the resulting polynomial does not depend on the basis we used for the
computation.

Consider then again a function F on (R1,3)E . Given z ∈ kerL we may consider the
function q �→ F (z + q) defined on Q, and as we just explained we may compute the
Taylor polynomial of order d at q = 0 of this function. This Taylor polynomial is a function

14 This idea will be used only for illustration, and is no longer part of the proof. It is exactly Zimmermann’s
routing procedure.
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Figure 16.2 Canonical flows.

Gd (z,q). We define the function T dF on (R1,3)E by T dF (x) = Gd (I(x),T (x)). The case
d = 0 is of particular interest: Then G0(z,q) = F (z) and thus

T 0F (x) = F (I(x)). (16.12)

To describe the procedure in words:

Definition 16.3.1 Given a function F on (R1,3)E and an integer d ≥ 0 the function
T dF on (R1,3)E is the order-d Taylor polynomial of F at q = 0 when F is considered
as a function of z ∈ kerL and q ∈ Q, z being fixed. If d < 0 we define T dF = 0.

As an illustration, consider the case of the “eye” graph consisting of two vertices num-
bered 1 and 2 and two edges joining them oriented from vertex 1 to vertex 2. These edges
carry four-momenta k1 and k2 and for x = (k1,k2) we have L(x) = (−k1 − k2,k1 + k2) so
that I(x) = ((k1 − k2)/2,(−k1 + k2)/2) and T (x) = ((k1 + k2)/2,(k1 + k2)/2). Therefore

T 0F (k1,k2) = F ((k1 − k2)/2,(−k1 + k2)/2). (16.13)

Exercise 16.3.2 Consider the graph consisting of three vertices labeled 1, 2, 3
and three edges oriented from vertex 1 to vertex 2, from vertex 2 to vertex 3, from
vertex 3 to vertex 1. These carry momenta k1,2,k2,3,k3,1. For x = (k1,2,k2,3,k3,1)
show that L(x) = (k3,1 − k1,2,k1,2 − k2,3,k2,3 − k3,1) and that I(x) = (k̄,k̄,k̄) where
3k̄ = k1,2 + k2,3 + k3,1.

Exercise 16.3.3 Given a Lorentz transformation A for x = (xe)e∈E ∈ (R1,3)E write
Ax = (Axe)e∈E . Given a function F on (R1,3)E denote by FA the function given by
FA(x) = F (Ax). Prove that T d (FA) = (T dF )A.
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16.4 Subdiagrams

Let us review some definitions now. Consider a given Feynman diagram with a set of internal
edges E and a set of internal vertices V . Given a subset E ′ of E , we define a subdiagram (of
the original Feynman diagram) as the graph with a set of edges E ′, and a set of vertices V ′,
the set of vertices adjacent to at least one edge of E ′. When furthermore every edge of E
with endpoints in V ′ belongs to E ′, we say that the subdiagram is a subgraph.

Subdiagrams will be denoted by lowercase Greek letters. A subdiagram α has a set of
edges Eα and a set of vertices Vα . The largest subdiagram (with Eγ = E and hence Vγ = V)
will almost always be denoted by γ . Thus γ is simply obtained from the Feynman diagram
by removing the external lines.

Definition 16.4.1 For two subdiagrams α, β we say that β ⊂ α if every edge of β is
an edge of α. Then every vertex of β is a vertex of α.

Note that however even if every vertex of β is a vertex of α this need not imply that
β ⊂ α.

We recall Definition 15.4.6 of connected subdiagrams and Definition 15.4.7 of disjoint
subdiagrams. We also recall from Definition 14.9.5 that a Feynman diagram is called
1-particle irreducible or 1-PI if it cannot be split into two disjoint diagrams by removing
one internal line, a concept related to the following definition.

Definition 16.4.2 A connected subdiagram is proper if it cannot be split into two
disjoint graphs by removing a single edge.15

Figure 16.3 illustrates some improper subdiagrams. The following simple lemma
explains to a large extent the relevance of proper subdiagrams.

Lemma 16.4.3 A connected subdiagram is proper if and only if each of its edges
belongs to a loop of this subdiagram.

Proof It should be obvious that if each edge belongs to a loop the subdiagram is proper.
The converse follows by an argument familiar since the proof of Theorem 15.5.3: If, upon
removing an edge the subdiagram is still connected, this edge belongs to a loop of the
subdiagram.

Recalling Definition 14.9.5, the following result is obvious enough to deserve no proof.

Figure 16.3 Some improper diagrams.

15 In particular, there is no dangling edge that has a vertex not belonging to any other edge.
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Lemma 16.4.4 A Feynman diagram is 1-PI if and only if the subdiagram γ consisting
of its internal vertices and its internal edges is proper.

16.5 Forests

If a Feynman diagram is not 1-PI, one can split it into two disconnected components by
removing an internal line; this internal line is not part of any loop and the integral in (16.1)
basically breaks into the product of two smaller integrals. We will detail more this process
later, but this argument brings forward the fact that the critical case is the case where the
Feynman diagram is 1-PI. We now fix such a diagram, and we denote by γ the proper
subdiagram formed by its internal edges and its internal vertices. We recall from (15.36)
that the superficial degree of divergence d(α) of a subdiagram α is defined as

d(α) := dim kerLα − 2 card (Eα). (16.14)

We recall also that in Lemma 15.4.9 we have computed the superficial degree of divergence
as a function of the number b of edges which stem out of a vertex of α, but are not edges of
α: d(α) = 4− b in φ4

4 theory and d(α) = 6− 2b in φ3
6 theory.

Definition 16.5.1 A forest F16 is a collection of proper connected subdiagrams
(of the original Feynman diagram) such that γ ∈ F which has the following property:
Any two subdiagrams α, β belonging to F are either disjoint17 or one contains
the other.

Following the common terminology on ordered sets, it would perhaps be more appropri-
ate to call F a tree rather than a forest.18

Definition 16.5.2 A renormalization set is a proper connected subdiagram α with a
superficial degree of divergence d(α) ≥ 0.

According to Theorem 15.4.5, it is not surprising that these diagrams are troublesome.
It will turn out as we will soon show that only the forests such that all the subdiagrams

they contain are renormalization sets (except maybe γ itself) will actually contribute to
renormalization. It is however technically convenient to consider all possible forests. In φ3

6
theory, renormalization sets are subgraphs, as shown in Proposition 15.4.11.19 Furthermore
these are exactly the subgraphs such that at most three edges stem out of the vertices of the
subgraph but are not edges of this subgraph.20 All our figures will illustrate this situation.
The subgraphs will be described by the list of their vertices. On the other hand, subdiagrams
seem really necessary to study φ4

4 theory, see Section 17.8.

16 It is understood here that this is a forest on the Feynman diagram we have fixed.
17 Recalling that disjoint subgraphs have no vertices in common.
18 Thus γ is the root of the tree. The traditional name “forest” arises from the fact that in the traditional

presentation it is not required that γ ∈ F , and then F is actually a forest. We do not change the name because
we do not want to give the false impression that we bring anything else than a slight variation of the usual
presentation of these ideas.

19 As we will explain in the next section, Feynman diagrams with zero or one external lines will be renormalized
to zero, so that the only case of interest here is when the diagram has at least two external lines.

20 Since the whole diagram is proper, there are either two or three edges stemming out of the vertices of the
subgraph which are not edges of the subgraph.
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Figure 16.4 Maximal subdiagrams.

The following lemma is almost trivial but is fundamental.

Lemma 16.5.3 Consider a forest F and α ∈ F . Then there exists a (possibly empty)
collection of subdiagrams α1, . . . ,αñ of F strictly contained in α such that every
element of F strictly contained in α is contained in one of the elements αj .

Definition 16.5.4 We will call α1, . . . ,αñ the maximal subdiagrams of α.21

The situation is described in Figure 16.4. To prove that all elements of a forest have a
certain property, one may then proceed inductively, from the “small elements” to the “larger
ones”. The lemma also brings forward the recursive nature of the notion of forest. For each
i ≤ ñ, Fi := {α ∈ F;α ⊂ αi} is a forest of αi and these forests entirely determine F .

Proof of Lemma 16.5.3 If α does not strictly contain an element of F there is nothing
to prove. Otherwise consider β strictly contained in α. The family of elements τ of F
containing β but strictly contained in α is totally ordered by the definition of a forest,
because any two elements of this family have a non-empty intersection. Therefore this
family has a largest element. Thus every β strictly contained in α is contained in an element
that is maximal with respect to this property. These maximal elementsα1, . . . ,αñ are disjoint
by the definition of a forest.

The following even more obvious result should be noted.

Lemma 16.5.5 If one of the vertices v adjacent to an edge of a subdiagram β of a
forest F is adjacent to an edge of α ∈ F then α ⊂ β or β ⊂ α.

Proof By definition of a subdiagram v is a vertex of β and a vertex of α. By definition
of a forest if two different subdiagrams of a forest have a vertex in common one contains
the other.

Let us now give some examples. Consider the Feynman diagram labeled (e) in
Figure 16.2 (and forget about the canonical flow represented on this figure). To find
the renormalization sets we look for subgraphs such that at most three edges stem out of

21 These depend also on the forest F , which is understood as being given.
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the vertices of the subgraph but are not edges of this subgraph. We find22 γ1 = {1,2,
3,4,5}, γ2 = {2,3,4,5,6} and γ = {1,2,3,4,5,6}. The forests consisting only of renor-
malization sets (which are the only ones which will contribute to renormalization) are
{γ },{γ1,γ },{γ2,γ }. Consider next the Feynman diagram labeled (d) in Figure 16.2. The
renormalization sets are γ1 = {1,2,4},γ2 = {3,5,6}, γ3 = {1,2,3,4,5}, γ4 = {2,3,4,5,6}
and γ .

Exercise 16.5.6 List all the possible forests consisting only of renormalization sets
in the previous example. Hint: There are eight of them.

16.6 Renormalizing the Integrand: The Forest Formula

Given a 1-PI Feynman diagram, with integrand23 F , we will define a “renormalized inte-
grand” RF for which the integral will be convergent. We assume that the diagram has at
least two external legs. Diagrams with no external leg (vacuum bubbles) or one external leg
(tadpoles) are assigned the value zero in the renormalized theory. The Feynman diagram is
considered to be fixed throughout the whole discussion.

We consider the subdiagram γ consisting of the internal vertices and the internal edges
of the Feynman diagram. Let E = Eγ be the set of edges of γ . The integrand F of (16.1) is
given by (16.4). For the time being however, it only matters that F (x) = ∏

e∈E f (xe), and
the specific choice of f is irrelevant. We show how to regularize a function of this type. The
main construction will associate toF and each forestF24 a functionFF . The regularization
RF is the function on (R1,3)E given by the formula

RF = (1− T d(γ ))
∑

F forest

FF, (16.15)

where the sum is over all possible forests F , and where d(γ ) is given by (16.14). At some
intuitive level one may think of the quantity

∑
F FF as the sum ofF and of terms canceling

all the subdivergences of F . The operator (1 − T d(γ )) then cancels the overall divergence,
recalling that we have defined T d(γ ) = 0 if d(γ ) < 0.25 You should keep this interpretation
in mind as you read the proofs, but we will be able to justify it in full generality only
much later.26 On the other hand, on simple concrete cases such as those we treat below,
this interpretation is easy to justify, and there is probably no better way to get a feeling for
the method than working out these examples and exercises in complete detail with pencil
and paper.

Let us perform the main construction: For each forest F we construct the function FF
by the following procedure. For a subdiagram α which belongs to F we define recursively
two functions Fα and F ′α on (R1,3)Eα , where Eα is the set of edges of α.27 First consider the
case where α contains no other element of F . Then for x ∈ (R1,3)Eα we set

22 We recall that in our examples we describe subgraphs by the list of their vertices.
23 The integrand depends on the parameter ε > 0 but the dependence is kept implicit.
24 Here “forest” means on the Feynman diagram we have fixed in this section.
25 This corresponds to the two steps described at the end of Section 16.2.
26 However this picture is not literally true in some subtle cases, see Exercise 16.6.3.
27 These functions do not depend only on α but also on which subdiagrams of α belong to F . This stays implicit

in the notation.
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Fα(x) =
∏
e∈Eα

f (xe). (16.16)

Recalling Definition 16.3.1 we then set

F ′α := −T d(α)Fα, (16.17)

and we recall that this means F ′α = 0 when d(α) < 0. Next we define recursively Fα and
F ′α for each diagram α ∈ F . Assume, following Lemma 16.5.3, that α contains maximal
disjoint elements α1, . . . ,αñ of F , for which the functions F ′αi have already been defined.

For each i ≤ ñ consider the natural projection Ui from (R1,3)Eα onto (R1,3)Eαi (so that
Ui(x)e = xe for e ∈ Eαi ). We then define

Fα(x) =
∏
i≤ñ

F ′αi (Ui(x))
∏

f (xe), (16.18)

where the last product is over the edges e of α which are not edges of any of the αi . We then
define F ′α by the formula (16.17). We have now defined Fα and F ′α for each α ∈ F , and in
particular for α = γ . We then define

FF := Fγ, (16.19)

It should be obvious that when F = {γ } we have FF = F .

Lemma 16.6.1 If for some β ∈ F,β ⊂ α,β �= α one has d(β) < 0 then Fα = 0.

Proof If Fα �≡ 0 it follows from (16.17) and (16.18) that for each maximal subdiagram αi

one has Fαi �≡ 0 and d(αi) ≥ 0, and the result is then obvious by recursion.

As a consequence, FF �= 0 only for the forests F such that all the subdiagrams different
from γ they contain are renormalization sets.

Let us now turn to examples to illustrate the previous procedure. In most of these
examples we parameterize kerL as is traditional, using the formula (15.53) x = x(k) =∑

i≤n kiτ (Li) where ki are six-vectors,28 and Li are independent loops.29 However we will
lighten notation by using names such as q and � for k1 and k2.

Let us start with the one-loop diagram (a) of Figure 16.1. The only renormalization set
is γ and the formula (16.15) boils down to RF = (1 − T 0)F . To compute T 0F we use
(16.12) and the result of Exercise 16.3.2. One has to be careful about the orientation of
the edges, i.e. k1,2 = −q + (p1 + p2)/2,k2,3 = −q + (p2 − p1)/2,k3,1 = −q − (p1 +
p2)/2 so that k̄ := (k1,2 + k2,3 + k3,1)/3 = −q + (p2 − p1)/6. Since f (�) = f (−�) we
obtain then that −T 0F is just the compensating term −f (q − (p2 − p1)/6)3 we used in
Section 16.2.

Our next example is the diagram (b) of Figure 16.1, a typical Feynman diagram.30 We
will show that our general procedure, when specialized to that diagram, performs exactly

28 Since in our examples we work in φ3
6 theory.

29 In one of our exercises we will use a different parameterization.
30 The flow through the external lines in the diagram is not the most general possible, but suffices to illustrate

our purpose.
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the manipulations of Section 16.2. The quantity F (x(k) + X (p)) is given by the formula
(16.6). When f is the propagator (16.3), even the integral over q of (16.6) diverges.

There are two renormalization sets, namely {1,2,3} and γ . One of these sets contains the
other, a situation which is called nested divergences. There are two forests consisting only
of renormalization sets, namely {γ } and F1 = {{1,2,3},γ }. Therefore∑

F forest

FF (x(k)+ X (p)) = F (x(k)+ X (p))+ F1F (x(k)+ X (p)). (16.20)

Furthermore, using the computation we did for the one-loop diagram, we obtain that
F1F (x(k) + X (p)) = −f (q − �/3)3f (p/2 − �)f (p/2 + �)f (�) as in (16.7). Thus the
quantity (16.20) is exactly the quantity (16.8). At this stage we have removed the divergence
in q,31 but the integral in q and � is still divergent. To tame it we apply the operator 1− T 0,
as we did in Section 16.2.

It is far less obvious how to handle the diagram of Figure 16.5. This is because the two
diverging subdiagrams of vertices {1,2,3} and {2,3,4} are neither disjoint nor nested. This
situation is known as overlapping divergences. The historical approach to renormalization
was to “recursively remove the divergences from the small diagrams to the large diagrams”
and the existence of overlapping divergences is a major obstacle to that program. It took
considerable efforts to pass it,32 although now that the solution has been found, the difficulty
is no longer apparent.

In the next two exercises f is the propagator (16.3).

Exercise 16.6.2 Consider the diagram of Figure 16.5.
(a) Prove that if F1 is the forest consisting of γ and of the diagram α = {1,2,3} then

F1F = −f (q − �/3)3f (p/2+ �)f (p/2− �).
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Figure 16.5 Overlapping divergences.

31 We are not claiming here and at other places that the integral in q is convergent, as there are some other
details that will be taken care of later. We are claiming that we have lowered the degree in q in such a way that
crude power-counting is now consistent with the convergence of this integral.

32 A brief entertaining account of the history of renormalization is given in Folland’s book [31, Section 7.12].
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(b) Considering now the forest F2 consisting of γ and of β = {2,3,4}. Prove that the
quantity

F + F1F + F2F

no longer exhibits subdivergences in the diagrams {1,2,3} and {2,3,4}, in the sense
that the integrals in each of q and � “converge” when the other variable is fixed (see
footnote 30).

Exercise 16.6.3 Consider the diagram of Figure 16.6 where kerL has been parame-
terized in a way that should help you compute the canonical flows.33

(a) If the forest F1 consists of γ and α = {1,2,3,4,5} show that

F1F = −f (r)f (−r)f (r/2+ q)2f (−r/2− q)2f (�+ p/2)f (−�+ p/2).

(b) If the forest F2 consists of γ and β = {2,3,4,5,6} prove that the quantity

F + F1F + F2F

still has divergences in the diagram {1,2,3,4,5} (in the sense that the integral in � and
q does not converge), due to the term F1F .34

Exercise 16.6.4 Try to convince yourself of the following important fact. Once one
has understood that the good way to improve the integrability of a function F is to
add the compensating term −T d (γ )F , the most natural way to apply this method
recursively to improve the subdivergences is to consider the forest formula. (But this
heuristic argument is powerless to explain why the forest formula will actually remove
all divergences.)

33 Note however that this is not a standard parameterization using loops!
34 This example does not compromise the validity of the BPHZ scheme since there are other compensating

terms. It shows however how subtle matters are.
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16.7 Diagrams That Need Not Be 1-PI

We will stay very informal as there is no difficulty whatsoever. It is explained in the exercise
below a general diagram “can be decomposed into its 1-PI components”. Each loop in
the diagram is entirely contained in one of the 1-PI components, so that the space kerL
naturally decomposes as product of spaces corresponding to the different components. and
the integrand F (x + χj (p)) of (16.1) is naturally a product B(p)

∏
j Fj (x + χj (p)) where

the Fj correspond to each of the 1-PI components, and where B(p) takes into account the
propagators on the internal lines linking the 1-PI components. The regularized version of
this integrand is simply given by replacing each Fj by its regularized version RFj . As we
will discover later, in the proof Theorem 16.1.1 there are two steps. First proving that the
regularized versionRF ofF is absolutely integrable, and second proving that the integral of
the regularized version is of the type (18.13), and both assertions for the RF are immediate
consequences of the similar assertions for the components RFj . For this reason we will
care only about 1-PI diagrams in the sequel.

Exercise 16.7.1 Given a Feynman diagram consider the collection of internal edges
such that removing one of these edges disconnects the diagram. Prove that each con-
nected component of the remaining diagram is 1-PI. Prove that the diagram obtained
by contracting each of these components to a single vertex is a tree (i.e. does not
contain any loop).

16.8 Interpretation

We have completed our description of the construction of RF . According to Theorem
16.1.1, given two parameters m and g the BPHZ method assigns values to all Feynman
diagrams. Thus it assigns values to all scattering amplitudes, in the form of a formal series
in the coupling constant g. We have not proved that the corresponding series converges. This
convergence is in fact very unlikely because of the combinatorial explosion of the number
of diagrams involved in computations at high orders of perturbation theory. Nonetheless we
may hope that computing the first few terms of the expansion will provide useful numerical
values, and we have actually built a physical theory.

One should then perform consistency checks that this theory makes physical sense. It is
not even apparent at this stage that our theory is Lorentz invariant,35 because the expression
(16.2) is not Lorentz invariant. Fortunately, Lorentz invariance is recovered when one takes
the limit ε → 0+ as will be shown in Theorem 18.2.1. Lorentz invariance is not sufficient
for the theory to make physical sense. For example, the S-matrix should be unitary. This
imposes very non-trivial relations. Indeed, writing as is customary S = 1+ iM the relation
S†S = 1 implies i(M −M†)+M†M = 0, and we should check this relation on matrix
elements. It does not seem that this consistency property has been directly checked for the
BPHZ method, but it is known through other approaches, see [28].

35 In the sense that it predicts scattering amplitudes that transform appropriately under Lorentz transformations.
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Let us modestly admit that after following such a convoluted path as we did, any argument
that our theory describes reality is rather flimsy. However, the predictions of the theory can
be tested against experiments.36 Our φ3

6 theory depends on two parameters, m and g, and
models a certain self-interacting massive particle. As argued in Chapter 14, the parameter
m is not the physical mass μ of the particle. In a similar manner the parameter g controls
the strength of the interaction but does not really describe a particular scattering amplitude.
These parameters μ and g have to be determined as described in Section 14.13 (which the
reader should review now) to fit the actual physical mass and certain scattering amplitudes.
The procedure is identical to the procedure described in Section 14.13, except that we now
assign to each diagram the values provided by the BPHZ method. Let us briefly describe
again how to proceed. First, as in Section 14.13 we have a relation of the type m2 = μ2 −
Fg2 + O(g4) for a certain number F . We can use this relation to eliminate m in favor of
the measurable quantity μ in any expression we wish.

Let us study the scattering amplitude of two particles of four-momenta p1,p2 into two
particles of four-momenta p3,p4. At order O(g6), with the notation of Section 14.13 the
scattering amplitude calculated by the BPHZ method is of the form

(g2A(s,t,u)+ g4B(s,t,u))δ +O(g6), (16.21)

where δ = (2π )6δ(6)(p1 + p2 − p3 − p4). The quantities A(s,t,u) and B(s,t,u) depend on
the parameter m, which may be eliminated in favor of m.37 To describe the strength of the
interaction, we may then choose (among other reasonable choices) as a measurable quantity
the number ρlab such that at a small velocity p1 = p2 = p3 = p4 = p∗ := (μ,0,0,0,0,0)
the scattering amplitude is given by ρlabδ, so that, setting v = 4(p∗)2 = 4μ2 we obtain the
relation

ρlab = g2A(v,0,0)+ g4B(v,0,0)+O(g6)

which we invert to find a relation g2 = Cρlab +Dρ2
lab +O(ρ3

lab). We may use this relation
to express our scattering predictions as functions of the measurable quantity ρlab.

In φ4
4 theory the situation is pretty similar. We have to relate the parameters m and g

of the theory to quantities measured in the lab. For mass renormalization, this is the same
procedure as in φ6

3 theory. At order O(g4) the scattering amplitudes predicted by the BPHZ
method are of the type (−ig + g2A(s,t,u) + g3B(s,t,u))δ, where δ = (2π )4δ(p1 + p2 −
p3 − p4). A reasonable choice of a measurable quantity is the quantity glab such that at a
small velocity the scattering amplitude is iglabδ. We then have the relation −iglab = ig +
g2A(4μ2,0,0)+ g3B(4μ2,0,0) which we invert to obtain a relation of the type g = glab +
g2

labC+g3
labD+O(g4

lab) and express the scattering amplitudes as functions of the measurable
quantity glab.

36 In the present case they cannot since this theory is a toy theory. In the somewhat similar case of Quantum
Electrodynamics, the theory of interactions of electrons and photons, the predictions obtained by similar
methods are in excellent agreement with measurements.

37 Please note that this influences the value of B!
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16.9 Specificity of the Parameterization

The values assigned by the BPHZ method to a diagram have special properties, which we
put forward and explain now. A diagram with two external lines will be called a biped.

Proposition 16.9.1 In φ3
6 theory the value assigned by the BPHZ method to a diagram

with three external legs, more than one internal vertex, and flows p1,p2,p3 through
these legs is of the type (2π )6δ(6)(p1 + p2 + p3)W (p1,p2,p3) where the function
W satisfies W (0,0,0) = 0. The value assigned by this method to a biped and flows
p1,p2 through these legs is of the type (2π )6δ(6)(p1 + p2)G(p2

1) where the function
G satisfies G(0) = G′(0) = 0.

In particular the function �(p2) = �(p,0) (where as defined in (14.95), −i�(p,ε) is
the sum of the functions G over all bipeds) is such that �(0) = �′(0) = 0. One may
wonder why such a condition should hold. The short answer is that this condition is not a
law of Nature, but a consequence of the way the theory is parameterized. This issue will be
discussed in detail in the next chapter. We will show that in some sense there is a unique
way to parameterize the theory in a way that this condition holds, and this parameterization
is just built into the BPHZ construction.

As we have not yet proved Theorem 16.1.1, we cannot really prove Proposition 16.9.1
but we can explain why it is true (pretending that in Theorem 16.1.1 the limit exists as
a function). The value of a diagram (not taking into account the delta function factor) is
given by the limit as ε → 0 of the integral

∫
dμL(x)RF (x + X (p)), where RF = (1 −

T d(γ ))
∑

F forest FF . For the present purpose the important part of the formula is the factor
(1 − T d(γ )), together with the fact that X (p) ∈ Q. For diagrams with three external legs
we have d(γ ) = 0 and the operator 1 − T 0 ensures that integrand RF (x + X (p)) is zero
for p = 0, so this is also the case for the limit of the integral as ε → 0. This applies to all
diagrams with three external legs except of course the diagram with a single internal vertex,
which does not need to be renormalized. For diagrams with two external legs, d(γ ) = 2
and the operator 1− T 2 ensures that all the partial derivatives of order ≤2 of the integrand
RF (x + X (p)) in the components of p are zero at p = 0. We will eventually show38

that in the limit ε → 0 the value of the integral
∫

dμL(x)RF (x + X (p)) depends only
on p2 where p is the four-momentum entering the biped, so it is a function G(p2) with
G(0) = G′(0) = 0, and this concludes our supporting argument for Proposition 16.9.1.

The BPHZ method is of little practical value. The integrands produced by this method
are very complicated. They are linear combinations of many simpler terms. In practice it is
convenient to be able to assign a value to each individual simpler term. The method currently
the most used for this purpose is called dimensional regularization.39 The principle is as
follows: Facing a divergent integral in, say, four dimensions, we try to formally guess what
should be the value of the integral if it were computed in d dimensions where d is a complex
number. The integral is then expressed as a function of d with a singularity at d = 4.
Removing this singularity produces an actual value for d = 4. Clever implementations of

38 By proving Lorentz invariance, see Theorem 18.2.1.
39 It is applied after Wick rotation, so that the diverging integrands are invariant under rotations of R1,3.
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the method have all kinds of desirable properties, and in particular respect the symmetries
of the theory. This procedure is described in every recent textbook. As I find it very hard to
become wiser by looking at the resulting formulas, I see no need to write any of them here.

Key ideas to remember:

• The BPHZ method tames divergent integrals without using cutoffs, by replacing the
integrand by a better-behaved one.

• The better-behaved integrand is given by the explicit forest formula.
• The regularized values of diagram integrals thus constructed allow physical predic-

tions.



17

Counter-terms

The BPHZ method, as we presented it, is the crowning achievement of a long line of
research. The historical approach to taming divergences, the counter-term method, is
markedly different. The counter-term method is taught in nearly all physics textbooks.
In most textbooks only the case of diagrams with one (and rarely two) loops is ever
explained and the general procedure is sketched in the foggiest terms. In this chapter we
describe the counter-term method and how it relates to the conceptually much clearer BPHZ
method. The counter-term method was historically developed to “remove the divergences”
in theories such as the φ3

6 theory. Besides removing divergences, the counter-term method
“re-parameterizes the theory”. The removal of the divergences and the re-parameterization
of the theory are intertwined but independent stories. Matters will be far clearer if we
separate these stories. Up to Section 17.4 we will focus on the aspect “re-parameterizing
the theory” in the simpler setting of φ3

2 theory, where there are no divergences. Please
understand however that much of what we will do will be motivated later in the chapter
when we will reinterpret the BPHZ method through the counter-term method starting with
Section 17.5. The point of these early sections, (besides providing an introduction to the
counter-term method in a very simple setting) is to explain some properties of the values
attached to certain diagrams by the BPHZ method (see (17.7)). These properties are by no
means a law of nature, but a consequence of the way the theory is parameterized. The main
story starts in Section 17.7, where we start to use the counter-term method in φ3

6 theory for
its true purpose: canceling the divergences. We will heuristically deduce the possibility of
canceling these divergences with counter-terms from the fact that the BPHZ method works
(which we will prove in the last two chapters).

In order to avoid disappointment, it might be useful to set realistic expectations about
what you may or may not learn in this chapter. You should understand (at a high level)
the counter-term method by which physicists compute scattering amplitudes, and why it
yields finite, meaningful results. You will see a very striking use of the correcting term
zk/2 in the formula (14.125). You might understand better the meaning of the expression
“field renormalization”, first at the level of combinatorics, then more deeply in Section
17.9. But your understanding may not progress on some of the key issues. The whole
approach to computing scattering amplitudes can be seen as an algorithm to compute these
amplitudes, validated by its tremendous agreement with experimental data. The somewhat
stretched efforts we made in Chapter 14 to justify parts of this algorithm may however

514
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overall not become much clearer after you finish the present chapter. This author is not
solely responsible for this unpleasant state of affairs. The efforts of Chapter 14 are indeed
stretched, and gaping holes remain in any theoretical attempt to justify the success of the
procedure. The specific place where these efforts utterly fail is in providing any reason
whatsoever that the renormalized value of the diagrams should contain information about
the physical world.1

17.1 What Is the Counter-term Method?

The purpose of a physical theory such as the φ3
2 theory is to provide a framework in which

one can predict the results of experiments. This theory T (m,g) depends on the two param-
eters m and g. It allows one to compute the value of scattering amplitudes as the sum of the
values of the corresponding Feynman diagrams. This sum is defined order by order in g, or,
if one prefers, as a formal series in g.

Suppose now that for some reason we are not satisfied with our theory T (m,g). Rather
than starting from scratch elsewhere we try to salvage what we already have and to deform
our theory into a new one. We want to keep the same setting: The value of a scattering
amplitude will be the sum of the values of certain Feynman diagrams. We will extend our
class of Feynman diagrams by allowing a new type,(, of vertices. These are always adjacent
to three lines and are often called counter-term vertices.2 A Feynman diagram containing
only ordinary vertices will be called an ordinary Feynman diagram.

Given a parameter D the Feynman rules for the Feynman diagrams in the deformed
theory are as follows:3

• Assign to each ordinary vertex a factor −ig.
• Assign to each counter-term vertex ( a factor −iD.
• Assign to each internal line with momentum p the factor −i/(−p2 +m2 − iε).
• Take the product of the previous quantities.
• Enforce conservation of momentum at each vertex by multiplying the previous prod-

uct by a product of suitable delta functions, one for each vertex.
• Integrate the product over the internal degrees of freedom of the diagram.4

• Take the limit ε→ 0+.
• Divide if necessary by the corresponding symmetry factor.

In φ3
2 theory, all diagrams are convergent, so there is no problem when integrating over

the internal degrees of freedom. There are however still potential problems as ε → 0+:
singularities may develop. These problems are a nuisance rather than the main issue, so for
clarity we will pretend that they do not exist.

1 The author certainly stands by his qualification that the mathematical value of that step is strictly nil,
irrespective of the fact that this is downplayed to a properly remarkable extent in the main textbooks.

2 In short we will say that counter-term vertices have three legs.
3 You may review for comparison the Feynman rules on momentum state space on page 390 at this point.
4 If you forgot what this means go to page 497.
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In this manner we obtain a theory T (m,g,D). The coefficient D itself will be a
formal series in g, with no constant term. In the theory T (m,g,D) we are able to compute
scattering amplitudes at any order in perturbation theory i.e. as formal series in g.
When D = 0 any Feynman diagram containing a counter-term vertex has value zero,
so T (m,g,0) is just our original theory T (m,g). It is for D �= 0 that we get a deformation
of our original theory.

17.2 A Very Simple Case: Coupling Constant Renormalization

In the theory T (m,g) the sum of the values of the diagrams with three external lines
and flows p1,p2,p3 through these lines is of the type5 (−i)(2π )2δ(2)(p1 + p2 + p3)W
(p1,p2,p3,m,g) for a certain formal series W (p1,p2,p3,m,g)= g+ ∑

k≥3 g
kWk

(p1,p2,p3,m).6 We will now consider a deformed theory T (m,g,D) where the counter-term
is a formal series in g,7

D =
∑
k≥3

gkDk . (17.1)

Thus the deformed theory depends on m,g, and D̄ := (Dk)k≥3, and we denote this
deformed theory by T (m,g,D̄). In the deformed theory the sum of the values of the
diagrams (including of course the diagrams with counter-term vertices) with three external
lines and flows p1,p2,p3 through these lines is of the type (−i)(2π )2δ(2)(p1 + p2 + p3)W
(p1,p2,p3,m,g,D̄) for a certain formal series W (p1,p2,p3,m,g,D̄) = g +∑

k≥3 g
kWk

(p1,p2,p3,m,D̄). Suppose now that we fancy deforming our theory (i.e. determining D̄) to
enforce the conditions

∀k ≥ 3 ; Wk(0,0,0,m,D̄) = 0. (17.2)

Why you would ever want to do such a thing will only be apparent later. (In short it is because
a similar condition holds in the BPHZ scheme.)

The goal of the present section is to show how we can deform the theory to enforce
(17.2). As we will show in detail, the deformed theory is in fact the same theory as the
original theory (i.e. it predicts the same scattering amplitudes) but it is “parameterized in
a different way”. The implication of the result is that the condition (17.2) has nothing to
do with a deep characteristic of the model, but rather can be obtained “for free” using a
suitable parameterization of this model. This situation is a kind of toy situation for the case
of real interest to us, the BPHZ scheme, for which the corresponding result is described in
Section 17.4.

In order to achieve (17.2) we will construct the coefficients Dk recursively. To start the
construction we compute a3 := W3(0,0,0,m,(0,0, . . .)) = W3(0,0,0,m).

5 Please do not forget that we work in two space-time dimensions here so that our δ(2) functions came with
factors (2π )2.

6 There is no term in g2 because in φ3
2 theory a diagram with three external lines has either a single vertex or at

least three vertices.
7 There is no term in g2 for the reason explained in the previous footnote.
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We then consider a parameter D3 and we compute the sum of the values of the
diagrams with three external legs and flows p1,p2,p3 through these legs in the theory
T (m,g,(D3,0, . . .)). First there is the contribution

(−i)(2π )2δ(2)(p1 + p2 + p3)W (p1,p2,p3,m,g)

of the diagrams which do not contain a vertex (. The diagram with a single internal vertex
( brings a contribution

(−i)(2π )2δ(2)(p1 + p2 + p3)g3D3 +O(g4). (17.3)

Then there is the contribution of all the other diagrams. These contain at least a vertex (
and contribute at a higher order in g. Identification of the coefficients of g3 yields

W3(0,0,0,m,(D3,0, . . .)) = W3(0,0,0,m)+D3 = a3 +D3.

Thus if we fix the value D3 = −a3 we ensure that W3(0,0,0,m,(D3,0, . . .)) = 0. We are
on our way!

We then compute the value of a4 := W4(0,0,0,m,(D3,0, . . .)). We observe the crucial
relations

W3(0,0,0,m,(D3,D4,0, . . .)) = W3(0,0,0,m,(D3,0, . . .)) = 0

W4(0,0,0,m,(D3,D4,0, . . .)) = a4 +D4.

The first relation is obvious: The new term g4D4 in D does not contribute at order three.
The second relation is because the only new contribution at order four brought by the new
term g4D4 in D is again provided by the diagram with the single vertex(. We then choose
D4 appropriately (i.e. D4 = −a4) to ensure that

W4(0,0,0,m,(D3,D4,0, . . .)) = 0.

We then continue in this manner to recursively construct the terms Dk .
The interesting part of the story is that (as we detail below) the deformed theory is

simply the theory T (m,g′) where g′ = g + D = g +∑
k≥3 g

kDk , in the sense that both
theories predict the same scattering amplitudes. In other words, the deformation does not
change the theory, it only changes the parameters we use to describe it. In more detail,
the theory predicts scattering amplitudes through the formula (14.125). When we compute
a scattering amplitude in the theory T (m,g′), it is a formal series in g′, with coefficients
depending on m (and on the momenta of the scattered particles). When substituting in this
series the value g′ := g +∑

k≥3 g
kDk = g + D one obtains a formal series in g which

is the same formal series as provided by the deformed theory T (m,g,D̄). To prove this
it suffices to prove the following claim: The sum of the values of the Feynman diagrams
with given external lines and given flows through these lines in the theory T (m,g′) (seen
as a formal series in g through the relation g′ = g + D) is the same as the sum of the
values of the Feynman diagrams in the deformed theory with the same external lines and
the same flows through these lines. To see this, let us say that two diagrams are equivalent
if we can pass from one to the other by replacing certain ordinary vertices by counter-term
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Figure 17.1 Four equivalent diagrams.

vertices ( and certain counter-term vertices by ordinary vertices. So, for diagrams with n
vertices their equivalence class contains 2n diagrams (see Figure 17.1). To prove our claim
we sum the values of the diagrams within a single equivalence class. We remember that an
ordinary vertex contributes a factor−ig and a counter-term vertex a factor−iD. We then use
the identity

∑
I⊂{1,...,n}(−ig)card I (−iD)n−card I = (−i(g + D))n to prove our claim. This

argument however ignores the issue of symmetry factors. Issues with symmetry factors are
our own doing to a large extent, because we insisted on working with Feynman diagrams
rather than with contraction diagrams. This is particularly clear in the present case. If, rather
than using Feynman diagrams we keep the numbering of the vertices as part of the diagram
(and in the last step of the computation of the value of a diagram we divide by n! rather
than by the symmetry factor) the issue disappears. We will let the reader convince herself
of this. Unfortunately arguments using contraction diagrams get bogged down in notational
problems and in order not to obscure the simple and beautiful ideas of the present chapter
the issues of symmetry factors will almost be swept under the rug.

17.3 Mass and Field Renormalization: Diagrammatics

In this section we learn how to deform our basic φ3
2 theory a different way than in

Section 17.1, by adding another type of counter-term vertex ⊗ with two legs and special
properties. (An example of such a diagram is the one labeled (a) in Figure 17.2.) As we
will argue toward the end of the section, this deformation amounts in a certain way to
“renormalizing the field” (although our deformed theory is defined only at the level of
diagrams). The goal is similar to that of Section 17.2. Our deformed theory will be in fact
the same theory as the original theory (but parameterized in a different way) and will satisfy
a new condition of the same nature as (17.2). This condition is described in Proposition
17.3.1. The conclusion is the same as in the previous section: The conditions of Proposition
17.3.1 do not express a deep characteristic of the model, but “came for free” using a suitable
parameterization of this model.

From now on a Feynman diagram with two external lines is called a biped. We recall the
expression (14.96) of the Fourier transform of the dressed propagator:

�̂(p) = lim
ε→0+

1

−p2 +m2 − iε +�(p,ε)
, (14.96)

where we recall now how the quantity −i�(p,ε) is defined (in (14.95)). For each biped
W with flows p1,p2 through the external lines we compute the quantity JW (p1,p2,ε) by
the rules on page 442. These rules are exactly the rules by which one computes the value
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of a Feynman diagram, except that we do not take the limit ε → 0+. It then happens that
JW (p1,p2,ε) is of the form (2π )2δ(2)(p1 + p2)KW (p1,ε) for a certain quantity KW (p1,ε),
see (14.88). The quantity −i�(p,ε) is the sum of the quantities KW (p,ε) over all possible
bipeds.

Assuming that there is no problem with the limit ε→ 0+ let us define the reduced value
of the biped W with flow p through its external lines8 as being the quantity KW (p,0). The
quantity −i�(p2) := −i�(p,0) is then the sum of the reduced values KW (p,0) of all 1-PI
bipeds with a flow of p through the external legs. It is a formal series in g, and the first
non-zero term is of the type ag2.

Our new fancy is to deform the theory (using a new method of deformation) in order to
obtain in the deformed theory the conditions �(m2) = �′(m2) = 0. These conditions are
called on-shell renormalization conditions. As we remember from Section 14.10, the point
of the condition �(m2) = 0 is that then the parameter m represents the physical mass of
the particle. The point of the condition �′(m2) = 0 is that the corrective term z of (14.124)
occurring in the LSZ formula (14.125) equals 1,9 see Exercise 14.12.3.

We deform the theory by introducing counter-term vertices ⊗. These vertices have two
legs. The really new feature is that the factor assigned to each counter-term vertex⊗ depends
on the momentum flow p ∈ R1,1 through its legs. This factor involves two parameters
B = ∑

�≥2 g
�B� and C = ∑

�≥2 g
�C� which are again formal series in g. The Feynman

rules in the deformed theory are as follows.

• Assign to each ordinary vertex a factor −ig.
• Assign to each counter-term vertex ⊗ a factor −i(p2B + C) where p is the four-

momentum flowing through the legs of the vertex.10

• Assign to each internal line with momentum p the factor −i/(−p2 +m2 − iε).
• Take the product of the previous quantities.
• Enforce conservation of momentum at each vertex.
• Integrate over the internal degrees of freedom of the diagram and take the limit

ε→ 0+.
• Divide if necessary by the corresponding symmetry factor.

The next goal is to define in the deformed theory the quantities �d (p2) which corre-
spond to the quantities �(p2) in the original theory. For this we follow exactly the same
procedure as in the original theory, except that now we have more diagrams to consider. Let
us repeat the procedure for clarity. For a biped W we compute the quantity JW,d (p1,p2,ε)
by the Feynman rules above, except that we do not take the limit ε → 0+. The function
JW,d (p1,p2,ε) turns out to be of the type (2π )2δ(2)(p1+p2)KW (p1,ε). Assuming again that
there are no problems in the limit ε → 0+, in the deformed theory we define the reduced
value of a biped with flow p through the external lines as being KW,d (p,0). We denote by

8 This means that flow p enters through one of the external lines and then exits through the other external line.
It does not matter through which of the external lines the flow p enters since KW (p,0) = KW (−p,0).

9 We could just as well enforce other conditions, such as the condition �(0) = �′(0) = 0, which occurs in the
BPHZ scheme.

10 The factor p2 is a new feature here, related to the fact that this has to do with “field renormalization”. The
value of p is defined only up to a sign, as it depends on how one orients the legs of the vertex, but the value of
p2 is well defined.
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�d (p2) the quantity �(p2) computed in the deformed theory, that is, the quantity−i�d (p2)
is the sum of the reduced valuesKW,d (p,0) over all bipedsW including those which contain
⊗ vertices.

Let us now turn to the problem of enforcing the condition �d (m2) = �′d (m2) = 0 in the
deformed theory. This is done order by order in g just as in the preceding section. There
the key of the construction was (17.3). Here the key of the construction is that (according
to the Feynman rules) the biped with a single vertex ⊗ has a reduced value −i(p2B + C),
so that in the deformed theory it contributes to �d (p2) as p2B + C (this is the key point).
In particular the contribution at order k + 1 of this quantity is gk+1(p2Bk+1 + Ck+1). To
describe the procedure by which the coefficients B�,C� are recursively determined, let us
denote by �1 the value of the function �d when it is computed in the original theory, and for
k ≥ 2 by �k its value when it is computed in the deformed theory whereB =∑

2≤�≤k g�B�
and C = ∑

2≤�≤k g�C�. We then recursively enforce for k ≥ 1 the conditions �k(m2) =
O(gk+1) and �′k(m2) = O(gk+1). These automatically hold for k = 1. Assuming that for
some k ≥ 1 we have already achieved that �k(m2) = O(gk+1) = dgk+1 + O(gk+2) and
�′k(m2) = O(gk+1) = bgk+1 +O(gk+2), we then simply determine Bk+1 and Ck+1 by the
equations m2Bk+1 +Ck+1 + d = 0 and Bk+1 + b = 0 to obtain that �k+1(m2) = O(gk+2)
and�′k+1(m2) = O(gk+2). Let us note for further use that since we have arranged our factors
i so that �(m2,0) is real, this is also the case for Bk+1 and Ck+1. We have then proved the
following:

Proposition 17.3.1 We may deform the φ3
2 theory in such a way that �d (m2) =

�′d (m2) = 0.

The coefficients B,C (as formal series in g) have been entirely determined by the previ-
ous procedure. We thus have built a deformed theory Td (m,g), depending on two parameters
m and g.

Assuming once for all that we may take ε = 0, the function

�̂d (p) := 1

−p2 +m2 + �d (p2)
(17.4)

plays in the deformed theory the role of the Fourier transform of the dressed propagator (see
(14.89)).11 As a consequence of the conditions �d (m2) = �′d (m2) = 0, when computing
scattering amplitudes in the deformed theory by the prescription (14.125), the correction
factor z equals 1.

We now turn to the really fascinating fact: The proof that “the deformed theory Td (m,g)
coincides with the original theory T (m′,g′) for certain values g′ and m′”, where m′ and g′

are formal series in g. This is why we say that the deformed theory is a re-parameterization
of the original theory. In some sense, there is a correspondence between the parameters
(m,g) and (m′,g′) such that Td (m,g) = T (m′,g′). We will make these ideas precise at

11 Since the deformed theory is defined only at the level of diagrams, we can only define this quantity as a sum
of values of certain diagrams.
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Figure 17.2 A diagram and its skeleton.

the end of the section. Before we can come to this, we turn to the computation of the
scattering amplitudes in the deformed theory. For this computation we use the prescription
(14.125). We have to sum over amputated diagrams with given external lines and given flows
through these lines. (We simplify the exposition by saying from now on “given external
lines” and keeping implicit that the flows through these lines are also given.) We recall
that an amputated diagram is such that an external line cannot be disconnected from the
other external lines by removing a single internal line. In an amputated diagram an internal
vertex attached to an external line must be an ordinary vertex (because the vertex⊗ has only
two edges).

Consider an amputated Feynman diagram F in the deformed theory. It has ordinary
vertices and vertices ⊗. We define the skeleton of F as follows. The skeleton of F is an
ordinary diagram, with the same external lines as F . Its vertices are the ordinary vertices
of F . Each path of F crossing only counter-term vertices is replaced by a single edge, see
Figure 17.2. Thus, to obtain the skeleton of a diagram, one simply “removes the counter-
term vertices ⊗”. Obviously this skeleton is an amputated diagram.

Consider two ordinary vertices and a path between them consisting only of edges and
vertices ⊗, such that there is a flow p ∈ R1,1 through these edges. If there are k edges and
k − 1 vertices, this path contributes as( −i

−p2 +m2 − iε

)k
(−i(p2B + C))k−1.

We sum this geometric series
∑

k≥1 α
kβk−1 = α/(1− αβ) to obtain

−i

−p2(1− B)+m2 + C − iε
= a−1 −i

−p2 +m′2 − iε′
, (17.5)

where a := 1−B, am′2 := m2 +C and aε′ = ε. (Recall that B and C are formal series in
g with real coefficients, and that B �= 1 since it starts with a g2 term.) We have proved the
following.
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Lemma 17.3.2 When we sum the values of the diagrams in the deformed theory
Td (m,g) with a given skeleton, we just find12 the value of this skeleton calculated
in the original theory T (m,g), but when the factor −i/(−p2 + m2 − iε) attached to
an internal line is replaced by the expression (17.5).

This makes perfect sense order by order in g.
Here, our theory is defined only at the diagrammatic level, but we can interpret this

replacement by saying that we have changed the mass from m to m′ and that “we have
multiplied the propagator by a−1”. In a free theory the Feynman propagator satisfies
〈0|T ϕ(x1)ϕ(x2)|0〉 = −i�F (x1−x2) (see Lemma 13.10.2) so we can think that multiplying
the propagator by a−1 amounts to “renormalizing” the field ϕ by multiplying it by a−1/2,
hence the name “field renormalization.”

Our next two lemmas are specific to φ3 theory.

Lemma 17.3.3 For a diagram in φ3 theory the numbers I of internal lines, V of
internal vertices and E of external vertices satisfy 3V − 2I = E.

Proof A total 3V lines spread out of the internal vertices, 3V − E of which are internal
lines. Each of these lines touches two vertices. Thus 3V − E = 2I .

Lemma 17.3.4 The sum of the values of the amputated diagrams with n given external
lines in the deformed theory Td (m,g) equals an/2 times the sum of the amputated
diagrams with the same external lines in the theory T (m′,g′) where g′ = a−3/2g.

Proof It suffices to show that the sum of the values in the deformed theory Td (m,g) of
the diagrams with a given skeleton and n external lines equals an/2 times the value of
this skeleton in the theory T (m′,g′). We compute the sum of these values using Lemma
17.3.2: It is the value of this skeleton computed in the original theory T (m,g) but when the
factor−i/(−p2+m2− iε) attached to an internal line is replaced by the expression (17.5).
Comparing this value with the value of the skeleton computed in the theory T (m′,g′) brings
a factor a−1 for each internal line and a factor a3/2 for each internal vertex (because to each
such internal vertex is affected the coefficient −ig = a3/2(−ig′) in the theory T (m,g) but
the coefficient −ig′ in the theory T (m′,g′)). Using Lemma 17.3.3 this is a total factor of
a3V/2−I = an/2.

The following has exactly the same proof, because an amputated diagram in the deformed
theory is 1-PI if and only if its skeleton in 1-PI.13

Lemma 17.3.5 The sum of the values of all the amputated 1-PI diagrams with n given
external lines in the deformed theory equals an/2 times the sum of the values of all 1-PI
diagrams with the same external lines in the theory T (m′,g′) where g′ = a−3/2g.

Where things really get beautiful is when one computes �̂d as a function of quantities
of the theory T (m′,g′).

12 Putting again the issue of symmetry factors under the rug. The reader may like to investigate in the case of the
“eye diagram” why these come out right.

13 It should be obvious that in the deformed theory a 1-PI diagram is always amputated.
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Proposition 17.3.6 Denote by �̃(p2) the function corresponding to � in the theory
T (m′,g′). Then

�̂d (p) = a−1 1

−p2 +m′2 + �̃(p2)
. (17.6)

Proof To understand this proof you have to be familiar with the proof of Theorem 14.9.7.
The argument is exactly in the spirit of Lemma 17.3.4. The starting point is that −i�̂d (p)
is the sum of the reduced values of all bipeds with flow p through their external lines in the
deformed theory. Such a biped has the following structure. Starting from the left external
vertex there is a path containing only counter-term vertices⊗ until we meet the first ordinary
vertex which is the beginning of a 1-PI block (there may be zero counter-term vertices on
this path, in which case the path consists of a single edge). We are not concerned with the
structure of the 1-PI block, which may or may not contain counter-term vertices. The 1-PI
block ends with an ordinary vertex, and from there is path containing only counter-term ⊗
vertices, until we meet an ordinary vertex which is the beginning of the second 1-PI block.
This path may contain zero counter-term vertices, in which case it consists of a single edge.
And so on. According to the case n = 2 of Lemma 17.3.5 the sum of the reduced values over
the 1-PI blocks is a times the sum of the reduced values of these same blocks in the theory
T (m′,g′). That is, this sum is −ia�̃(p2) where �̃ is the function � of the theory T (m′,g′).
On the other hand summing over the paths crossing only vertices ⊗ produces the quantity
U of (17.5). Consequently the sum of the reduced values of all biped with exactly k 1-PI
blocks is Uk+1(−ia�̃(p2))k , for a total contribution

−i�̂d (p) =
∑
k≥0

Uk+1(−ia�̃(p2))k .

Summing the geometric series gives the required expression (17.6).

Lemma 17.3.7 The physical mass of the theory T (m′,g′) is m. The quantity z of
(14.124) relative to this theory equals a.

Proof Comparing the expressions (17.4) and (17.6) we obtain

1

−p2 +m′2 + �̃(p2)
= a

1

−p2 +m2 + �d (p2)
,

where we recall that �d (m2) = �′d (m2) = 0. We recall that the physical mass of the theory
is given by the smallest root of the equation (14.101). Here −m2 + m′2 + �̃(m2) = 0,
and m appears to be the physical mass of the theory T (m′,g′).14 We also obtain, using
L’Hospital rule,

z := lim
p2→m2

−p2 +m2

−p2 +m′2 + �̃(p2)
= a lim

p2→m2

−p2 +m2

−p2 +m2 + �d (p2)
= a.

14 We do not provide an argument showing that m is the smallest root of the equation (14.101). This is physics,
and we assume that everything goes well unless proved otherwise.
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Proposition 17.3.8 The scattering amplitudes predicted by the deformed theory
Td (m,g) are the same as those predicted by the theory T (m′,g′).

Please make sure you understand this proof, which sheds light on the role of mysterious
factor z of the LSZ formula.

Proof The scattering amplitudes are computed by the formula (14.125). For the deformed
theory z = 1 by construction, and for the theory T (m′,g′) we have z = a. The result then
follows from Lemma 17.3.5.

Let us recall the setting of Section 14.13. The particle has a physical massμ. Writing δ :=
(2π )2δ(2)(p1+p2−p3−p4), we have defined ρ such that at small velocity for the incoming
and the outgoing particles, the scattering amplitude of two particles into two particles is ρδ
(which for brevity we will simply call the scattering amplitude at small velocity). Thus, μ
and ρ are measured in the lab, and we want to predict scattering amplitudes. We have two
different theories, Td (m,g) and T (m,g) and we are going to argue at a high level that they
give the same predictions.

Whichever theory we use we have to adjust the parameters in a way that within this
theory the physical mass is μ and the scattering amplitude at small velocity is δρ. So, if we
use the theory Td (m,g), where m is the physical mass, we take m = μ and g is a function
g(ρ). In Lemma 17.3.7 and Proposition 17.3.8 we have found values m′ and g′ such that
the physical mass of the theory T (m′,g′) is μ and the scattering amplitudes computed by
the theory T (m′,g′) are those computed by the theory Td (μ,g(ρ)). In particular the theory
T (m′,g′) predicts the correct physical mass and the correct scattering amplitude at small
velocity, so that if we use the theory T (m,g) to make predictions we should precisely use
these parameters. But then the theory T (m′,g′) gives the same prediction for all scattering
amplitudes as does the theory Td (μ,g(ρ)).15

17.4 The BPHZ Renormalization Prescription

Still working with the φ3
2 theory T (m,g), and keeping the notation of the previous sections,

let us now fancy deforming our theory in order to achieve in the deformed theory the
conditions

W (0,0,0) = g ; �(0) = �′(0) = 0. (17.7)

We will leave as an exercise to the reader to convince herself that this can be achieved by
the previous methods, introducing now both ( and ⊗ vertices. Moreover it can be shown
that the resulting theory is simply a theory T (m′,g′) for certain values of m′ and g′ which
are formal series in g.

The point of this remark is simple: The conditions (17.7) are not mysterious and can be
obtained by a suitable parameterization of the theory. The reason for the title of the section

15 The previous argument is rather sketchy, since we should really prove that the two theories provide the same
predictions “order by order in perturbation theory”, but this is better left to the interested reader.
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is Proposition 16.9.1: The conditions (17.7) are satisfied when one computes the values of
diagrams following the BPZH method.16

17.5 Cancelling Divergences with Counter-terms

Our task up to this point has been easy because we have been dealing with φ3
2 theory where

there are no divergences. The main story starts now: using counter-terms to cancel the
divergences, in a way that we are going to make precise. The principle of the method is
as follows:

• We introduce a cutoff to make all integrals convergent.
• We fix ε > 0.
• We deform the theory by allowing new vertices in our diagrams. The coefficients

attached to these vertices depend on the cutoff and on ε > 0.
• We arrange that when computing the scattering amplitudes in the deformed theory

these amplitudes have a finite limit as the cutoff gets removed and ε remains constant.
• Thus at given ε > 0 we attach a finite value to each scattering amplitude.
• Finally we send ε to zero.

What happens in the second-to-last bullet is expressed by the words “the counter-terms
cancel the divergences”. This occurs order by order in perturbation theory: Cancellation
occurs between the terms containing the same power of the coupling constant g.

The important part of the procedure is the “cancellation of infinities”. This occurs at
a given ε > 0. Thus throughout all the subsequent considerations we think of ε as being
fixed once and for all. In particular this changes the meaning of the expression “value of
a Feynman diagram” as the value is now computed at the given value of ε > 0. This will
however remain implicit as we are not going to indicate the dependence on ε in the notation.
It is just understood once and for all that ε is sent to zero at the end of the procedure (and
that we obtain a finite limit this way).

The details of the procedure depend on the model, and for now we consider the simplest
case of φ3

6 theory. It is simpler because in that case, as proved in Proposition 15.4.11, a
proper subdiagram with a superficial degree of divergence d ≥ 0 is a subgraph. The case
of φ4

4 theory, which requires a significant twist, is discussed in Section 17.8.
The Feynman diagrams in the deformed theory involve two types of counter-term

vertices, denoted respectively ⊗ and (, which are exactly the vertices we met earlier
in this chapter. The first one has two legs and the second one has three legs.17 A Feynman
diagram with only ordinary vertices will be called an ordinary Feynman diagram. The
Feynman rules for the new types of vertices depend on three cutoff-dependent param-
eters B,C,D, which are formal series in g.18 Each of the terms B,C,D has a physical

16 The value g in the left part of (17.7) comes from the contribution of the triped with a single internal vertex.
17 As will become gradually clear the reason why exactly these two counter-terms are needed has to do with the

last statement of Lemma 15.4.9. In φ3
6 theory, the subdiagrams with external degree of divergence ≥0 have

b = 3 or b = 2.
18 These also depend on ε > 0, which we think of as being fixed through the whole procedure.
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interpretation.19 Namely, as in Section 13.20 the term D occurs because the coefficient g in
the Hamiltonian is not what is measured in the lab. In a similar manner the term C occurs
because of mass renormalization. It can be argued that the term B occurs because of the
“field renormalization” discussed in Section 14.12, as will be investigated in Section 17.9.
Field renormalization also contributes to the other two terms.

The Feynman rules for the Feynman diagrams in the deformed theory are as follows:

• Assign to each ordinary vertex a factor −ig.
• Assign to each vertex ⊗ a factor −i(p2B + C) where p ∈ R1,5 is the momentum

flowing through the legs of the vertex.
• Assign to each vertex ( a factor −iD.
• Assign to each internal line with momentum p the factor −i/(−p2 +m2 − iε).
• Take the product of the previous quantities.
• Enforce conservation of momentum at each vertex.
• Integrate over the internal degrees of freedom of the diagram.
• Divide if necessary by the corresponding symmetry factor.

An important idea is that requiring the counter-terms to cancel the divergences at best
“determines the counter-terms B,C,D only up to a finite part”. One has to fix some rule
to determine this finite part. Such a rule is called a renormalization prescription. Although
we will not prove it in general, different renormalization prescriptions however amount
simply to parameterizing the theory in different ways, as we explored in special cases in the
beginning of the chapter.20

When using the counter-term method in relation with the BPHZ method, it is natural to
use the renormalization prescription (17.7) since we already argued that conditions (17.7)
hold if we use only ordinary diagrams, but compute their values according to the BPHZ
method. To describe again this prescription, we recall that a Feynman diagram with two
external lines is called a biped. A Feynman diagram with three external lines will be called
a triped. In the deformed theory the sum of the values of the tripeds with given six-momenta
flows p1,p2,p3 through their external lines is of the form

(−i)(2π )6δ(6)(p1 + p2 + p3)W (p1,p2,p3),

and the sum of the values of the bipeds with six-momentum flow p1,p2 ∈ R1,5 through the
external lines is of the form

(2π )6δ(6)(p1 + p2)�(p2
1).

Again, there is nothing special about the renormalization condition (17.7) (except that
it is naturally associated to the BPHZ method). Other renormalization conditions are
typically used by physicists, and lead “to the same theory, but parameterized in a
different way”.

19 This interpretation is not needed if we think that we are following an algorithmic procedure.
20 In these sections, we were dealing with φ3

2 theory, which has no divergence, and we were dealing only with
the “finite part” of the counter-terms and different renormalization prescriptions.
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17.6 Determining the Counter-terms from BPHZ

That it is actually possible to cancel the divergences as outlined in the previous section is
a highly non-trivial fact. We will deduce it from Theorem 16.1.1 (the proof of which will
be completed in the next two chapters). The argument will be heuristic. It is unlikely that
there exists a clean mathematical argument, for the simple reason that it does not seem that
the counter-term method can be made rigorous unless one moves to the Euclidean setting,
replacing propagators by their Euclidean versions.21 Even in this setting, it is a non-trivial
task to construct cutoffs with the required invariance properties.

One difficulty is that to have clean arguments (and as will become apparent when we
go into the details), we need that the cutoff we use to make our integrals absolutely con-
vergent is Lorentz invariant.22 Such a cutoff unfortunately does not exist.23 As we try to
clarify matters rather than obscuring them by getting bogged down in details, we take drastic
simplifying steps:

• We pretend that we can use a Lorentz invariant cutoff.
• We pretend that in the BPHZ method we use the standard Lorentz invariant prop-

agators with Fourier transform (13.60) instead of the regularized propagators with
Fourier transform (16.3), that is, we pretend24 that in the formulas of Section 16.6
we have

f (k) = −i

−k2 +m2 − iε
.

In contrast with the rest of Part IV we do not give complete mathematical proofs in the
rest of this chapter, which may rather feel like an excerpt from a physics textbook.25 This
might make it difficult to penetrate for a mathematically inclined reader, especially if she
had no previous exposure to physics’ style, but a reader not motivated by physics’ methods
should simply skip this material.

The principle of the approach is very simple. The BPHZ method replaces certain inte-
grands F by their regularization RF . The forest formula presents RF as a sum of many
terms. These are not individually integrable, it is only their sum that is integrable. In the
presence of a cutoff however, one may integrate these terms individually. This means that
the value attributed to a Feynman diagram by the BPHZ method appears as a sum of many
terms. The basic idea is that (at a given cutoff and a given value of ε)

Each of these terms can be interpreted as the value of a certain Feynman
diagram in the split deformed theory. (17.8)

The split deformed theory is a variation of the deformed theory where each of the counter-
term vertices has been split into a whole sequence of counter-term vertices. It will appear

21 Almost every textbook of physics discussing renormalization does this, usually through the following
single-sentence magic incantation: “using a Wick rotation, it suffices to consider the Euclidean setting”.

22 In the sense that the value assigned to an integral remains the same if the same Lorentz transformation is
applied to each of the four-momenta involved in this integral.

23 As we pointed out in Section 13.18, this is because the volume of the set where p2 is bounded is infinite.
24 Please do not be confused here. The actual BPHZ scheme uses the formula (16.3) to which we go back in

later chapters.
25 In particular we provide crisp examples of the powerful “proof by examples” and “let us give the main idea”

methods.
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in a completely natural manner. The important property at this stage is that the value of a
diagram in the deformed theory appears naturally as the sum of the values of a collection
of diagrams in the split deformed theory.26

Furthermore it will be true that summing the values of the BPHZ terms contributing to
a given scattering amplitude exactly amounts to summing all the values of the Feynman
diagrams contributing to the same amplitude in the deformed theory.27 When removing the
cutoff, the (cutoff-dependent) sum of the Feynman diagrams in the deformed theory corre-
sponding to a given amplitude28 has a finite limit which is just the value of the amplitude
given by the BPHZ method. This cancellation is expressed by saying that the counter-terms
cancel the divergences order by order in perturbation theory: Cancellation occurs between
the terms containing the same power of the coupling constant g.

Let us now go into the details. We must first introduce some notation. We start with a 1-PI
Feynman diagram, with at least two external lines.29 In the BPHZ method we consider its
subdiagrams, which are denoted by lowercase Greek letters. The important subdiagrams are
the renormalization sets. Since we are working in φ3

6 theory we may appeal to Proposition
15.4.11: such a subdiagram α is a subgraph, that is its set of vertices is a subset of the set of
internal vertices of the Feynman diagram, and its edges consist of all internal edges between
its vertices. Furthermore, there are b ∈ {2,3} edges (internal or external) of the Feynman
diagram out of the vertices of α which are not edges of α (and d(α) = 6− 2b).

The subgraph α is certainly not a Feynman diagram because it does not have external
lines. We can however turn it into a Feynman diagram by adding the edges out of α as
external lines. It will be convenient not to distinguish between α and the corresponding
Feynman diagram. In particular when b = 2, we will say that α is a biped and when b = 3
we will say that α is a triped. Conversely Feynman diagrams which are either bipeds or
tripeds will be denoted by lowercase Greek letters.

Recalling that the value of a Feynman diagram is now calculated at a given ε > 0, given
a diagram with a set V of n internal vertices and a set E of internal edges, the value of this
diagram is given by the Feynman rules as

1

S
(−ig)n

∫
· · ·

∫ ∏
e∈E

d6xe

(2π )6
F (x)

∏
v∈V

(2π )6δ(6)(L(x)v − wv), (17.9)

where S is the symmetry factor. Here F is the function on (R1,5)E given by

F (x) =
∏
e∈E

f (xe) ; f (k) = −i

−k2 +m2 − iε
, (17.10)

and wv is the sum of the six-momenta leaving the internal vertex v through the external
lines. On the other hand, the renormalized value attached to the diagram (again at a given
ε > 0) by the BPHZ procedure30 is simply the quantity (17.9) whereF has been replaced by

26 This sum is infinite, but makes sense as a formal series in g.
27 And also to summing all the values of the Feynman diagrams contributing to the same amplitude in the split

deformed theory.
28 A very satisfactory aspect of the counter-term method is that one just has to compute a sum of diagrams,

business as usual.
29 The case of diagrams with a single external line will be considered later.
30 In the remainder of this chapter, “the renormalized value” of a diagram is the value attached to this diagram at

a given ε > 0 by the BPHZ method.
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its regularized version RF given by (16.15). That is, denoting by γ the largest subdiagram
of the Feynman diagram, we have

RF =
∑
F

(−T d(γ )FF + FF ),

where the sum is over all forests on γ . Thus, the renormalized value of the diagram appears
as the sum

∑
F (Iγ,F + IIγ,F ) where Iγ,F is obtained by the expression (17.9) when we

replace F by −T d(γ )FF and IIγ,F is obtained by the expression (17.9) when we replace
F by FF . For further use let us write the formula

Iγ,F =
1

S
(−ig)n

∫
· · ·

∫ ∏
e∈E

d6xe

(2π )6 (−T d(γ )FF )(x)
∏
v∈V

(2π )6δ(6)(L(x)v − wv). (17.11)

Please observe that the dependence on the original Feynman diagram is indicated as a
dependence on γ .

The whole approach relies on the following lemma.

Lemma 17.6.1 (a) If γ is a triped then we have

Iγ,F = −i(2π )6δ(6)(�)Dγ,F (17.12)

where� is the sum of the six-momenta leaving the diagram through the external edges,
and where the number Dγ,F depends only on γ,F and ε (but not on the momenta
through the external lines).
(b) Assume that γ is a biped, and letp1 andp2 be the six-momenta leaving the diagram
through the external edges. Then

Iγ,F = −i(2π )6δ(6)(�)(p2
1Bγ,F + Cγ,F ), (17.13)

where � = p1 + p2, and where the numbers Bγ,F and Cγ,F depend only on γ,F
and ε (but not on the momenta p1 and p2).31

(c) If γ is neither a biped nor a triped, then Iγ,F is zero.

Proof Let us recall from Section 16.3 that for a function H on (R1,5)E we consider
it as a function H (z + q) for z ∈ kerL, q ∈ Q = kerL⊥ and that T dH denotes the
Taylor polynomial of order d at q = 0 of the function q �→ H (z + q). In particular
(T 0H )(z+ q) = H (z).

To prove (a) we note that d(γ ) = 0 and we apply Theorem 15.7.2 (to the function T 0FF
rather than F ) to obtain

Iγ,F =
1

S
(−ig)n(2π )6δ(6)(�)

∫
dμL(x)(−T 0FF )(x + X (p)),

where X (p) ∈ Q ⊂ (R1,5)E is the function of the six-momenta leaving the diagram through
the external lines (which are symbolically denoted by p). The integral is independent of p
because T 0FF (x + X (p)) = T 0FF (x).

31 Observe that the expression (17.13) is the same if we replace p1 by the momentum p2 leaving through the
other external edge. Thus we may write the right-hand side of (17.13) as −i(2π )6δ(6)(�)(p2Bγ,F + Cγ,F )
where “p is the six-momentum flowing through the external edges”.
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(b) When γ is a biped we have d(γ ) = 2, and as before we have now

Iγ,F =
1

S
(−ig)n(2π )6δ(6)(�)

∫
dμL(x)(−T 2FF )(x + X (p1)), (17.14)

where T 2FF (x + X (p1)) is a second-degree polynomial in the components of p1. It is of
course Lorentz invariant,32 see Exercise 17.6.2. Now comes the key point: Since we pretend
that our implicit cutoff is Lorentz invariant the integral in (17.14) is a second-degree Lorentz
invariant polynomial in the components of p1, so that it is of the form Bp2

1 + C where B
and C are independent of p1.

(c) This is obvious since then d(γ ) < 0 and we defined T d(γ )FF = 0.

Exercise 17.6.2 Get into more detail as to why the quantity (17.14) is Lorentz
invariant.

Now comes the basic observation. When we compute amplitudes, we have to take sums
over diagrams with given external lines. When we sum the quantities (17.12) over given
external lines, we obtain the quantity −i(2π )6δ(6)(�)D where

D =
∑
α

Dα,F . (17.15)

Here the sum is over all 1-PI tripeds33 α and all forests F on α. The sum makes sense
because the coefficient Dα,F contains a factor gn when α has n internal vertices. In this
manner D appears as a formal series in g. Furthermore we can give a meaning to the
expression “order by order in g”.

In words, with this choice of D, the sum of quantities (17.12) over all possible diagrams
with the same external lines is exactly the value −i(2π )6δ(6)(�)D of a diagram with the
same external lines and the unique vertex ( in the deformed theory.

Similarly to (17.15) we will set B =∑
β Bβ,F and C =∑

β Cβ,F with now a sum over
all 1-PI bipeds β and all forests F on β.

Since the value of D in (17.15) appears naturally as a sum, we may think of “splitting
the corresponding counter-term vertex into pieces”, each piece corresponding to one of
the terms of this sum. That is, formally, we think of the counter-term vertex as a sum
( = ∑(α,F , with the understanding that in the Feynman rules we now attach a factor
−iDα,F to the vertex (α,F . Splitting in the same manner the counter-term vertex ⊗ in
counter-term vertices ⊗β,F , where β ranges over all bipeds and F over all forests on β,
we obtain the split deformed theory. More formally, in the split deformed theory, besides
the ordinary vertices, there are counter-term vertices (α,F and ⊗β,F , with the obvious
generalization of the Feynman rules.

As illustrated by Figure 17.3 the value of any diagram in the deformed theory is canoni-
cally a sum of values of diagrams in the split deformed theory.

The point of introducing the split deformed theory is that we can now go back to (17.12)
and state that the term Iγ,F is exactly the value in the split deformed theory of a diagram

32 Here Lorentz invariance refers to the adaptation of this concept to R1,5.
33 The diagram consisting of one single ordinary vertex is not considered to be a triped.
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a�triped, F  forest

a,F

b,F �

b�biped, F ��forest

�
� �

� �	
Figure 17.3 Splitting the vertices ⊗ and (.

with the same external lines and single vertex(γ,F . We have accomplished our goal (17.8)
in the case of the term Iγ,F where γ is a triped, and similarly also when γ is a biped.

Another benefit of introducing the split deformed method is that it clarifies one aspect of
the counter-term method which is rather hard to grasp in physics books. The counter-term
is the sum of different terms each of which fills a specific purpose (which we can describe
here as removing the overall divergence of a certain diagram).

In the next section we will achieve our goal (17.8) also for the terms IIγ,F . This will
prove (assuming that the BPHZ method works) that the previous choices for the counter-
terms succeed in removing all divergences. However before that the reader should think a
bit by herself and try to solve the next two exercises. Their purpose is to show that in two
simple cases a straightforward use of the counter-term method enforcing the renormalization
prescription (17.7) yields exactly the previous values of B,C,D at the lowest order in g.

Exercise 17.6.3 The simplest triped with a divergence is the triangle diagram α0 (three
internal vertices and three internal edges). What is the value of this triped? What is
the value of D which achieves the first condition in (17.7) at order three? How does
it compare with the value (17.15)?

Exercise 17.6.4 Consider the simplest biped, the “eye diagram” β0 with six-
momentum flow p through the external legs. What is the value of this diagram?
How do you choose B and C to enforce the second part of (17.7) at order g2?

17.7 From BPHZ to the Counter-term Method

In this section we complete the “proof” of the following.34 Assuming that the BPHZ method
works, the method of the previous section determine counter-terms that cancel the diver-
gences (in the sense explained in Section 17.5) in such a manner that the resulting deformed
theory predicts exactly the same scattering amplitudes as the BPHZ method and that the
condition (17.7) holds. This is the content of Theorem 17.7.1.35 It is in fact true that if
we tried to determine the counter-terms recursively to cancel the divergences while imple-
menting the renormalization conditions (17.7) we would be led exactly to the same choice
of counter-terms, but we will not show this.

34 Modulo the fact that we take for granted that symmetry factors work out.
35 One more time, I am shamefully cheating here, since computing amplitudes requires considering also some

1-PI diagrams, which I omit, but doing this requires only minor complications which I want to avoid.



532 Counter-terms

Theorem 17.7.1 The sum of the renormalized values of the ordinary 1-PI Feynman
diagrams with given external lines, and given momenta through these lines, is the
sum of the values of the 1-PI Feynman diagrams for the deformed theory with the
same external lines and momenta through these lines.

The principle of the proof is to show that the renormalized value of a given Feynman
diagram is the sum of the values of certain diagrams of the split deformed theory with the
same external lines and the same momenta through these external lines. It will be basically
obvious from the construction that as we sum over the ordinary 1-PI Feynman diagrams
with given external lines and given momenta through these lines, we obtain exactly all the
Feynman diagrams in the deformed theory with the same external lines once and only once,
thereby proving the theorem.36

So, let us now fix a 1-PI Feynman diagram with n internal vertices and given momenta
through the external lines. As usual γ is the largest subdiagram γ , V is the set of internal
vertices and E is the set of internal edges. As we have recalled in the previous section the
renormalized value of the Feynman diagram is given as a sum

∑
F (Iγ,F + IIγ,F ) over all

forests. The content of Lemma 17.6.1 is that, unless Iγ,F is zero, this term equals the value
of a certain diagram with one single counter-term vertex in the split deformed theory.

So we have only to consider the term IIγ,F . Our goal is to show that this term is the value
of a certain diagram in the split deformed theory (completing our goal (17.8)). When the
forest F consists of the single subdiagram γ , then FF = F , and then IIγ,F is just the value
of the diagram, seen as an ordinary diagram in the deformed theory.

Thus we may assume that F does not consist only of the subdiagram γ . Then, as in
Lemma 16.5.3, consider the maximal subdiagrams α1, . . . ,αñ ofF\{γ }. As we may assume
that FF �= 0, these are all renormalization sets: they are all bipeds or tripeds. For each such
biped or triped αi we define

Fi = {ξ ∈ F ; ξ ⊂ αi},
which is a forest on αi since αi ∈ F . We then define a diagram in the split deformed theory
by contracting each triped αi into the vertex(αi,Fi

and each biped αi into the vertex⊗αi,Fi
.

This diagram will be called the contracted diagram, see Figure 17.4.

a,F
a,F

b,F �b,F �
�

�

(a) (b)

Figure 17.4 Contracting a triped and a biped. In (a) the shaded areas represent whole
subdiagrams, which in (b) are replaced by a single counter-term vertex in the split deformed
theory.

36 As we have already waived our hands in Proposition 16.9.1 into believing that the conditions (17.7) hold for
the BPHZ method, we will not come back to that point. The drastic simplifying steps of the previous section
actually help toward the arguments of Proposition 16.9.1.
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Proposition 17.7.2 Modulo a multiplicative factor depending on the symmetry factor,
the quantity IIγ,F equals the value of the contracted diagram.

Proof By definition (and forgetting in this proof all the symmetry factors) we have

IIγ,F = (−ig)n
∫
· · ·

∫ ∏
e∈E

d6xe

(2π )6FF (x)
∏
v∈V

(2π )6δ(6)(L(x)v − wv), (17.16)

where as before we is the sum of the six-momenta leaving e through the external lines of γ .
Combining (16.17), (16.18) and (16.19) we obtain

FF (x) =
∏
i≤ñ

(−T d(αi )Fαi )(Ui(x))
∏

f (xe), (17.17)

where the last product is over the edges e of γ which are not edges of any of the αi .
To compute the integral in (17.16), we may first, for each i ≤ ñ, integrate in the variables

xe for e ∈ Eαi . We claim that if we perform these integrations, we obtain the value of
the contracted diagram in the split deformed theory, proving the required identity. To see
how this goes, denoting by ni the number of vertices of the diagram αi , let us consider the
quantity

Ii := (−ig)ni
∫
· · ·

∫ ∏
e∈Eαi

d6xe

(2π )6
(−T d(αi )Fαi )(Ui(x))

∏
v∈Vαi

(2π )6δ(6)(L(x)v − wv).

(17.18)

We note that for v ∈ Vi the quantity Lv(x) depends only on that xe where the edge e has
an endpoint in αi . Thus the quantity Ii depends only on the xe for which the edge e has an
endpoint in αi but is not an edge of αi .

Let us denote by n∗ := n−∑i≤ñ ni the number of vertices of γ which are not vertices of

any αi , by Ẽ the set of edges of γ which are not edges of any αi and by Ṽ the set of vertices
of γ which are not vertices of any αi . Thus, if we integrate in (17.16) in the variables xe for
e ∈ Ei and each i ≤ ñ we obtain the identity

IIγ,F = (−ig)n
∗
∫
· · ·

∫ ∏
e∈Ẽ

d6xe

(2π )6

∏
i≤ñ

Ii
∏
e∈Ẽ

f (xe)
∏
v∈Ṽ

(2π )6δ(6)(L(x)v − wv), (17.19)

and we have to show that this is precisely the value of the contracted diagram. We prove
first that within a symmetry factor

Ii = (2π )6δ(6)(�i)Gi, (17.20)

where �i is the algebraic sum of the six-momenta leaving the subdiagram αi and
Gi = − iDαi,Fi

for tripeds and Gi = − i(p2Bαi,Fi
+ Cαi,Fi

) for bipeds, where p is
the flow out of the biped. Writing y = Ui(x) = (xe)e∈Ei and denoting by Li the map L
corresponding to the diagram αi , for v ∈ Vαi we claim that we have the identity

L(x)v − wv = Li(y)v − wi
v, (17.21)
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where wi
v denotes the sum of the six-momenta leaving v through the external lines of αi

(that is all the edges of γ which are not edges of αi but touch αi). To see this, assume for
example that there is exactly one edge e of γ which is adjacent to v but is not an edge of αi
and that this edge is oriented toward v. Thus six-momentum xe enters v through e, and since
e is not an internal edge of αi we have L(x)v = Li(y)v + xe. Furthermore, e is an external
edge of αi and six-momentum−xe leaves αi through the edge e, so that wi

v = wv − xe, i.e.
wv = wi

v + xe, completing the proof of (17.21). This relation implies that the quantity Ii
of (17.18) then equals

(−ig)ni
∫
· · ·

∫ ∏
e∈Eαi

d6xe

(2π )6
(−T d(αi )Fαi )(y)

∏
v∈Vαi

(2π )6δ(6)(Li(y)v − wi
v). (17.22)

The formula (17.11) shows that up to the symmetry factor, this is just the quantity Iαi,Fi
so

that the equality (17.20) follows from the identities (17.12) and (17.13) of Lemma 17.6.1.
Finally it remains to convince ourselves that, taking (17.20) into account, the right-hand

side of (17.19) is the value of the contracted diagram in the split deformed theory. This
is because the term Gi in (17.20) is exactly the factor associated to the corresponding
counter-term vertex by the Feynman rules, and the delta function in (17.20) exactly enforces
conservation of flow at the counter-term vertices of the contracted diagram.

In this manner we have shown that the renormalized value of a 1-PI Feynman diagram
with n internal vertices is in a natural manner the sum of the values of certain diagrams in
the split deformed theory. These diagrams occur as contractions of the original diagram,
and their counter-term vertices carry the information of which subdiagram was contracted,
showing that they can arise from one and only one 1-PI diagram.

The issue of the symmetry factors is non-trivial (but we ignore it).37 It is best explained
on a simple example, in Figure 17.5. Starting with diagram (a) (with symmetry factor
8) if one considers the subgraphs {3,4} and {5,6} and contracts each of them, one gets
diagram (b), with symmetry factor 2. Here each ⊗ vertex has a weight corresponding to
the contracted diagram, which carries a symmetry factor 2 and the symmetry factors match
because 8 = 2 × (2)2. If on the other hand one contracts only the subgraph {3,4} one gets
diagram (c), which has a symmetry factor of 2. Here the⊗ vertex has a symmetry factor 2,
so the symmetry factor of this graph is 2× 2, which is only half of the symmetry factor of

1 2 1 2
1 2

3 4

5 6 5 6

��

�

(a) (b) (c)

Figure 17.5 Contracting the vertices.

37 It can be done rigorously, but I did not believe that any reader would have the energy to go into this at this
stage.
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the graph (a). The missing factor 2 is provided by the fact that if in the graph (a) one now
contracts only the subgraph {5,6} one gets again the graph (c), drawn differently.

We have not addressed the secondary issue of tadpoles (i.e. diagrams with a single exter-
nal leg). The value of each tadpole is set to zero in the BPHZ method. To make matters
consistent, the value of tadpoles has to be set equal to zero also in the deformed theory.
There are different levels of sophistication to do this. Our crude method just declares by fiat
that this is the case. A more elaborate method is to introduce yet another type of counter-
term vertex with a single leg. The coefficient of this vertex is adjusted order by order in g
to ensure that the value of each tadpole is zero. This formalism wonderfully matches what
we did for the vertices ⊗ and (, but it does not really prove anything either.

17.8 What Happened to Subdiagrams?

In this section we perform the work of Section 17.7 in the case of φ4
4 theory. It is stated

everywhere in physics books that “counter-terms cancel the divergences in subgraphs”.
Since the BPHZ method involves subdiagrams, there is a little riddle there.38 Where did the
subdiagrams go? In words, as will become clearer with the proof, the answer to that riddle
is that the contributions of the various subdiagrams can be grouped together according to
the value of the smallest subgraphs which contain them.

The central fact on which the analysis relies is that (as a consequence of (15.41)) as
we have seen in Exercise 15.4.12 that given a subdiagram α with superficial degree of
divergence d = d(α) ≥ 0, either d = 2 and then α is a biped, or else d = 0 and either α is
a quadruped or else α is obtained from a biped ᾱ just by removing one single edge of ᾱ.

A broad overview of the counter-term method in φ4
4 theory is that it involves two counter-

term vertices, our familiar vertex ⊗, and a four-legged vertex � which replaces the three-
legged vertex (, with Feynman rules similar to those of Section 17.5.

To understand the difference between the φ4
4 theory and the φ3

6 theory, we examine the
proof of Theorem 17.7.1 and Proposition 17.7.2. We fix a 1-PI Feynman diagram with n

internal vertices and largest subdiagram γ and we examine how to take care of the term IIγ,F
when F does not consist only of the subdiagram γ . Then, as in Lemma 16.5.3, consider the
maximal subdiagrams α1, . . . ,αñ of F \ {γ }. For each αi we define

Fi = {ξ ∈ F ; ξ ⊂ αi},
which is a forest on αi since αi ∈ F . We also consider the smallest subgraph ᾱi contain-
ing αi , and we note that these subgraphs have disjoint sets of vertices.39 As we may assume
that FF �= 0, all the αi are renormalization sets. Thus for each i there are three cases:

• αi = ᾱi is a quadruped, and d(αi) = 0.
• αi = ᾱi is a biped and d(αi) = 2.
• ᾱi is a biped, αi is obtained from ᾱi by removing a single edge ei of ᾱi and d(αi) = 0.

38 I could not find this clarified in any of the textbooks I used. Even ambitious works such as that of Duncan [24]
entirely ignore it.

39 It might well happen that ñ = 1 and that ᾱ1 = γ .
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We will contract each subgraph ᾱi to a vertex in the split deformed theory. You will not be
surprised that in the first case ᾱi = αi is contracted to a vertex �αi,Fi

, and in the second
case it is contracted to a vertex⊗αi,Fi

, but the third case creates a new situation where ᾱi is
contracted to new type of vertex ⊗̃ᾱi,Fi

. These new vertices ⊗̃β,F are defined when β is a
biped and F is a forest, not on β itself, but on a subdiagram α obtained from β by removing
a single edge e. As in the proof of Proposition 17.7.2 for each i ≤ ñ we will integrate in
the variables xe for e ∈ Eᾱi . We concentrate on the case where ᾱi �= αi which is the new
feature. Recalling (17.17) the dependence of FF in the variables xe, e ∈ ᾱi is through

Gi(x) := (−T d(αi )Fαi )(Ui(x))f (xei ) = −T 0Fαi (Ui(x))f (xei )

where ei is the edge of ᾱi which does not belong to αi , and where the second equality uses
that d(αi) = 0. Denoting by ni the number of vertices of ᾱi we will prove the following:

Lemma 17.8.1 Within a symmetry factor, the quantity

(−ig)ni
∫
· · ·

∫ ∏
e∈Eᾱi

d4xe

(2π )4Gi(x)
∏
v∈Vαi

(2π )4δ(4)(L(x)v − wv) (17.23)

equals

−i(2π )4δ(4)(�i)C̃ᾱi,Fi
, (17.24)

where C̃ᾱi,Fi
is a number (depending on ᾱi and on Fi but independent of the flow of

four-momentum through ᾱi).

To prove this lemma we first reproduce the argument which took us from (17.18) to
(17.22), and then we use Theorem 15.7.2 to reduce the proof to the following.

Lemma 17.8.2 Consider a Feynman diagram β with exactly two external edges and
a subdiagram α obtained from β by removing a single internal edge e. Let E be the set
of internal edges of β and E ′ = E \{e} the set of edges of α. Consider the projectionU
from (R1,3)E to (R1,3)E

′
and a function H on (R1,3)E

′
. Consider the function G(x) =

T 0H (U (x))f (xe). Then if χ (p) ∈ Q = kerL⊥ the integral∫
dμL(x)G(x + χ (p)) (17.25)

is independent of p.

We first explain why this lemma is true in the simple case of the biped β of Figure 17.6.
Let us denote by e0,e1,e2 the three internal edges (starting from the top), and consider the
subdiagram α with edges e1 and e2 with flows � − k/2 + p/3 and −� − k/2 + p/3. This
subdiagram is the “eye” considered in formula (16.13). According to this formula, we have
T 0H (�− k/2+ p/3, − �− k/2+ p/3) = H (�, − �). Then
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pp

k + p/3

l – k/2 + p/3

– l – k/2 + p/3

Figure 17.6 A simple biped.

∫
dμL(z)G(z+ X (p)) =

∫∫
d4k

(2π )4

d4�

(2π )4
f (k + p/3)H (�, − �)

= W

∫
d4k

(2π )4
f (k + p/3),

for a certain quantity W which does not depend on p. As desired (at least if we keep
pretending that our implicit cutoff has magic properties which it does not really have) this
quantity is independent of p as seen by the change of variable k→ k − p/3.40

Proof of Lemma 17.8.2 Let us consider the mapV : (R1,3)E
′
θo(R1,3)E such thatV (y)e= 0

and U (V (y)) = y. Consider the map L of (15.30) and the corresponding map L′ relative to
α. It should be obvious thatV (kerL′) ⊂ kerL. Let us consider an orthogonal decomposition
kerL = E ⊕ V (kerL′). For z ∈ kerL we can then decompose z = z1 + z2 where z1 ∈ E
and z2 ∈ V (kerL′). We claim that

(T 0H )(U (z+ X (p))) = (T 0H )(U (z2)). (17.26)

According to (16.12), with obvious notation, it suffices to prove that I ′(U (z + X (p))) =
I ′(U (z2)), i.e. I ′(U (z1 + X (p))) = 0, which by definition of I ′ means that U (z1 + X (p))
is orthogonal to kerL′. Now, if x ∈ (R1,3)E and y ∈ (R1,3)E

′
it is obvious that the inner

product of U (x) and y is the same as the inner product of x and V (y). Thus it suffices to
show that z1+X (p) is orthogonal to V (kerL′). For z1 this is by construction, and for X (p)
this is because X (p) is already orthogonal to the larger space kerL.

We have proved (17.26), and consequently we have obtained the formula∫
dμL(z)G(z+ X (p)) =

∫
dμL(z)f (z1

e + X (p)e)W (z2) (17.27)

for a certain functionW of z2, where we have also used the fact that since z2 ∈ V (kerL′) we
have z2

e = 0, so that (z+χ (p))e = z1
e+χ (p)e. To the decomposition kerL = E⊕V (kerL′)

corresponds a decomposition dμL = dμ1⊗dμ2, and using Fubini’s theorem (17.27) implies∫
dμL(z)G(z+X (p)) = ∫

dμ1(z1)f (z1
e +X (p)e)

∫
dμ2(z2)W (z2). The first factor on the

right is
∫

dμ′(u)f (u+ X (p)e) where μ′ is the image of μ1 under the map z1 �→ z1
e . Since

dμ′ is obviously translation invariant, a change of variable shows as desired that the previous
quantity is independent of p.

The Feynman rules on page 526 for the deformed theory are modified as follows (besides
the obvious replacement of( by �): To each⊗ vertex we still assign a factor−i(p2B+C),

40 Going to the Euclidean setting, one may use dimensional regularization to make things work, see e.g. [15,
Chapter 4].
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but the definition of C changes: C = C1+C2, where as in Section 17.6, C1 =
∑

β,F Cβ,F
for a sum over all bipeds β and all forests F on β, and where C2 =

∑
β,F C̃β,F , for a sum

over all bipeds β and all forests F on a subdiagram of β obtained by removing a single
edge of β.

17.9 Field Renormalization, II

In Section 17.3, just before Lemma 17.3.3, we have argued that deforming a theory by
introducing the appropriate new types of vertices amounts to “renormalizing the field”
(even though there is no field in the deformed theory which is defined only at the level
of diagrams). To complete our mental picture, it would be nice to argue in a more direct
way that field renormalization (in the sense of making the change of variable ϕ → √Zϕ
as we do below) amounts to introducing these new vertices. This, unfortunately, is difficult
to do in our approach. The standard treatment of this question which is followed in all the
main textbooks is through the technique of path integrals, also called Feynman’s integrals.
(A particularly clear presentation is given in Srednicki’s book [77].) Unfortunately, path
integrals are mathematically ill defined,41 so we cannot follow this route. The goal of the
present section is to explain in broad terms what happens within our formalism when we
“renormalize the field”. The reader needs to be fluent with Sections 6.4 and 6.5. In this
section, we truly graduate as physicists: we use a system of units where h̄ = 1 and c = 1.

At the classical level, the Lagrangian density of φ3 theory is given by

L = 1

2
∂μϕ∂μϕ − 1

2
m2ϕ2 − g

3!
ϕ3.

After renormalization ϕ→ Z1/2ϕ this gives the Lagrangian density

L = Z

2
∂μϕ∂μϕ − Z

2
m2ϕ2 − gZ3/2

3!
ϕ3.

so that, writing ϕ̇ = ∂ϕ/∂x0,42

π := ∂L
∂ϕ̇
= Zϕ̇.

Thus ϕ̇ = π/Z. The Hamiltonian density is then given by

H = πϕ̇ − L = 1

2Z
π2 + Z

2

∑
1≤i≤3

(∂iϕ)2 + Z

2
m2ϕ2 + gZ3/2

3!
ϕ3

which leads us to write H = H0 +Hint where

H0 = 1

2
π2 + 1

2

∑
1≤i≤3

(∂iϕ)2 + 1

2
m2ϕ2, (17.28)

Hint = (Z − 1)

(
− 1

2Z
π2 + 1

2

∑
1≤i≤3

(∂iϕ)2
)
+ Z − 1

2
m2ϕ2 + gZ3/2

3!
ϕ3. (17.29)

41 Which is why we did not use them.
42 Since c = 1 is our system of units!
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Crossing our fingers, we can hope that after quantization, the proper interaction
Hamiltonian density should be given by the formula (17.29), where now π = ϕ̇ (according
to (17.28)).

It is absolutely not obvious that such an interaction Hamiltonian gives rise to a Lorentz
invariant theory,43 and that the scattering amplitudes in this theory should be computed
by the diagrams in the deformed theory which we previously described. In fact one could
easily form the wrong impression that the theory with interacting Hamiltonian arising from
the Hamiltonian density (17.29) cannot be Lorentz invariant, because the termπ = ϕ̇ = ∂0ϕ

does not play the same role as the terms ∂iϕ.44 Matters are tricky however. When trying to
extend the method of Feynman diagrams to this theory, applying Wick’s theorem we meet
the contractions 〈0|T ϕ̇(x)ϕ̇(y)|0〉. To calculate these we need the following:

Lemma 17.9.1 We have

T ϕ̇(x)ϕ̇(y) = ∂2

∂x0∂y0
T ϕ(x)ϕ(y)− iδ(4)(x − y)1.

Proof Consider the formula

T ϕ1(x)ϕ2(y) = θ (x0 − y0)ϕ1(x)ϕ2(y)+ θ (y0 − x0)ϕ2(y)ϕ1(x)

where for a real number u, θ (u) = 1 if u ≥ 0 and θ (u) = 0 if u < 0.45 This function has
the property that its derivative is the delta function. Thus

∂

∂x0
T ϕ1(x)ϕ2(y) = θ (x0 − y0)

∂

∂x0
ϕ1(x)ϕ2(y)+ θ (y0 − x0)ϕ2(y)

∂

∂x0
ϕ1(x)

+ δ(x0 − y0)(ϕ1(x)ϕ2(y)− ϕ2(y)ϕ1(x))

= T ∂

∂x0 ϕ1(x)ϕ2(y)+ δ(x0 − y0)[ϕ1(x),ϕ2(y)]. (17.30)

Using this for ϕ2 = ϕ̇ and ϕ1 = ϕ gives

T (ϕ̇(x)ϕ̇(y)) = ∂

∂x0 T ϕ(x)ϕ̇(y)− δ(x0 − y0)[ϕ(x),ϕ̇(y)]

= ∂

∂x0 T ϕ(x)ϕ̇(y)− iδ(4)(x − y)1, (17.31)

where we have used (6.62) in the second line. We use now (17.30) for ϕ1 = ϕ2 = ϕ. Since
ϕ(x) and ϕ(y) commute at equal times by (6.63), the last term is zero and we obtain

T ϕ(x)ϕ̇(y) = ∂

∂y0
T ϕ(x)ϕ(y).

Combining with (17.31) yields the result.

43 Checking that a theory is Lorentz invariant is a kind of sanity check: A theory that is not Lorentz invariant
cannot be correct.

44 I am very grateful to Mark Srednicki for having pointed out to me Preskill’s notes [67, pages 33–36], which
explains the way out of this puzzle.

45 This function is known as the Heaviside function.
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As a consequence, recalling the Feynman propagator �F we have the formula

〈0|T ϕ̇(x)ϕ̇(y)|0〉 = −i
∂2

∂x0∂y0
�F (x − y)− iδ(4)(x − y),

and one can prove that the last term in this formula re-establishes Lorentz invariance. This
proof is a definitely non-trivial task, as one may group the terms in seemingly miraculous
ways.46 As the purpose of the present approach is mainly to perform a sanity check, we will
not enter this proof. The mechanism of the computation is already apparent in the following
case, which we leave as a challenge to the reader.

Exercise 17.9.2 Consider a parameter g �= −1 and assume as in Section 13.3 that the
interacting Hamiltonian is given by the formula HI =

∫
d3xHint(0,x) where

Hint = g
(
− 1

2(1+ g)
(∂0ϕ)2 + 1

2

∑
1≤i≤3

(∂iϕ)2
)

. (17.32)

Consider the theory where the time-evolution in the interaction picture of the field ϕ
is given by HI . Check the formula (13.9) to ensure that this makes sense. Recall the
dressed propagator � given by (14.65). Prove that (as a formal series in g) the Fourier
transform of this dressed propagator is given by the formula

�̂(p) = lim
ε→0+

1

−p2(1+ g)+m2 − iε
.

Hint: Use the appropriate version of Proposition 14.5.3 to compute the order-two
Green function. The value of the diagrams is computed using Wick’s theorem, and
it is convenient to develop a version of “Feynman’s rules in momentum space”. The
relation g =∑

k≥1(g/(g + 1))k is crucial.

Even after one has shown that the Hamiltonian density (17.29) leads to a Lorentz invari-
ant theory, it is still absolutely not obvious that this theory predicts the same scattering
amplitudes as the deformed theory obtained by adding new vertices( and⊗ as in Sections
17.2 and 17.3. To see this, one has to perform a “re-summation” as on page 521 on both the
deformed theory and the theory with Hamiltonian density (17.29).

In conclusion, matters are consistent. Field renormalization (in the sense of the present
section, making the change of variable ϕ → √

Zϕ) does yield a theory equivalent to the
theory of Sections 17.2 and 17.3, but it does not do it in a clean way. This is the price to pay
for using Hamiltonian formalism, which breaks Lorentz invariance.47

Key ideas to remember:

• The introduction of new types of vertices in the counter-term method increases the
number of diagrams to be considered when computing scattering amplitudes.

46 One may wonder if there exists a mathematical structure explaining this magic.
47 In contrast, the path integral formalism respects this invariance at every step. Path integrals are however not

mathematically defined, which is why we have not used them at all.
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• The same theory may be parameterized in many different ways.
• The parameterization is fixed by a set of rules called a renormalization prescription.
• The physicists use counter-terms to cancel the divergences. When the suitable renor-

malization prescription is used to fix the finite part of the counter-terms this gives the
same result as the BPHZ method.



18

Controlling Singularities

The task ahead of us is to prove Theorem 16.1.1. There are two steps:

• Prove that replacing the integrand F by its regularization RF actually removes all
divergences.

• Having proved the above, prove that there is a well-defined limit as ε→ 0+.

The first item above is the most difficult, and is the object of the final Chapter 19. In the
present chapter we perform the comparatively easier task of proving the existence of the
limit as ε→ 0+.

18.1 Basic Principle

We first bring forward some general ideas. Ultimately all results in the present chapter rely
on the following simple principle.

Lemma 18.1.1 Consider a function ϕ(x) for −1 ≤ x ≤ 1 and an integer s ≥ 1.
Assume that ϕ is s + 1 times differentiable. Then the limit

lim
ε→0+

∫ 1

−1
dx

ϕ(x)

(x − iε)s
(18.1)

exists, and is bounded by a constant times sup{|ϕ(k)(x)| ; k ≤ s , |x| ≤ 1}.
Proof The proof relies on integration by parts. Each integration by parts reduces the singu-
larity. After performing s such integrations by parts one gets a term

∫ 1
−1 dxϕ(s)(x) log(x−iε)

for which the singularity is mild enough that the existence of the limit is obvious since the
integral

∫ 1
−1 dx| log x| is finite.

Exercise 18.1.2 Find a more general version of this principle where ϕ depends also
on ε.

Exercise 18.1.3 Show that the limit

lim
ε→0+

∫ 1

−1
dx

1

x2 − iε

does not exist. Hint: Set x = √εt .

542
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Exercise 18.1.4 For which values of the integer s does the limit

lim
ε→0+

∫
{‖y‖≤1}

d4y
1

(‖y‖2 − iε)s

exist, where ‖y‖2 =∑
i≤4 y

2
i ? Hint: Set y = √εx and use polar coordinates.

Exercise 18.1.5 Prove a multidimensional version of (18.1). Find conditions under
which the limit

lim
ε→0+

∫∫
{|x|,|y|≤1}

dxdy
ϕ(x,y)

(x − iε)s(y − iε)s′

exists.

Before we start to prove specific results, it is worth spending a page or so to explain
the difficulties our program runs into, and why the “obvious approach” of combining
Lemma 18.1.1 with a change of variables does not work in the situations of interest to us.

Let us consider the following general situation. Given two nice smooth real-valued func-
tions U,V on the set C := {y ∈ Rn ; ∀i ≤ n,|yi | ≤ 1}, we want to prove the existence of
the limit

lim
ε→0+

∫
C

dny
V (y)

(U (y)− iε)s
. (18.2)

As ε→ 0 the denominator develops singularities on the set W := {y ∈ C;U (y) = 0}. Let
us assume that this set is a nice smooth surface. The easy case is where

∀y ∈ W , ∇U (y) �= 0, (18.3)

where ∇U denotes the gradient of U . In that case we can cover the set W by small boxes
with disjoint interiors, in such a manner that on each of them we can make a change of
variables so that U (y) is one of the new coordinates. Integrating in the other coordinates,
we are reduced to the situation of Lemma 18.1.1, and in this case the limit (18.2) exists as
soon as sufficiently many derivatives of the function V exist.

As Exercise 18.1.3 shows, things however may go wrong when (18.3) fails. As we explain
now, (18.3) fails in the situation we would really like to control. To see this let us try to prove
a rigorous version of (13.169). Certainly this will lead us to consider the quantity

Aε(k) =
∫

d4�

(2π )4 θ (�)
1

(−�2 +m2 − iε)

1

(−(k + �)2 +m2 − iε)
, (18.4)

where θ (�) is a cutoff making the integral meaningful as in Section 13.18. We would like
to show that this quantity has a limit as ε → 0+. We follow the physicists in transforming
this quantity using Feynman parameters as in (13.123) and performing a Wick rotation,

Aε(k) = i
∫ 1

0
du
∫

d4�

(2π )4 θ (�+ uk)
1

(‖�‖2 − u(1− u)k2 +m2 − iε)2 . (18.5)

This certainly reminds us of (18.2), with the functionU (�,u) = ‖�‖2−u(1−u)k2+m2. The
really unfortunate fact is that in the case where k2 = 4m2, at the point � = 0 and u = 1/2
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both the function U and its gradient are zero, and (18.3) fails.1 For this reason one may not
use the principles above, and deciding whether the limit of the quantity (18.5) exists would
require more effort.

Exercise 18.1.6 For k2 = 4m2 decide if the previous integral has a limit as ε→ 0+.

We will be able to bypass this problem by further smoothing in the external momenta.
This will be demonstrated in the next section, but here we provide the main tool, Lemma
18.1.7. Let us recall that a quadratic form Q(y) of y ∈ Rn is an expression of the type∑

i,j≤n ai,j yiyj , where ai,j are real numbers. This form is positive semidefinite ifQ(y) ≥ 0
for all y ∈ Rn. It is positive definite if Q(y) > 0 unless y = 0. A fundamental result of
elementary linear algebra is that any positive semidefinite quadratic form may be reduced
to the form

∑
i≤n αiy2

i for numbers αi ≥ 0 by a change of orthogonal basis.

Lemma 18.1.7 Consider an infinitely differentiable function ϕ with compact support
on Rn. Then for any positive semidefinite quadratic form Q and any integer s ≥ 1 the
limit

lim
ε→0+

∫
dny

ϕ(y)

(1− iε −Q(y))s
(18.6)

exists. This limit is uniform over the choice of Q and of ϕ, as long as the support of
ϕ stays in a given compact set and the partial derivatives of ϕ of order ≤s remain
bounded.

A remarkable part of the lemma is that the limit is uniform in Q. No hypothesis is made
concerning the “size” ofQ. The lemma will follow from a similar result which assumes that
“Q is bounded below”, which we state now.

Lemma 18.1.8 Consider an infinitely differentiable function ϕ on Rn with compact
support, an integer s ≥ 1 and a number α > 0. Consider numbers αi ≥ α for i ≤ n.
Then the limit

lim
ε→0+

∫
dny

ϕ(y)(
1− iε −∑i≤n αiy2

i

)s (18.7)

exists uniformly over ϕ as above and on the numbers αi ≥ α.2

Proof of Lemma 18.1.7 Making a change of orthonormal basis, we may then assume that
Q(y) = ∑

i≤n αiy2
i where αi ≥ 0 and the sequence (αi) is non-increasing, α1 ≥ α2 ≥

. . . ≥ αn. Considering a number B > 0, we will prove the uniformity of the limit (18.7)
over the functions ϕ with support contained in [−B,B]n such that their derivatives of order
≤s remain bounded, and over the numbers αi . Set

α = 1

2nB2
.

1 The case k2 = 4m2 has no special physical importance, and is just brought forward to show the limit of the
“obvious” approach.

2 But we see no reason why that limit would be uniform over α > 0.
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If all the coefficients αi are ≥ α, we are in the situation of Lemma 18.1.8 and the proof is
finished. Otherwise there exists an integer r ≤ n with

r ≤ i ≤ n⇒ αi ≤ α.

Letting y′ = (y1, . . . ,yr−1) it then suffices for fixed yr, . . . ,yn to prove the existence (and
uniformity) of the limit

lim
ε→0+

∫
dr−1y′

ϕ(y)

(1− iε −∑i≤n αiy2
i )s

. (18.8)

We may assume here that for r ≤ i ≤ n we have |yi | ≤ B for otherwise ϕ(y) = 0. Then

β :=
∑
r≤i≤n

αiy
2
i ≤ αnB2 ≤ 1/2,

and the quantity (18.8) equals

lim
ε→0+

∫
dr−1y′

ϕ(y)

(1− β − iε −∑i≤r−1 αiy
2
i )s

= 1

(1− β)s
lim
ε→0+

∫
dr−1y′

ϕ(y)

(1− iε −∑i≤r−1 α
′
iy

2
i )s

, (18.9)

where α′i = αi/(1 − β) ≥ α. The existence and uniformity of the limit then follows from
Lemma 18.1.8 used with r − 1 rather than n.

Proof of Lemma 18.1.8 It suffices to prove the existence and uniformity over ϕ (under the
same conditions as in Lemma 18.1.7) and over the numbers αi ≥ α of the limit

lim
ε→0+

∫
D

dny
ϕ(y)(

1− iε −∑i≤n αiy2
i

)s , (18.10)

where

D =
{
y ∈ Rn ; 1/2 ≤

∑
i≤n

αiy
2
i ≤ 2

}
,

because outside D the denominator never gets small as ε→ 0 (and because ϕ has compact
support). Let us then define the linear operator A on Rn by A(z)i = zi/

√
αi . Making the

change of variables y = A(z) the integral in (18.10) is

1√∏
i≤n αi

∫
{1/2≤∑i≤n z2

i≤2}
dnz

ϕ(A(z))(
1− iε −∑i≤n z2

i

)s . (18.11)

The important fact is that the size of the partial derivatives of the function ψ(z) := ϕ(A(z))
is controlled by the size of the partial derivatives of ϕ because αi ≥ α. In particular, it
does not matter that certain αi can be large. (This only improves the situation.) To finish
the proof, it suffices to transform the integral (18.11) in polar coordinates (r,ξ ), where ξ
belongs to the unit sphere of Rn, to set x = 1−r2 and to apply Lemma 18.1.1 to the integral
in x (now from −1 to 1/2) at given ξ .
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18.2 Zimmermann’s Theorem

This theorem relates convergence of integrals in the Euclidean and Minkowski version of
the propagators, and provides a final solution to the problem of singularities as ε → 0+.3

We will state this theorem in a form tailored to prove that as ε→ 0+ the integral∫
dμL(x)RF (x + X (p)) (18.12)

has a limit (although the actual application of our result to that case will only be done in
Section 19.1).

Consider an integer n ≥ 1 and for j ≤ n consider a four-momentum kj . The idea here is
that we have parameterized kerL using independent loops in the traditional way of (15.54).
To lighten notation, integration with respect to all the kj will be simply denoted by d4nk.
We consider external momenta pj , j ≤ r , and in line with our synthetic notation we write
p = (pj )j≤r . We consider another integer s (which represents the number of propagators)
and real numbers ai,j , 1 ≤ i ≤ s, 1 ≤ j ≤ n and bi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ r . As we will
show in complete detail later, the integral (18.12) has the form

I (p,ε) =
∫

d4nk
P (k,p,ε)∏

i≤s
(
Wε(

∑
j≤n ai,j kj +

∑
j≤r bi,jpj )+m2

), (18.13)

where P (k,p,ε) is a polynomial, and where as usual Wε(s) = −(1 + iε)(s0)2 + s2 for
s ∈ R1,3. We recall that ‖ · ‖ denotes the Euclidean norm of a four-vector.

Theorem 18.2.1 (Zimmermann’s theorem) Assume that for each p and each ε > 0
the integral ∫

d4nk
|P (k,p,ε)|∏

i≤s(‖
∑

j≤n ai,j kj‖2 + 1)
(18.14)

is convergent. Then for each ε > 0 and each p the integral (18.13) is absolutely
convergent. As ε → 0+, the quantity (18.13) converges to a distribution I (p) =
I (p1, . . . ,pr ), in the sense that for each test function ϕ ∈ S4r with compact support we
have limε→0+

∫
d4rpI (p,ε)ϕ(p) = ∫

d4rpI (p)ϕ(p).4 Furthermore when P (k,p,0)
is Lorentz invariant, in the sense that for each Lorentz transformation A the value of
P (k,p,0) does not change if one replaces pj and kj by A(pj ) and A(kj ), then I (p)
is Lorentz invariant.

In the case of the integral (18.12) the convergence of the integral (18.14) will be checked
in the next chapter using Weinberg’s power-counting theorem. It will clarify matters to
explain right now how this is done.

Proposition 18.2.2 Let us denote by Q(k,p,ε) the denominator of the integrand
in (18.13). Consider elements (k�)0≤�≤N of (R1,3)n and assume that the (k�)1≤�≤N

3 Provided that we have already solved the problem of the diverging integrals, as will become clear below.
4 Using similar methods but more work one may remove the condition that ϕ has compact support. Here is not

the place for these technicalities.
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are independent. Consider variables u1, . . . ,uN and the element k(u) = k0 +∑
1≤�≤N u�k�. Then P (k(u),p,ε) and Q(k(u),p,ε) are polynomials in u. The degree

of such a polynomial is denoted by degu. Assume that for all the previous choices
(with all values of p and all ε > 0) we have

degu P (k(u),p,ε)− degu Q(k(u),p,ε) < −N . (18.15)

Then for each p and each ε > 0 the integral (18.14) is absolutely convergent.

Proof Let us denote by Q′(k) the denominator of the integrand (18.14). The proof relies
on the fact that degu Q

′(k(u)) = degu Q(k(u),p,ε). This holds because this degree is 2N1

where N1 is the number of factors that actually depend on u i.e. for which
∑

j≤n ai,j k(u)j
is not independent of u.

Consider a subspace S of (R1,3)n. Let N = dim S and consider a basis (k(�))1≤�≤N of S.
Then, using (18.15) in the first inequality and the definition of degS Q

′ in the second one,
we have

degu P (k(u),p,ε) ≤ − dim S + degu Q
′(k(u)) ≤ − dim S + degS Q

′(k).

Taking the supremum over all possible choices of the (k�)0≤�≤N yields5 degS P (k,p,ε) −
degS Q

′(k) < − dim S, so that Weinberg’s power-counting theorem implies the result.

Remark 18.2.3 Given a rational function R = P/Q where P and Q are polynomials
in variables u,p,ε, . . . we will define

degu R = degu P − degu Q

so that denoting by R the integrand of (18.13), the condition (18.15) can simply be
written as

degu R(k(u),p,ε) < −N .

During the proof of Theorem 18.2.1 we will furthermore assume that the matrix (ai,j )
is of rank n. This is not a restriction since in the integrand of (18.13) we can multiply both
numerator and denominator by a quantity

∏
i≤n(Wε(

∑
j≤n a′i,j kj )+m2) where the matrix

(a′i,j ) is of rank n.

Exercise 18.2.4 Use Weinberg’s power-counting theorem to prove that if a polyno-
mialP (k,p,ε) is such that the integral (18.14) is convergent for eachp and each ε > 0,
then P (k,p,ε) = ∑

M PM (k)M(p,ε) where M(p,ε) are (different) monomials in p
and ε, and each PM is a polynomial in k such that the integral∫

d4nk
|PM (k)|∏

i≤s(‖
∑

j≤n ai,j kj‖2 + 1)
(18.16)

is convergent.

5 We denote by degS P (k,p,ε) the quantity degS P
′ where P ′ is the polynomial k �→ P (k,p,ε).
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The absolute convergence of the integrals (18.13) follows from (18.14) and the following
elementary lemma.

Lemma 18.2.5 Consider real numbers c,d ≥ 0 and 0 < α ≤ 1/2. Consider a
complex number z. Assume that either Re z ≥ 0 or that |Im z| ≥ α|z|. Then

α

4
(c + d|z|) ≤ |c + zd| ≤ (c + d|z|). (18.17)

In words: When z is fixed and is not a negative real number, for c,d ≥ 0, c+ zd is about
of the same size as c + d|z|.
Proof The second inequality is obvious so we prove the first one. We assume first that
Re z ≥ 0. Then |c+dz| ≥ Re(c+dz) = c+dRe z. Assume first that Re z = |Re z| ≥ |z|/2.
Then c + dRe z ≥ c + d|z|/2 and the proof is finished. Otherwise we have |Imz| ≥ |z|/2,
so that

|c + dz| ≥ |Im(c + dz)| ≥ d|Im z| ≥ d|z|/2, (18.18)

and since |c + dz| ≥ c we have |c + dz| ≥ c/2+ d|z|/4 and the proof is finished.
Assume now that |Im z| ≥ α|z|. Then as in (18.18) we have |c + dz| ≥ αd|z| so that

the proof is finished if αd|z| ≥ α(c + d|z|)/4 and thus we may assume that αd|z| ≤
α(c + d|z|)/4. Then 3d|z| ≤ c so that |c + zd| ≥ c − |z|d ≥ c/3 + |z|d ≥ α(c + d|z|)/4
and the proof is finished again.

Consider a four-vector k. Using (18.17) for c = k2 +m2, d = (k0)2 and z = −(1+ iε)
(so that |Im z| ≥ ε|z|/2) we obtain

|Wε(k)+m2| ≥ ε

16
(‖k‖2 +m2). (18.19)

Using this inequality together with (15.19) proves that the absolute convergence of the
integrals (18.13) follows from the convergence of (18.14).

We now start the main argument of Theorem 18.2.1. The overall strategy is to transform
the integral (18.13) until we are in a position to apply Lemma 18.1.8. The transformations
follow the methods which the physicists invented to actually compute diagram integrals.

To perform the first transformation we need a general version of the Feynman parameters
of (13.122).

Lemma 18.2.6 Consider complex numbers A1, . . . ,As with ImAi < 0. Then

1

A1 · · ·As

= (s − 1)!
∫
D

dμ(u)
1(∑

i≤s uiAi

)s , (18.20)

where D is the set {
u = (ui)1≤i≤s ; ui ≥ 0 ,

∑
i≤s

ui = 1
}
,

and dμ is the surface measure on D, such that dμ(u) = δ(1−∑i≤s ui)dsu.

The ui are called Feynman parameters.
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Proof We refer to Folland’s textbook [31, page 201] for a plain argument and we give a
fancier proof, based on the fact that for a function F on Rs , sufficiently integrable, we have∫

(R+)s
dsxF (x) =

∫
D

dμ(u)
∫ ∞

0
dt t s−1F (tu). (18.21)

This kind of polar decomposition is obtained by making the change of variables

x1 = tu1, . . . ,xs−1 = tus−1,xs = t(1− u1 − . . . − us−1).

Replacing the numbersAi by the numbers iAi we may rather assume that ReAi > 0 for each
i. We then note for a complex numberAwith ReA > 0 the relation

∫∞
0 dt exp(−tA) = 1/A

and its consequence ∫ ∞
0

t s−1dt exp(−tA) = (s − 1)! /As

through differentiation inA, and we apply (18.21) to the functionF (x) = exp(−∑i≤s xiAi).

In the remainder of the proof we denote D′ ⊂ D the set:

D′ =
{
u = (ui)1≤i≤s ; ∀i ≤ s , ui > 0 ,

∑
i≤s

ui = 1
}
,

so that in (18.20) we can take the integral over D′ rather than over D. Let us lighten notation
by writing until further notice

∀i ≤ s ; qi =
∑
j≤r

bi,jpj . (18.22)

We now transform the product in the denominator in (18.13) into the sth power of a single
term using Feynman parameters. Since

∑
i≤s uim2 = m2 for u ∈ D′, this single term is∑

i≤s
uiWε

(∑
j≤n

ai,j kj + qi
)+m2, (18.23)

and

I (p,ε) = (s − 1)!
∫
D

dμ(u)I (p,ε,u), (18.24)

where

I (p,ε,u) :=
∫

d4nk
P (k,p,ε)(∑

i≤s uiWε

(∑
j≤n ai,j kj + qi

)+m2
)s . (18.25)

We define

|I |(p,ε,u) :=
∫

d4nk
|P (k,p,ε)|∣∣∣∑i≤s uiWε

(∑
j≤n ai,j kj + qi

)+m2
∣∣∣s . (18.26)
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Lemma 18.2.7 Assuming the hypothesis of Theorem 18.2.1, for each ε > 0 and p we
have ∫

D′
dμ(u)|I (p,ε,u)| ≤

∫
D′

dμ(u)|I |(p,ε,u) <∞. (18.27)

Proof The first inequality is obvious. For the second one we use Lemma 18.2.5 just as in
(18.19) to obtain∣∣∣∑

i≤s
uiWε

(∑
j≤n

ai,j kj + qi
)+m2

∣∣∣s ≥ ( ε

16

)s(∑
i≤s

ui
∥∥∑
j≤n

ai,j kj + qi
∥∥2 +m2

)s
,

so that

|I |(p,ε,u) ≤
(16

ε

)s ∫
d4nk

|P (k,p,ε)|(∑
i≤s ui‖

∑
j≤n ai,j kj + qi‖2 +m2

)s . (18.28)

To prove that
∫

dμ(u)|I |(p,ε,u) is finite we use (18.20) again to obtain∫
dμ(u)|I |(p,ε,u) ≤ 1

(s − 1)!

(16

ε

)s ∫
d4nk

|P (k,p,ε)|∏
i≤s(‖

∑
j≤n ai,j kj + qi‖2 +m2)

which is finite using (15.19) and the absolute convergence of the integral (18.14).

The study of the integral I (p,ε,u) of (18.25) is at the center of the proof. Brutish estimates
will later prove the absolute convergence of this integral for u ∈ D′.6 The miracle of the
Feynman parameters is there. The delicate issue of the convergence of the integral (18.14)
translates into the convergence of the integral (18.27), but the individual integrals I (p,ε,u)
are robustly convergent. These integrals can basically be explicitly calculated, and the proof
of Theorem 18.2.1 will reduce to the use of Lemma 18.1.8 at a given value of u.

We start the program of “calculating” the integrals I (p,ε,u), which will end when we
reach the expression of Proposition 18.2.12.

In the expression (18.25) quadratic forms in the variables kj occur. We first perform
some standard algebra to transform these quadratic forms. This algebra is a generalization
of the method of “completing the square” when studying a second-degree polynomial in
one variable.

Lemma 18.2.8 Consider numbers ui > 0 for i ≤ s. Consider a vector y = (yi)i≤s ,
and the quadratic function

F (x,y,u) =
∑
i≤s

ui

(∑
j≤n

ai,j xj + yi

)2
(18.29)

6 This convergence is rather obvious. Since
∫

dμ(u)|I |(p,ε,u) is finite, then |I |(p,ε,u) must be finite for at least
one value of u. Denoting by Ju(k,p,ε) the integrand in (18.28) for any other value u′ one has
Ju′ (k,p,ε) ≤ CJu(k,p,ε) where C depends only on u and thus |I |(p,ε,u′) is also finite. This indirect
argument is however confusing.



18.2 Zimmermann’s Theorem 551

of x = (xj )j≤n. Given y and u the system of n equations ∂F/∂xj = 0 i.e.

∀j ≤ n ;
∑
i≤s

uiai,j

(∑
j ′≤n

ai,j ′xj ′ + yi

)
= 0 (18.30)

has a unique solution. Let us denote this solution by B(y,u) = (Bj (y,u))j≤n, which
is therefore linear in y. It holds that

F (x,y,u) =
∑
i≤s

ui

(∑
j≤n

ai,j
(
xj − Bj (y,u)

))2 + F (B(y,u),y,u). (18.31)

Furthermore

F (B(y,u),y,u) =
∑
i,i′≤s

Fi,i′ (u)yiyi′ (18.32)

for certain numbers Fi,i′ (u), and

0 ≤ F (B(y,u),y,u) ≤
∑
i≤s

uiy
2
i . (18.33)

Proof The essential fact is that the matrix (ai,j )i≤s,j≤n is of rank n. As a consequence the
quadratic form ∑

i≤s
ui

(∑
j≤n

ai,j xj

)2

is positive definite (i.e. it is positive semidefinite and cannot be zero unless x itself is zero).
Thus the matrix bj,j ′ =

∑
i≤s uiai,j ai,j ′ is positive definite and hence invertible. As (18.30)

means

∀j ≤ n ;
∑
j ′≤n

bj,j ′xj ′ +
∑
i≤s

uiai,j yi = 0,

these equations have a unique solution, and (18.31) follows by algebra.
Since B(y,u) is linear in y, (18.32) is an obvious consequence of (18.29). The second

statement is a consequence of the fact that from (18.31) it holds that

F (B(y,u),y,u) = inf
x
F (x,y,u) ≤ F (0,y,u).

Exercise 18.2.9 Complete the algebra in the previous proof.

In the lemma we assume that all the ui are > 0. Matters might blow up at the boundary
of D. The exquisite feature of the proof is that we do not need a detailed understanding of
what happens. Everything is taken care of by the convergence of the integral (18.27). In the
following exercises you are asked to show that matters are not as bad as they could be, but
these difficult facts are not required for our argument.
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Exercise 18.2.10 Prove the remarkable fact that there exists a number S independent
of u ∈ D′ such that for each j one has

|Bj (y,u)| ≤ S
∑
i≤s
|yi |. (18.34)

This is very challenging.

We may also observe that, according to (18.33), the eigenvalues of the matrix (Fi,i′ (u))
(and hence the numbers Fi,i′ (u) themselves) remain bounded uniformly over D. The fol-
lowing exercise shows that we have even more, but this will not be needed in the rest of
the argument. The quadratic form

∑
i,i′≤s Fi,i′ (u)yiyi′ will be used through Lemma 18.1.7

which does not require this good behavior.

Exercise 18.2.11 In this exercise we prove that the functions Fi,i′ (u) are restrictions
to D′ of continuous functions7 on D. This requires minimal fluency in topology in
metric spaces. We fix y ∈ Rs .
(a) Prove that given u ∈ D there exists at least one x0 such that F (x0,y,u) =
G(y,u) := infx F (x,y,u).
(b) Prove that if un ∈ D′ satisfies un→ u then lim supn→∞G(y,un) ≤ G(y,u).
(c) Consider un as above and xn = B(y,un). Using that (xn) has a converging subse-
quence by (18.34), prove that lim infn→∞G(y,un) ≥ G(y,u).
(d) Conclude that u �→ G(y,u) extends to a continuous function on D.
(e) Prove that Fi,i′ (u) is the restriction to D′ of a continuous function on D. Hint: You
may need an interpolation principle that you will meet on page 553.

To continue the analysis we introduce synthetic notation. Given the four-vectors (qi)i≤s
of (18.22) and 0 ≤ ν ≤ 3 we define qν = (qνi )i≤s ∈ Rs . For j ≤ n we denote Bj (q,u)
the four-vector (Bj (qν,u))0≤ν≤3, and we write B(q,u) = (Bj (q,u))j≤n. Given four-vectors
(kj )j≤n and 0 ≤ ν ≤ 3 we define kν = (kνj )j≤n. From the definitions (16.2) of Wε and
(18.29) of F we observe that∑

i≤s
uiWε

(∑
j≤n

ai,j kj + qi

)
= −(1+ iε)F (k0,q0,u)+

∑
1≤ν≤3

F (kν,qν,u).

In the right-hand side we apply (18.31) to each of the four terms to get∑
i≤s

uiWε

(∑
j≤n

ai,j kj + qi
) =∑

i≤s
uiWε

(∑
j≤n

ai,j (kj − Bj (q,u))
)+ C̃(q,u,ε), (18.35)

where

C̃(q,u,ε) := −(1+ iε)F (B(q0,u),q0,u)+
∑

1≤ν≤3

F (B(qν,u),qν,u). (18.36)

7 In his original paper [94], Zimmerman seems to consider this property as evident. We respectfully disagree,
and we do not see how this can be proved without knowing the result of the previous exercise.
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Recalling again that q = q(p) by (18.22) we now define

C(p,u,ε) = C̃(q(p),u,ε).

Let us observe for further use that it follows from (18.32) and (18.33) that

C(p,u,ε) = −(1+ iε)Qu(p0)+
∑

1≤ν≤3

Qu(pν), (18.37)

where Qu is a positive semidefinite quadratic form on Rn (depending on u).
We now perform the change of variables k→ k + B(q(p),u) in (18.25) to obtain

I (p,ε,u) =
∫

d4nk
Tu(k,p,ε)(∑

i≤s uiWε

(∑
j≤n ai,j kj )+ C(p,u,ε)+m2

)s , (18.38)

where

Tu(k,p,ε) := P (k + B(q(p),u),p,ε) (18.39)

is a polynomial in k,p,ε depending on u.

Proposition 18.2.12 The quantity I (p,ε,u) is of the form

I (p,ε,u) = (−1− iε)−a
R(p,ε,u)

(C(p,u,ε)+m2)s−2n , (18.40)

where 2a is an integer ≥0 depending only on P , and where R(p,ε,u) is a polynomial
in p and ε which depends8 on u. Furthermore when P (k,p,0) is Lorentz invariant,
for each u the polynomial p �→ R(p,0,u) is Lorentz invariant.

We delay the proof of this key result and continue the analysis.

Lemma 18.2.13 (Interpolation lemma) Consider positive integers n and N . Then
given integers μ1, . . . ,μn ≥ 0 with

∑
�≤n μ� ≤ N there exists a finite subset F of Rn

and complex numbers (αt )t∈F such that for any polynomial

P (x) =
∑

ν1,...,νn

aν1,...,νnx
ν1
1 . . . xνnn

on Rn, of degree ≤ N we have the identity

aμ1,...,μn =
∑
t∈F

αtP (t).

In words, the coefficients of the polynomial may be computed as certain finite linear
combinations of the values of the polynomial at certain points. When n = 1 there is a
classical formula, Bernstein’s formula, which does just this, and it can be generalized to
several dimensions. On the other hand, an explicit formula is irrelevant for our purposes,
and the result itself requires only elementary linear algebra. To follow the proof make sure
the following elementary facts are clear in your mind.

8 This dependence on u need not be polynomial.
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Exercise 18.2.14 (a) A subset F of a finite-dimensional space Q spans Q if and only
if a linear form on Q which is zero at each point of F is identically zero.
(b) A subset F of the dual Q′ of Q spans Q′ if and only if the only point of Q where
all the elements of F are zero is 0. Hint: Use (a) for Q′.

Proof of Lemma 18.2.13 The spaceQ of polynomials of degree≤N is a finite-dimensional
linear space. A polynomial that takes the value zero at every point has all its coefficients
zero. Consequently, the linear forms “evaluation at a given point” are such that the
intersection of their kernels reduces to zero. Thus by (b) of the previous exercise they
span the dual of Q. In particular the linear form on Q which associates to a polynomial the
coefficient of the monomial of a given degree in that polynomial is a linear combination of
linear forms of the type “evaluation at a given point”.

We write the polynomial R(p,ε,u) in (18.40) as

R(p,ε,u) =
∑
η,γ

aη,γ (u)εηMγ (p), (18.41)

where η is an integer, where γ = (γ νj )j≤r,ν=0,1,2,3 for integers γ νj ≥ 0, where aη,γ (u) ∈ C

and where Mγ (p) is the monomial �ν=0,1,2,3,j≤r (pνj )γ
ν
j .

Lemma 18.2.15 For each η and γ we have∫
D′

dμ(u)|aη,γ (u)| <∞. (18.42)

Proof Given p and ε it follows from (18.33) that the quantity C(p,ε,u) stays uniformly
bounded as u varies, so that from (18.27) and (18.40) for each p and each ε > 0 it holds
that

∫
D dμ(u)|R(p,ε,u)| < ∞. Using Lemma 18.2.13 for the variables ε and pνj rather

than xi we can write aη,γ (u) as a linear combination
∑

(p,ε)∈F α(p,ε)R(p,ε,u). This implies
(18.42).

We also need two simple facts.

Lemma 18.2.16 Consider a positive semidefinite quadratic form Q on Rr . Then the
quantity −Q(p0)+∑1≤ν≤3 Q(pν) is Lorentz invariant.

Here of course pν = (pνj )j≤r .

Proof This is obvious when Q is diagonal, i.e. Q(y) = ∑
j≤r aj y2

j and one reduces to
that case by change of basis.

Exercise 18.2.17 Carry out the details of the previous proof.

Lemma 18.2.18 Uniformly in α,a ∈ R we have

lim
ε→0

a(1+ iε)+ α

a + (1− iε)α
= 1.
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Proof ∣∣∣∣a(1+ iε)+ α

a + (1− iε)α
− 1

∣∣∣∣ = ∣∣∣∣ ε(a + α)

a + (1− iε)α

∣∣∣∣ ≤ ε.

Proof of Theorem 18.2.1 assuming (18.40) Consider an infinitely differentiable function
ϕ on Rr , with compact support. From (18.24) it holds that∫

d4rpϕ(p)I (p,ε) = (s − 1)!
∫
D′

dμ(u)
∫

d4rpϕ(p)I (p,ε,u), (18.43)

whereas (18.40) and (18.41) imply∫
d4rpϕ(p)I (p,ε,u) = (−1− iε)−a

∑
η,γ

εηaη,γ (u)
∫

d4rp
Mγ (p)ϕ(p)

(C(p,u,ε)+m2)s−2n .

(18.44)

To prove the convergence of the integral (18.43) as ε→ 0+, in view of (18.42) it suffices
to prove the uniform convergence over u ∈ D′ as ε→ 0+ of the integrals∫

d4rp
Mγ (p)ϕ(p)

(C(p,u,ε)+m2)s−2n . (18.45)

Since ϕ has a compact support, we do not have to worry about the convergence of the
integral itself. Recalling (18.37) and using Lemma 18.2.18 for a = −Qu(p0) and α :=
m2+∑1≤ν≤3 Qu(pν) implies that as far as taking the limit as ε→ 0+ goes, in (18.45) we
may replace C(p,u,ε)+m2 = α(1+ iε)+ a by

a + (1− iε)α = −Qu(p0)+ (1− iε)(m2 +
∑

1≤ν≤3

Qu(pν)).

That is, it suffices to prove the uniform convergence over u as ε→ 0+ of the integrals∫
d4rp

Mγ (p)ϕ(p)

(−Qu(p0)+ (1− iε)α)s−2n
= 1

αs−2n

∫
d4rp

Mγ (p)ϕ(p)

(1− iε −Q′u(p0))s−2n
,

where Q′u(p0) = Qu(p0)/α. This follows from Lemma 18.1.7 used at given values of pν

for ν ≥ 1 and completes the proof of convergence as ε→ 0+ of the integrals (18.43).
It remains to prove Lorentz invariance. First we note that for α > 0 we have limε→0+

f (αε) = limε→0+ f (ε). Using this for α = m2+∑1≤ν≤3 Qu(pν), and since we take limits
in integrals in p0 at given values of pν , 1 ≤ ν ≤ 3, in (18.45) we may also replace

−Qu(p0)+ (1− iε)(m2 +
∑

1≤ν≤3

Qu(pν)) = m2 − iεα −Qu(p0)+
∑

1≤ν≤3

Qu(pν)

by

m2 − iε −Qu(p0)+
∑

1≤ν≤3

Qu(pν).

Assuming now that P (k,p,0) is Lorentz invariant, let us prove the Lorentz invariance of
the limiting distribution. In (18.44) only the terms for which η = 0 contribute. Since∑

γ a0,γ (u)Mγ (p) = R(p,0,u) we have in fact
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lim
ε→0+

∫
d4rpϕ(p)I (p,ε,u)

= lim
ε→0+

∫
d4rp

R(p,0,u)ϕ(p)(
m2 − iε −Qu(p0)+∑1≤ν≤3 Qu(pν)

)s−2n
. (18.46)

The right-hand side is Lorentz invariant, in the sense that it does not change if we replace
ϕ(p) = ϕ(p1, . . . ,pr ) by the function ϕ(A(p1), . . . ,A(pr )) for a Lorentz transformation
A. This follows from the change of variable p′j = A(pj ), using that R(p,0,u) is Lorentz
invariant and Lemma 18.2.16.

18.3 Proof of Proposition 18.2.12

To prove Theorem 18.2.1 it only remains to prove Proposition 18.2.12, a task which we
start now. Our main tool is the following elementary but fundamental fact about analytic
functions: A non-zero analytic function defined in a connected open set of the complex plane
has only isolated zeroes. Consequently if two such functions defined in the same connected
open set coincide, say, on a line segment, they are identical. Suppose then that we have an
integral I(z) depending on a complex parameter z, and which defines an analytic function
in a connected domain containing, say, R+. If for z ∈ R+ we succeed in computing this
integral by a change of variable, proving that then I(z) = J (z) for another analytic function
J (z) defined in the same connected domain as I , the equality I(z) = J (z) will hold not
only for z ∈ R+ but for all values of z in the connected domain. It will suffice to apply this
principle twice to obtain Proposition 18.2.12.

Keeping the value of u implicit consider the quadratic form on Rn given by

V (x) :=
∑
i≤s

ui
(∑
j≤n

ai,j xj
)2 ≥ 0,

and note that ∑
i≤s

uiWε

(∑
j≤n

ai,j kj
) = −(1+ iε)V (k0)+

∑
1≤ν≤3

V (kν), (18.47)

so that (18.38) becomes

I (p,ε,u) =
∫

d4nk
Tu(k,p,ε)(−(1+ iε)V (k0)+∑1≤ν≤3 V (kν)+ C(p,u,ε)+m2

)s . (18.48)

Consider the subset U of the complex plane defined as

U = {−c + (1+ iε)d ; c,d ∈ R , c,d ≥ 0}, (18.49)

so that for z �∈ U the denominator in the integral

θ (z) :=
∫

d4nk
Tu(k,p,ε)(−(1+ iε)V (k0)+∑1≤ν≤3 V (kν)+ z

)s (18.50)
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never vanishes. Next we prove that for z �∈ U the integral (18.50) is absolutely convergent.
First, from the convergence of (18.14) it follows by power-counting that degk P (k,p,ε) <
2s− 4n because the degree of the denominator is≤2s. Consequently by (15.1) it holds that

|Tu(k,p,ε)| = |P (k + B(q(p),u),p,ε)| ≤ C1(‖k‖2s−4n−1 + 1), (18.51)

where ‖k‖2 =∑
j≤n ‖kj‖2. Here and below C1, . . . are constants depending only on u,ε,p

but certainly not on k. Next, by (18.17) it holds that∣∣∣− (1+ iε)V (k0)+
∑

1≤ν≤3

V (kν)
∣∣∣ ≥ 1

C2

∑
0≤ν≤3

V (kν). (18.52)

Since the matrix (ai,j ) is of rank n, when all ui are >0 the quadratic form V (x) is positive
definite, so that V (x) ≥ ‖x‖2/C3. Combining with (18.52) yields∣∣∣− (1+ iε)V (k0)+

∑
1≤ν≤3

V (kν)
∣∣∣ ≥ 1

C2C3
‖k‖2. (18.53)

Comparing with (18.51)(and using that the denominator never vanishes for z /∈ U ) should
make the required convergence of the integral obvious.

Exercise 18.3.1 Give a direct proof of the convergence of the integral (18.26).

The polynomial Tu(k,p,ε) is a sum of monomials. Making the change of variable
kν → −kν for a certain 0 ≤ ν ≤ 3 shows that such a monomial contributes to the integral
(18.50) only if its total degree in the variables kνj is even (since the denominator is invariant
by the change of variable). We assume from now on that this property holds for each
monomial in T .

It is rather obvious from the previous estimates that we are permitted to differentiate in z
inside the integral (18.50). The formula (18.50) thus defines an analytic function θ (z) in the
complement of U . This complement contains the positive real line. For z ∈ R+ the change
of variable k→ k

√
z shows that

θ (z) = z2n−s
∫

d4nk
Tu(k
√
z,p,ε)(−(1+ iε)V (k0)+∑1≤ν≤3 V (kν)+ 1

)s . (18.54)

The right-hand side defines another analytic function of z in the complement of U , so that
these two analytic functions coincide in the entire complement of U . Now, recalling the
quantity C(p,u,ε) of (18.36), we claim that z = m2 + C(p,u,ε) �∈ U . Otherwise, arguing
by contradiction, we havem2+C(p,u,ε) = −c+d(1+iε) where c,d ≥ 0. ThusC(p,u,ε) =
−m2−c+d(1+iε). On the other hand, by (18.36) we haveC(p,u,ε) = c′−d ′(1+iε) where
c′,d ′ ≥ 0. Comparing the imaginary parts of these two expressions, we see that d = d ′ = 0,
so that −m2 − c = c′ and −m2 = c+ c′ which is impossible since c,c′ ≥ 0 and −m2 < 0.
We have proved that z = m2+C(p,u,ε) �∈ U , so that one may use (18.54) for this value of
z to obtain that for any p,ε,u one has

I (p,ε,u) = 1

(C(q,u,ε)+m2)s−2n

∫
d4nk

Tu(k
√
C(p,u,ε)+m2,p,ε)(−(1+ iε)V (k0)+∑1≤ν≤3 V (kν)+ 1

)s .
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We have made good progress toward (18.40), and we now study the integral above, which
is absolutely convergent according to the estimates (18.51) and (18.53). This integral is
σ (−1− iε) where the function of σ (z) is given by

σ (z) =
∫

d4nk
Tu(k

√
C(q,u,ε)+m2,p,ε)(

zV (k0)+∑1≤ν≤3 V (kν)+ 1
)s .

The denominator never vanishes if z belongs to the complement of R− = {x ∈ R,x < 0},
and one can check as before that then the integral is absolutely convergent. For z ∈ R+ we
may calculate σ (z) by the change of variable k0 → k0z−1/2, to obtain

σ (z) = z−n/2
∫

d4nk
Tu(kz

√
C(q,u,ε)+m2,p,ε)(∑

0≤ν≤3 V (kν)+ 1
)s ,

where the notation kz means that the component k0 has been changed to k0z−1/2. Defining
z−1/2 in the obvious manner in the complement of R−, the preceding formula9 defines an
analytic function of z there, and this function coincides with σ (z). In particular,

σ (−1− iε) = (−1− iε)−n/2
∫

d4nk
Tu(k(ε)

√
C(q,u,ε)+m2,p,ε)(∑

0≤ν≤3 V (kν)+ 1
)s ,

where the notation k(ε) means that the component k0 has been changed to k0(−1− iε)−1/2.
Let us call b the largest possible even degree of a monomial in Tu(k,p,ε) in the variables
k0
j so that b is even as noted. Consider the quantity

R(p,ε,u) := (−1− iε)(b+n)/2σ (−1− iε)

= (−1− iε)b/2
∫

d4nk
Tu(k(ε)

√
C(p,u,ε)+m2,p,ε)(∑

0≤ν≤3 V (kν)+ 1
)s .

In every monomial, the factor
√
C(p,u,ε)+m2 has been raised to an even power, so it

contributes as a polynomial in p and ε. The quantity R(p,ε,u) is a polynomial in ε because
the term (−1 − iε)b/2 removes all the negative powers of (−1 − iε) created by the terms
k0
j (−1− iε)−1/2 (because in each monomial there is an even number d ≤ b of such terms).

Thus we have proved (18.40) with a = (b + n)/2 ≥ 0.10 Letting ε→ 0+, we observe that
(−1− iε)−1/2 → i and we obtain

R(p,0,u) = (−1)b/2
∫

d4nk
Tu(k(0)

√
C(p,u,0)+m2,p,0)(∑

0≤ν≤3 V (kν)+ 1
)s , (18.55)

where the notation k(0) means that the component k0 has been changed to ik0.

9 What we are doing here is basically a Wick rotation on each of the components k0
j

. It is not so simple to do in
a rigorous manner, and the present approach solves this technical difficulty. To relate our method to Wick
rotation, observe that (−1− iε)−1/2 ∼ i.

10 One may pursue the computation of the right-hand side integral by diagonalizing the quadratic form V (x) in
an orthonormal basis, but the information gained this way is irrelevant to our argument.
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It remains only to show that R(p,0,u) is Lorentz invariant. Let us use synthetic notation.
For p = (pj )j≤r and a Lorentz transformation A we write A(p) = (A(pj ))j≤r , etc.
Recalling that q = q(p) by (18.22), by linearity we have q(A(p)) = A(q(p)). Writing
what this means it is straightforward that B(A(q),u) = A(B(q,u)).

Exercise 18.3.2 Prove it.

Going back to (18.39) and using that P (k,p,0) is Lorentz invariant by hypothesis we
obtain

Tu(A(k),A(p),0) = Tu(k,p,0). (18.56)

From (18.37) and Lemma 18.2.16, it holds that

C(A(p),u,0) = C(p,u,0). (18.57)

Thus, using (18.57) in the first line and (18.56) in the second line,

R(A(p),0,u) = (−1)b/2
∫

d4nk
Tu(k(0)

√
C(p,u,0)+m2,A(p),0)(∑
0≤ν≤3 V (kν)+ 1

)s
= (−1)b/2

∫
d4nk

Tu(A−1(k(0))
√
C(p,u,0)+m2,p,0)(∑

0≤ν≤3 V (kν)+ 1
)s .

To lighten notation, let us think of p and u as fixed once and for all, and let us consider the
polynomial in k given by

H (k) := Tu(k
√
C(p,u,0)+m2,p,0). (18.58)

Changing A into A−1 we conclude the proof by showing that for a Lorentz transformation
A we have∫

d4nk
H (A(k(0)))(∑

0≤ν≤3 V (kν)+ 1
)s = ∫

d4nk
H (k(0))(∑

0≤ν≤3 V (kν)+ 1
)s . (18.59)

Let us first consider the case where A is a rotation, so that A(k)0 = k0. It should be
obvious that then A(k(0)) = A(k)(0), and the equality (18.59) follows by making the
change of variables kj → A−1(kj ) in the integral in the left of (18.59), and using that
both the integration measure and the denominator are invariant under this transformation
(as is apparent following the argument of Lemma 18.2.16).

Since we have proved on page 111 that a Lorentz transformation is the product of a pure
boost and a rotation, it suffices to prove (18.59) when A is a pure boost. According to (4.23)
it suffices to consider the case where A is of the type (recalling (4.21) and denoting by x an
element of R1,3)

A(x) = (cosh z x0 + sinh z x3,x1,x2, sinh z x0 + cosh z x3),

and where z ∈ R. This formula also makes sense when the xν are complex numbers.
Denoting by x(0) the element of C4 obtained by changing x0 into ix0 and leaving the other
components unchanged, it is straightforward that A(x(0)) = Uz(x)(0) where
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Uz(x) = (cosh z x0 − i sinh z x3,x1,x2,i sinh z x0 + cosh z x3). (18.60)

Thus all we have to prove is the equality∫
d4nk

H (Uz(k)(0))(∑
0≤ν≤3 V (kν)+ 1

)s = ∫
d4nk

H (k(0))(∑
0≤ν≤3 V (kν)+ 1

)s . (18.61)

The left-hand side defines an analytical function of z ∈ C. When z ∈ iR, z = iz′, z′ ∈ R, the
equalities cosh z = cos z′ and−i sinh z = sin z′ together with (18.60) prove that Uz defines
a rotation of R4, in which case we have already proved that (18.61) holds. Therefore it holds
for all values of z, completing the proof of Proposition 18.2.12.

18.4 A Side Story: Feynman Diagrams and Wick Rotations

Euclidean propagators are not only useful in theoretical considerations but also in practice.
The value of Feynman diagrams is often computed through the following strategy.

• One performs a reverse Wick rotation on the external momenta, that is the compo-
nents p0

j are replaced by −ip0
j .

• One performs a Wick rotation on the variables k0
j and one computes the value of the

resulting diagram for the new external momenta.

As shown below, the two Wick rotations basically “amount to replacing the true propa-
gator by the Euclidean propagator”. We cannot really expect to prove easily a theorem in
full generality to the effect that the above procedure works, since we know how to define the
value of a Feynman diagram only in the sense of distributions as in Zimmermann’s theorem.
Rather we will prove that the procedure does work when the energy component of the exter-
nal momenta is small enough (and unphysical). We then simply cross our fingers that the
actual formulas obtained in this manner extend to all values through analytic continuation
without too many singularities. In the next statement, for r = (rν)0≤ν≤3 ∈ C×R3 we write

Q(r) =
∑

0≤ν≤3

(rν)2, (18.62)

so that Q(r) = ‖r‖2 when r0 ∈ R.

Theorem 18.4.1 Consider a polynomial P (k).11 Assume that the matrix (ai,j ) is of
rank n, and that the integral∫

d4nk
|P (k)|∏

i≤s(‖
∑

j≤n ai,j kj‖2 + 1)
(18.63)

is convergent. Then the formula

J (q1, . . . ,qs) = lim
ε→0+

∫
d4nk

P (k)∏
i≤s

(
Wε(

∑
j≤n ai,j kj + qi)+m2

) (18.64)

11 We could also consider a polynomial P (k,p,ε) with the same argument, but this makes the notation more
complicated, and we do not want to obscure what is a very simple observation.
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defines a function of q1, . . . ,qs ∈ R1,3 in the domain {∀i ≤ s,|q0
i | < m}. Consider

the polynomial P̃ (k) obtained from P (k) by replacing each k0
j by ik0

j . Consider four-

vectors (ri)i≤n where now r0
i is allowed to take complex values i.e. ri ∈ C×R3, with

|Im r0
i | < m. Then, recalling the notation (18.62), the integral

I (r1, . . . ,rs) =
∫

d4nk
P̃ (k)∏

i≤s(Q(
∑

j≤n ai,j kj + ri)+m2)
(18.65)

converges. Furthermore,

J (q1, . . . ,qs) = inI (R(q1), . . . ,R(qs)) (18.66)

where R(qi) = (−iq0
i ,q

1
i ,q

2
i ,q

3
i ).

In words, the true value of the J (q1, . . . ,qs) may be obtained by making a reverse Wick
rotation of the external momentum q0

i , and a Wick rotation of the variables k0
j . This “replaces

the Minkowski by the Euclidean propagators”.

Proof We first prove the existence of the integral (18.65). Fixing i ≤ s let α =∑
j≤n ai,j k

0
j and r0

i = β + iγ (= Re r0
i + iIm r0

i ) where β,γ ∈ R, so that(∑
j≤n

ai,j k
0
j + r0

i

)2 = (α + β + iγ )2 = (α + β)2 + 2i(α + β)γ − γ 2,

and thus

Re
(∑
j≤n

ai,j k
0
i + r0

i

)2 = (∑
j≤n

ai,j k
0
j + Re r0

i

)2 − |Im r0
i |2.

If we denote by Real ri the element of R4 obtained from ri by replacing r0
i by its real part,

it follows that

ReQ
(∑
j≤n

ai,j kj + ri
) = ∥∥∑

j≤n
ai,j kj + Real ri

∥∥2 − |Im r0
i |2.

For the complex number z = Q(
∑

j≤n ai,j kj + ri)+m2 we have |z| ≥ Re z and thus∣∣∣Q(∑
j≤n

ai,j kj + ri
)+m2

∣∣∣ ≥ ∥∥∑
j≤n

ai,j kj + Real ri
∥∥2 +m2 − |Im r0

i |2. (18.67)

On the other hand, by the triangle inequality we have ‖x‖ ≤ ‖x+ y‖+‖y‖ so that ‖x‖2 ≤
2(‖x + y‖2 + ‖y‖2), and we obtain, using also that |Im r0

i | < m,∥∥∑
j≤n

ai,j kj
∥∥2 + 1 ≤ 2

(∥∥∑
j≤n

ai,j kj + Real ri
∥∥2 + ∥∥Real ri

∥∥2 + 1
)

≤ C
(∥∥∑

j≤n
ai,j kj + Real ri

∥∥2 +m2 − |Im r0
i |2
)
, (18.68)
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where

C = 2+ 2 max
i≤n

∥∥Real ri
∥∥2 + 1

m2 − |Im r0
i |2

.

Combining with (18.67) yields ‖∑j≤n ai,j kj‖2+ 1 ≤ C|Q(
∑

j≤n ai,j kj + ri)+m2|. The
convergence of the integral (18.65) is then a consequence of the convergence of the integral∫

d4nk
|P̃ (k)|∏

i≤s(‖
∑

j≤n ai,j kj‖2 + 1)
, (18.69)

which itself follows from the convergence of the integral (18.63) through the power-
counting theorem, since obviously degE P = degE P̃ for any subspace E.

Next we consider the function

θ (z) =
∫

d4nk
P (k)∏

i≤s
(
z
(∑

j≤n ai,j k
0
j + q0

j

)2 + (∑j≤n ai,jkj + qi
)2 +m2

) . (18.70)

Let us prove that it is well defined for z �∈ R−. For this, we note first that according to Lemma
18.2.5 for numbers c,d > 0 we have |c+zd| ≥ α(z)(c+d|z|) where α(z) = 1/4 if Re z > 0
and α(z) = |Im z|/4|z| if Im z �= 0. We then appeal to the argument of (15.19) to obtain
that the convergence of the integral in (18.70) follows from the convergence of the integral
(18.63). The formula (18.70) then defines an analytic function of z in the complement ofR−.

The integral in the right-hand side of (18.64) equals θ (−1− iε). For z ∈ R+ the change
of variable k0 → k0z−1/2 shows that then θ (z) is given by the formula

z−n/2
∫

d4nk
P (kz)∏

i≤s
((∑

j≤n ai,j k
0
j + z1/2q0

j

)2 + (∑j≤n ai,jkj + qi
)2 +m2

),
where the notation kz means that the components k0

i have been replaced by k0
i z
−1/2. As we

have seen this integral converges whenever |Im z1/2q0
i | < m for all i ≤ s. On this domain it

obviously defines an analytic function of z. This function must coincide with the function
(18.70). Taking z = −(1 + iε) and letting ε → 0+ (so that

√
z → −i) we obtain the

existence of the limit in (18.64) and the equality (18.66).

Key idea to remember: The problem of the singularities created by the small denominators
has received a complete solution.
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Proof of Convergence of the BPHZ Scheme

In this chapter we prove Theorem 16.1.1 through Zimmerman’s original approach [95]. The
delicate part of the proof is to show that the regularized integrands satisfy the hypotheses of
Theorem 18.2.1, i.e. that the hypotheses of Weinberg’s counting theorem are satisfied. This
requires grouping the compensating terms in a magnificently clever way, and will be done
in Section 19.3. The rest is simply elaborate bookkeeping.

The goal of this chapter is to prove that given a 1-PI Feynman diagram and a subspace
S ⊂ kerL with S �= {0} we have the following.

Theorem 19.0.1 Consider f0 ∈ (R1,3)E and a basis (fj )j≤N of S. Given u = (uj )j≤N
consider the point x(u) = f0+

∑
j≤N ujfj . Then, whatever the value of f0 we have1

deguRF (x(u)) < − dim S. (19.1)

19.1 Proof of Theorem 16.1.1

In this section we use Theorem 19.0.1 to complete the proof of Theorem 16.1.1. We will
complete this proof only in the case of 1-PI diagrams. The necessary modifications for
the general case have been sketched in Section 16.7, and completing the details offers
no difficulty and is left to the interested reader. Our main effort goes toward proving the
following.

Proposition 19.1.1 When we parameterize kerL by x = x(k) = ∑
j≤n kj τ (Lj ) as

in Section 15.8 the integral
∫

dμL(x)RF (x + X (p)) takes the form (18.13).

Proof of Theorem 16.1.1 According to Proposition 19.1.1 the integral∫
· · ·

∫ ∏
i≤n

d4ki

(2π )4RF (x(k)+ χ (p))

falls within the framework of Theorem 18.2.1, so the desired convergence will follow from
that theorem, provided we can prove that the integral (18.14) is absolutely convergent. For

1 The degree of a rational function is the degree of its numerator minus the degree of its denominator. You will
soon know everything about degrees.

563
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this we will appeal to Proposition 18.2.2. Consider k(u) = k0 +
∑

1≤�≤N u�k� as in this
proposition. Then x(u) := x(k(u)) = f0+

∑
1≤�≤N u�f� where f� = x(k�) and the vectors

(f�)1≤�≤N are independent. Denoting by S the span of these vectors, dim S = N and the
vectors (f�)1≤�≤N form a basis of S. The condition (18.15) then follows from (19.1) (see
Remark 18.2.3).

We turn to the proof of Proposition 19.1.1, which occupies the rest of this section. We
need first to make explicit the fact that “we deal with four copies of the same situation”. An
element x ∈ (R1,3)E is a family x = (xe)e∈E where xe = (x0

e ,x
1
e ,x

2
e ,x

3
e ) ∈ R1,3. Thus for

ν = 0,1,2,3 we may define xν = (xνe )e∈E ∈ RE .

Definition 19.1.2 We say that a linear map J from (R1,3)E to itself is a tensor map
if there is a linear map J 0 from RE to itself such that for any x ∈ (R1,3)E and any
0 ≤ ν ≤ 3 we have J (x)ν = J 0(xν).2

Lemma 19.1.3 The map I(x) of (16.10) is a tensor map.

Proof The basic fact is that x ∈ kerL if and only if xν ∈ kerL0 for each 0 ≤ ν ≤ 3. Let
us then denote by I0 the orthogonal projection of RE on kerL0, so that for y ∈ RE the point
y−I0(y) is orthogonal to kerL0. Then given x ∈ (R1,3)E the point z given by zν = I0(xν)
for 0 ≤ ν ≤ 3 is such that z ∈ kerL and x − z is orthogonal to kerL. Thus z = I(x).

Given a forest F , we recall the functions Fα and F ′α on (R1,3)Eα defined recursively on
page 506.

Lemma 19.1.4 The functions Fα(x) and F ′α(x) are of the type P ′(x,ε)/Q′(x,ε) where
P ′ and Q′ are polynomials in x and ε, Q′ being of the type

Q′(x,ε) =
∏
i≤s

(Wε(Ji(x)ei )+m2), (19.2)

where ei ∈ E ,3 and where Ji is a tensor linear map from (R1,3)Eα into itself.4 In
particular the function RF (x) is of this type (for α = γ ).

Proof The sum of two rational functions of the above type is of the same type, as is seen
by reducing to the same denominator. Thus it suffices to recursively prove the claim for the
functions Fα and F ′α . Everything is straightforward, except to check that when a function
F on (R1,3)E is of the previous type, this is also that case for T dF . Let us repeat how this
function is defined. Given z ∈ kerL we consider the function q �→ F (z + q) defined on
Q, and we compute the Taylor polynomial of order d at q = 0 of this function. This Taylor
polynomial is a function Gd (z,q). It is a sum of terms of the type P (q)DβF (z) where P (q)
is a polynomial in q and where DβF (z) is a partial derivative of the function q �→ F (z+q)
at q = 0. The function T dF on (R1,3)E is defined by T dF (x) = Gd (I(x),T (x)). It is a

2 The reason for the name is that we may identify (R1,3)E with R1,3 ⊗ RE and that a tensor map J is then a
map of the type Id⊗ J 0.

3 The point here is that the same edge e may occur several times as ei for different values of i.
4 So that Ji (x) is an element (Ji (x)e)e∈Eα of (R1,3)Eα .



19.2 Simple Facts 565

sum of terms of the type P (I(x))DβF (I(x)). The result then follows from the following
three facts. First, taking a partial derivative a rational function with a denominator of the
type (19.2) does not create new types of denominators. Second, I is a tensor map by Lemma
19.1.3. Third, the composition of two tensor maps is a tensor map (so that replacing x by
I(x) in an expression of the type (19.2) one obtains an expression of the same type.)

Lemma 19.1.5 If J is a tensor map when we parameterize kerL by x = x(k) =∑
j≤n kj τ (Lj ) for independent loops Lj as in (15.54), then J (x(k))= ∑

j≤n
kjJ

0(τ (Lj )).

Proof The definition of the expression kj τ (Lj ), x(k) is such that x(k)ν =∑
j≤n kνj τ (Lj ),

so that J (x(k))ν = J 0(x(k)ν) =∑
j≤n kνj J

0(τ (Lj )).

Proof of Proposition 19.1.1 Use of (15.54) shows that∫
dμL(x)RF (x + χ (p)) = C

∫
· · ·

∫ ∏
i≤n

d4ki

(2π )4
RF (x(k)+ χ (p)).

The issue is to show that the denominator of the function RF (x(k)+X (p)) has the correct
form. This follows from the fact that the function RF (x) is of the type described in Lemma
19.1.4. Concerning the dependence on k, since Ji is a tensor map, by Lemma 19.1.5 we
have Ji(x(k))ei =

∑
j≤n kj ai,j where ai,j = J 0

i (τ (Lj ))ei . A similar argument works for
the dependence in p, using the special form of X (p) described in Theorem 15.7.2.

19.2 Simple Facts

The material and the notation of Chapter 16 should be fresh in the reader’s mind.
We fix a 1-PI Feynman diagram throughout the entire chapter. A subdiagram α has set

of edges Eα and set of vertices Vα . The largest subdiagram is denoted γ , and is obtained
by removing the external lines and the external vertices of the Feynman diagram. Let
us recall yet again the fundamental tools of our construction. We denote by Lα the map
(R1,3)Eα → (R1,3)Vα as constructed in (15.30) and Qα = (kerLα)⊥. For x ∈ (R1,3)Eα

we define as before the orthogonal projections Iα(x) and Tα(x) of x on kerLα and Qα

respectively, so that

x = Iα(x)+ Tα(x). (19.3)

The restriction of Lα to Qα is one-to-one on its image Nα , and there is a linear map Wα

from Nα to Qα such that

Tα(x) =WαLα(x). (19.4)

Given two subdiagrams β ⊂ α we denote by Uβ,α the map from (R1,3)Eα → (R1,3)Eβ

which forgets the values of we for e �∈ Eβ ,

e ∈ Eβ ⇒ Uβ,α(w)e = we.

The following trivial fact will be used many times. It is an immediate consequence of the
definitions.
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Lemma 19.2.1 Consider two subdiagrams β ⊂ α and w ∈ (R1,3)Eα . Then for each
vertex v of β the quantity

Lα(w)v − LβUβ,α(w)v

is a linear combination of the quantities we where e is an edge of α adjacent to v and
e is not an edge of β. In particular if all these we are zero we have

Lα(w)v = LβUβ,α(w)v . (19.5)

Observe that (19.5) is just a reformulation of Lemma 15.4.3.
Of crucial importance is the “hereditary property of canonical flows”, to which we turn

now. Let us say that y ∈ (R1,3)Eα is a canonical flow for α if it belongs toQα . The hereditary
property states that y then induces a canonical flow in any subdiagram, i.e. for β ⊂ α,
Uβ,α(y) is a canonical flow for β.

Lemma 19.2.2 Consider two subdiagrams β ⊂ α. Then

Uβ,α(Qα) ⊂ Qβ .

Proof It suffices to show that if y ∈ Qα = (kerLα)⊥ then Uβ,α(y) ∈ (kerLβ )⊥ = Qβ .
To see this consider z ∈ kerLβ ⊂ (R1,3)Eβ . Consider the element z̄ ∈ (R1,3)Eα given by
z̄e = ze if e ∈ Eβ and ze = 0 otherwise. Then from Lemma 19.2.1 we have z̄ ∈ kerLα , so
that z̄ ⊥ y since y ∈ (kerLα)⊥. Now the dot product of z̄ and y equals the dot product of z
and Uβ,α(y) because the components of z̄ corresponding to the edges of Eα \ Eβ are zero.
Hence z ⊥ Uβ,α(y).

Since Qβ = ker Iβ , one may reformulate the previous result as

IβUβ,α(Qα) = {0}. (19.6)

The following formula is not intuitive, but it is important. It will allow us to calculate. It
will be used many times.

Lemma 19.2.3 Consider two subdiagrams β ⊂ α. Then

IβUβ,αIα = IβUβ,α . (19.7)

Proof Since Tα(z) ∈ Qα , applying IβUβ,α to the equality z = Iα(z)+Tα(z) (19.7) follows
from (19.6).

We will be very much concerned by the following problem. Consider two subdiagrams
β ⊂ α and a function F on (R1,3)Eβ . Then F̃ := FUβ,α is a function on (R1,3)Eα . How do
we relate F , seen as a function on (kerLβ )×Qβ , with F̃ , seen as a function on (kerLα)×
Qα? The following is an important step in this program.

Lemma 19.2.4 Consider two subdiagrams β ⊂ α and w ∈ kerLα ⊂ (R1,3)Eα . Then
for q ∈ Qα we have

Uβ,α(w + q) = IβUβ,α(w)+ c(w)+ b(q), (19.8)
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where b(q) ∈ Qβ is a linear function of q ∈ Qα and where c(w) ∈ Qβ is a linear
function of the variables we where e ∈ Eα \ Eβ is an edge with at least a vertex in β.

Proof Let z := Uβ,α(w+q), so that Iβ (z) = IβUβ,α(w) by (19.6). Then, recalling (19.3)
and (19.4),

z = Iβ (z)+ Tβ (z) = IβUβ,α(w)+WβLβ (z). (19.9)

Now,

Lβ (z) = LβUβ,α(w)+ LβUβ,α(q). (19.10)

Since Lα(w) = 0, by Lemma 19.2.1, the first term LβUβ,α(w) on the right is a linear
function c′(w) of the quantities we where e is an edge adjacent to a vertex of β but is not
an edge of β. The second term LβUβ,α(q) on the right is a linear function b′(q) of q. Thus
WβLβ (z) = Wβc

′(w) +Wβb
′(q). Combining with (19.9) this is the required result with

c(w) =Wβc
′(w) and b(q) =Wβb

′(q).

Let us note also the following.

Lemma 19.2.5 Consider x ∈ (R1,3)E with L(x) = 0 and x �= 0. Consider the subdi-
agram τ consisting of all the edges e with xe �= 0. Then the connected components of
this subdiagram are proper subdiagrams.

Proof Let x′ = Uτ,γ (x) so that Lτ (x′) = 0 by (19.5). We apply now Corollary 15.6.4
to the diagram τ . Each edge e of τ is such that x′(e) = x(e) �= 0, so that it belongs to a
loop of τ . The conclusion follows by applying Lemma 16.4.3 to the connected components
of τ .

19.3 Grouping the Terms

The convergence of the renormalized integrand will be proved using Theorem 15.2.1.
Throughout this section we fix once and for all a linear subspace S of kerL ⊂ (R1,3)E ,
with S �= {0}. Thus

∀x ∈ S , L(x) = 0. (19.11)

Our ultimate goal is to prove Theorem 19.0.1. Depending on S, we will group the terms
in the expression RF = (1− T d(γ ))

∑
F forest to bring forward cancellation between these

terms. This is the marvelously clever part of Zimmermann’s proof. The main grouping of
the terms is obtained in the equation (19.19), RF = ∑

G complete RGF . The magic of that
formula is that the quantities RGF may be recursively computed and that at certain stages
the recursion takes the form (19.23), H ′α(x) = (1 − T d(α))Hα(x), where the crucial factor
1− T d(α) produces cancellation.

For a subdiagram α we recall the maps Lα , Iα and Tα of Section 19.2. For x ∈ (R1,3)E

and a subdiagram α we define

Mα(x) := IαUα,γ (x) ∈ kerLα ⊂ (R1,3)Eα . (19.12)
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An important idea is that “when working with α one does not see S but only Mα(S)”, so
these spaces are essential. As a consequence of (19.7) we note that if β ⊂ α then

IβUβ,αMα = Mβ . (19.13)

We will also use many times that (as follows from (19.12)),

z ∈ Mα(S)⇒ Lα(z) = 0.

Definition 19.3.1 An edge e of a subdiagram α is called α-passive if the function
z �→ ze is identically zero on Mα(S). Otherwise the edge is called α-active.

The following simple fact is fundamental.

Lemma 19.3.2 Consider two diagrams β ⊂ α. Assume that all edges of α which are
not edges of β but are adjacent to a vertex of β are α-passive. Then for x ∈ S one has

Mβ (x) = Uβ,αMα(x). (19.14)

In particular an edge of β is β-active if and only if it is α-active.

Proof Consider x ∈ S and z = Mα(x), so that Lα(z) = 0. Since we assume that all
edges of α that are not edges of β but are adjacent to a vertex of β are α-passive, for such
an edge e we have ze = 0 and thus by (19.5) we get LβUβ,α(z) = Lα(z) = 0. Thus
IβUβ,α(z) = Uβ,α(z) and therefore by (19.13) it holds that

Mβ (x) = IβUβ,αMα(x) = IβUβ,α(z) = Uβ,α(z) = Uβ,αMα(x).

Let us recall that a forest F is a collection of proper connected subdiagrams (of the given
Feynman diagram) containing γ , and such that if α,β ∈ F and α ∩ β �= ∅, then either
α ⊂ β or β ⊂ α.

Definition 19.3.3 Given a subdiagram α belonging to a forest F , we denote by
E(F,α) the set of edges of α which are not edges of any β ∈ F which is strictly
contained in α.

Equivalently, in the formulation of Lemma 16.5.3, the edges in E(F,α) are the edges of
α which are not edges of one of the αi .

Definition 19.3.4 A forest G is called complete if for each α ∈ G either all the edges
of E(G,α) are α-active or all these edges are α-passive.

Our program is as follows:

• Given a forest F , we will construct in a natural manner a complete forest F̄ contain-
ing F .

• We will group together the forests F with a given value of F̄ and this will bring
cancellation forwards.
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Let us try to provide some intuition for these claims, which are certainly not obvious, by
examining the forest {γ }.5 This forest has no reason to be complete, since some edges will
be γ -active and some will be γ -passive. Let us call τ the subdiagram generated by the γ -
active edges. This subdiagram need not be connected, so we decompose it into its connected
components τ1, . . . ,τñ. Let us show that the forestG = {γ,τ1, . . . ,τñ} is complete. First, it is
obvious that each edge of E(G,γ ) is γ -passive by construction. Next, consider a subdiagram
τi . Each edge adjacent to a vertex of τi but not in τi is γ -passive since τi is a connected
component of τ . Then by Lemma 19.3.2 each edge of τi is τi-active because it is γ -active,
completing the proof that G is complete. For a subset I of {1, . . . ,ñ} consider the forest FI

which consists of γ and of the diagrams τi for i ∈ I . It is not obvious now, but we will
prove that a forest F is such that G = F̄ (the natural complete forest containing F as we
will construct below), if and only if there is a subset I of {1, . . . ,ñ} such that F = FI . Thus
summing over the forests F such that F̄ = G amounts to summing over the forests FI . Let
us then compute6 FIF as in (16.18). For i ≤ ñ and x ∈ (R1,3)Eτi let Fi(x) =∏

e∈Eτi f (xe).

For x ∈ (R1,3)Eγ let Ui(x) = (xe)e∈Eτi , so that Fi(Ui(x)) = ∏
e∈Eτi f (xe). It should then

be obvious from (16.18) that for x ∈ (R1,3)Eγ we have

FIF (x) =
∏
i∈I

(−T d(τi )Fi(Ui(x)))
∏

f (xe)

where the last product is over the edges of γ which are not edges of any τi for i ∈ I .
Consequently,

FIF (x) =
∏
i∈I

(−T d(τi )Fi(Ui(x)))
∏
i �∈I

Fi(Ui(x))
∏

f (xe)

where the last product is now over the edges of γ which are not edges of any τi , i ≤ ñ.
When we sum these quantities over I we obtain the identity∑

I⊂{1,...,ñ}
FIF =

∏
i≤ñ

(1− T d(τi ))Fi(Ui(x))
∏

f (xe). (19.15)

and each of the terms 1− T d(τi ) creates cancellation. This will be explained in detail right
after the statement of Lemma 19.4.1.

Given a forest F and α ∈ F , for every α in F we perform the following construction.
(We will refer to this construction as “the basic construction relative to α”.) We remove from
α all the edges in E(F,α) which are α-passive, if such edges exist. (It will turn out that if
no such edge exists, the construction does not do anything.) We consider the subdiagram τ

generated by the remaining edges. Equivalently, τ is the subdiagram whose edges are edges
of α which are either α-active, or are edges of one of the maximal subdiagrams (αi)i≤ñ of α.
This subdiagram τ need not be connected, so we decompose it in its connected components
τ1, . . . ,τr . The key property of this construction is as follows.

5 All the ideas are already pretty apparent on that case, and the general case uses more technique but no more
ideas.

6 Of course FI F denotes the function constructed in (16.19) when F = FI .
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Lemma 19.3.5 (a) Each maximal subdiagram αi is contained in one of the τj .7

Consequently, each β ∈ F which is strictly contained in α is contained in one of
the τj .
(b) If β ∈ F contains one of the τj with τj �∈ F then β contains α.
(c) All the τj are proper subdiagrams.

Proof (a) holds because we have not removed any edge of any αi (since by definition these
edges do not belong to E(F,α)) and because αi is connected by the definition of a forest.
(b) Such a β intersects α, so since F is a forest, if we assume that β does not contain α,
then β is strictly contained in α, so it is contained in one of the αi and by (a) β is contained
in a certain τj ′ . Since τj ⊂ β, we must have j = j ′ and β = τj . This is impossible since
we assume that τj �∈ F .
(c) We will use Lemma 16.4.3 and prove that each edge e of τj is part of a loop contained in
τj . Assume first that e is an edge of a certain αi . Then by (a) αi ⊂ τj . Since αi is a proper
subdiagram there exists a loop of αi using that edge, and this loop is contained in τj .

On the other hand, by the definition of τ , if the edge e of τ is not an edge of any αi it
must be α-active. Thus there exists z ∈ Mα(S) with ze �= 0. Since Lα(z) = 0, by Lemma
19.2.5 the edge e is part of a loop contained in the set of edges where z �= 0, and thus in τ .
Since the loop passes through e which is an edge of the connected subdiagram τj , it is
contained in τj .

One may think of the previous construction as creating diagrams “between α and its
maximum subdiagrams”. One should not be confused by this sentence. Some of the τj may
very well not contain any β ∈ F . Let us also note that when all the edges in E(F,α) are
α-active, then in the previous construction we have τ = α. In that case, the construction
does not create any new subdiagram, and the τj are simply the αi . Of course Lemma 19.3.5
remains (trivially) true in that case.

t3a3=

t4

t1

t5

a4

a

a1

a2

Figure 19.1 The main construction.

7 But as shown in Figure 19.1 some of the τj may not contain any αi , or may contain several of them.
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Definition 19.3.6 Consider a forest F and a subdiagram β �= γ . We do not require
that β ∈ F . We denote by β+F the smallest element of F which strictly contains β.

Thus β is strictly contained in β+F . Until further notice we lighten notation by writing
β+ for β+F .

Definition 19.3.7 Given a forest F we denote by F̄ the union of F and of all the sets
τj generated performing the basic construction relative to all elements α of F .

Lemma 19.3.8 (a) If β ∈ F̄ \ F then β is constructed by applying the basic con-
struction to β+.
(b) Consider β ∈ F̄ \ F and α ∈ F . If α ∩ β �= ∅ and α is strictly contained in β+

then α ⊂ β.

Proof (a) By definition of F̄ , β is obtained by applying the basic construction to a certain
element α of F , which by Lemma 19.3.5 (b) is the smallest element β+ of F containing β.
(b) According to (a) β is obtained by applying the basic construction to β+. The connected
components τj of the diagram τ of this basic construction are disjoint and β is one of them.
We apply Lemma 19.3.5 (a) to the pair β+,α8 to obtain that α is contained in one of the τj .
Since α ∩ β �= ∅ then β = τj and α ⊂ β since α ⊂ τj .

Lemma 19.3.9 F̄ is a forest.

Proof Consider β,β ′ ∈ F̄ , and assume that β∩β ′ �= ∅. We want to show that one of these
sets contains the other. We simply have to patiently check all the cases. We already know
that this is the case if they both belong to F so assume that β /∈ F . Thus β is obtained by
applying the basic construction to β+ ∈ F . Assume first that β ′ ∈ F . Thus β ′∩β+ �= ∅ and
one of these sets contains the other since F is a forest. If β+ ⊂ β ′ then β ⊂ β+ ⊂ β ′. If β ′

is strictly contained in β+, then β ′ ⊂ β by Lemma 19.3.8 (b). Assume now that β ′ ∈ F̄ \F ,
so that β ′ is obtained by applying the basic construction to β ′+. Again since F is a forest,
one of the sets β+,β ′+ contains the other. If β+ = β ′+ it should be obvious that β = β ′

(since they are the same connected component of the diagram τ of the basic construction).
If β+ is strictly contained in β ′+, by Lemma 19.3.8 (b) applied to α = β+ ∈ F we obtain
that β+ ⊂ β ′, so that then β ⊂ β+ ⊂ β ′. Similarly if β ′+ is strictly contained in β+ then
β ′ ⊂ β.

There is no reason why the τj should be renormalization sets, so F̄ need not consist
of renormalization sets. This is why it is convenient to allow a forest to contain proper
connected subdiagrams which are not renormalization sets. Only later we will prove that F̄
is the smallest complete forest containing F .

Exercise 19.3.10 Consider α ∈ F and its maximum subdiagrams (αi)i≤ñ. Prove that
if all the edges in E(F,α) are α-active, then the elements of F̄ which meet α either
contain α or are contained in one of the αi .

8 That is the α of Lemma 19.3.5 is β+ and the β of the lemma is α.
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Lemma 19.3.11 Consider β ∈ F̄ \ F . Then β+ is the smallest element of F̄ which
contains strictly β.

The point here is that β+ is defined as the smallest element ofF containing β. The lemma
shows that it is also the smallest element of the larger forest F̄ containing β. Recalling
Definition 19.3.6 one may reformulate Lemma 19.3.11 as follows: If β ∈ F̄ \ F then
β+F = β+F̄ .

Proof Consider the smallest α ∈ F̄ such that β is strictly contained in α, so that α ⊂ β+

since β is strictly contained in β+ and β+ ∈ F̄ . We have to prove that α = β+. For this
it suffices to prove that α ∈ F since then α = β+ by definition of β+ ∈ F̄ . Assume for
contradiction that α ∈ F̄ \ F , so that by Lemma 19.3.8 (a) α is obtained by applying the
basic construction to α+. Since α ⊂ β+ ∈ F and since α �∈ F , α is strictly contained in β+

so that α+ ⊂ β+. Assume first that α+ is strictly contained in β+. Since β ⊂ α ⊂ α+ we
have α+ ∩ β �= ∅ and we may apply Lemma 19.3.8 (b) to the pair α+ ∈ F and β ∈ F̄ \F .
We obtain that α ⊂ β, which contradicts the fact that β is strictly contained in α. Assume
finally that α+ = β+. Then α = β because they are the same connected component of
the diagram τ of the basic construction, and this contradicts again the fact that β is strictly
contained in α.

Proposition 19.3.12 The forest F̄ is complete. More precisely,
(a) Given α ∈ F then all the edges in E(F̄,α) are α-passive.
(b) Given β ∈ F̄ \ F all the edges in E(F̄,β) are β-active.

Proof When α ∈ F by construction E(F̄,α) consists only of α-passive edges. This proves
(a). To prove (b) consider β ∈ F̄ \F . By construction of F̄ , such a β has been obtained as
follows: There is α (=β+) in F such that β is one of the connected components τj of the
subdiagram τ of α obtained by removing from α the α-passive edges in E(F,α). Consider an
edge e of E(F̄,β). We have to prove that e is β-active. Consider the maximum subdiagrams
αi of α. Next, we prove that e is not an edge of an αi . By Lemma 19.3.5 (a) each of the αi is
contained in one of the τj . These do not have vertices in common. So, either αi is contained
in β or disjoint from β. Thus if e is an edge of an αi , then αi ⊂ β, but since αi ∈ F ⊂ F̄
this contradicts the assumption that e ∈ E(F̄,β). We have proved that e is not an edge of
an αi , so that e ∈ E(F,α). Since e belongs to τ , it is α-active by construction. Since β is a
connected component of τ , any edge of Eα \ Eβ adjacent to a vertex of β is not an edge of
τ , so that by construction it is α-passive. Then Lemma 19.3.2 proves that e is β-active.

Definition 19.3.13 Consider a forestG and a subdiagram α ∈ G. If all edges of E(G,α)
are α-active we say that α is active. If all edges of E(G,α) are α-passive we say that
α is passive.

By definition of a complete forest (Definition 19.3.4) each diagram in a complete forest
is either active or passive.

We recall Definition 19.3.6.
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Definition 19.3.14 Given a complete forestG we define the forest Ĝ ⊂ G as consisting
of γ and the subdiagrams of α ∈ G which satisfy either of the following properties:

α is passive (19.16)

or else

α+G is active. (19.17)

In some sense the important part of G is G \ Ĝ, which consists of the subdiagrams α ∈ G
for which α is active and α+G is passive.

Proposition 19.3.15 Given a complete forest G, a forest F satisfies F̄ = G if and
only if Ĝ ⊂ F ⊂ G.

For clarity we will break the proof in three lemmas. Throughout the proof for a diagram
α ∈ G, (α �= γ ) we use the notation α+ = α+G . (Thus our previous convention that α+ = α+F
is replaced from this point on by the convention that α+ = α+G .) Until the end of the proof

the notions of active and passive diagrams refer to the forest G.9

Lemma 19.3.16 If F̄ = G then Ĝ ⊂ F ⊂ G.

Proof First we have F ⊂ F̄ = G. To prove that Ĝ ⊂ F we consider α ∈ F̄ \ F , with
the goal of proving that α �∈ Ĝ. Consider β = α+F . Since F̄ = G, it follows from Lemma
19.3.11 that β = α+(= α+G ). Moreover, by Proposition 19.3.12, α is active and β = α+ is

passive. Thus as desired α �∈ Ĝ.

Lemma 19.3.17 If Ĝ ⊂ F ⊂ G then G ⊂ F̄ .

Proof Considering α ∈ G \ Ĝ we have to show that α ∈ F̄ . We may assume that α �∈ F .
By definition of Ĝ, α+ is passive and α is active. In particular α+ ∈ Ĝ ⊂ F . We first prove
the following statement.

An edge e of α+ which is adjacent to a vertex of α,
but is not an edge of α is α+-passive. (19.18)

We prove that e ∈ E(G,α+). Arguing by contradiction, otherwise e is an edge of a subdi-
agram β of G which is strictly contained in α+. Since e is an edge of β, β has a vertex in
common with α, and since G is a forest we have β ⊂ α by definition of α+, so that e is an
edge of α, in contradiction with our hypothesis. We have proved that e ∈ E(G,α+), so that
e is α+-passive since α+ is passive.

Combining (19.3) with Lemma 19.3.2 proves that an edge of α is α-active if and only if
it is α+-active.

Consider the diagram τ constructed when we apply the basic construction to α+ ∈ F .
We now prove that an edge e of α is an edge of τ . If e ∈ E(G,α) then e is α-active because
α is active. According to (19.3) and Lemma 19.3.2 then e is α+ active, and therefore is an

9 On the other hand, given a diagram α ∈ F ⊂ G and an edge e of α, the notion that e is α active does not
depend on whether we think of α as an element of F or of G.
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edge of τ by construction of τ . If e �∈ E(G,α) then e belongs to a subdiagram β ∈ G of α,
β �= α, and we may assume that β is maximal with this property. Since β ⊂ α we have
β ⊂ β+ ⊂ α and then β+ = α for otherwise β would not be maximal with respect to the
property that β ⊂ α and β �= α. Then β+ = α is active so that β ∈ Ĝ ⊂ F . Since β ∈ F is
strictly contained in α, by construction of τ we have β ⊂ τ and again e is an edge of τ .

We have proved that an edge of α is an edge of τ so that α ⊂ τ . Since α is connected, it
is then contained in a connected component τj of τ , and it follows from (19.3) that τj = α

and thus that α ∈ F̄ .

Lemma 19.3.18 If Ĝ ⊂ F ⊂ G then F̄ ⊂ G.

Proof Let us consider α ∈ F ⊂ G. We want to prove that the subdiagrams we add to
F while performing the basic construction relative to α belong to G. Consider the maximal
subdiagrams α1, . . . ,αñ ∈ G of α as in Lemma 16.5.3. Let us stress that we apply this lemma
to G, not to F .

Since G is complete, α is either active or passive.10

Assume first that α is active. By definition of Ĝ, and since α+i = α is active, each αi

belongs to Ĝ ⊂ F and thus E(G,α) = E(F,α). Thus all edges of E(F,α) are α-active and
we add no element to F while applying the basic construction to α (as observed just before
Definition 19.3.6 ).

Thus it is enough to consider the case where α is passive. Consider the usual diagram τ

whose edges are either α-active, or are edges of some β ∈ F , β ⊂ α, β �= α. To construct
this diagram we remove all the passive edges of E(F,α), and in particular all the edges of
E(G,α), so that τ is contained in the union of the αi .

Since each αi is connected, a connected component τj of τ is contained in one of the αi .
We prove that then τj = αi ∈ G, concluding the proof of the lemma. Since αi is connected
it suffices to prove that αi ⊂ τ . Assume first that αi is passive. Then αi ∈ Ĝ ⊂ F so that
αi ⊂ τ by Lemma 19.3.5 (a). Assume next that αi is active, and consider an edge e of αi .
If e is αi-active, since α is passive then e is α-active by Lemma 19.3.2, so that e belongs
to τ . If e is αi-passive, since αi is active, e is an edge of a subdiagram β ∈ G with β ⊂ αi

and β �= αi . If β is maximal with respect to this property then β+ = αi . Since β+ = αi is
active then β ∈ Ĝ ⊂ F and β ⊂ τ by Lemma 19.3.5 (a) and again e is an edge of τ .

We have proved Proposition 19.3.15. It provides us with a method for regrouping the
various forests F according to the value of F̄ . This is done by writing (16.15) as

RF =
∑

G complete

RGF, (19.19)

where the sum is over all complete forests G, and where

RGF = (1− T d(γ ))
∑

Ĝ⊂F⊂G
FF . (19.20)

We show in the next section that cancellation occurs between the different terms of RG .

10 Recalling that these notions are with respect to G throughout the proof.



19.4 Bringing Forward Cancellation 575

19.4 Bringing Forward Cancellation

In this section we prove a magical formula to compute RGF , a formula that will bring
forward the steps at which cancellation occurs. A key point here is that any setF of diagrams
containing γ and such that Ĝ ⊂ F ⊂ G is a forest.

To describe the procedure, given a complete forest G, for α ∈ G we define recursively
functions H ′α and Hα on (R1,3)Eα as follows.11

Consider first the case where α contains no other diagram of G. We set

Hα(x) =
∏
e∈Eα

f (xe). (19.21)

When α ∈ Ĝ we define

H ′α(x) = −T d(α)Hα(x), (19.22)

and when α ∈ G \ Ĝ or α = γ we set

H ′α(x) = (1− T d(α))Hα(x), (19.23)

with the usual understanding that if d(α) < 0 the term T d(α) is 0.
Consider now the case where α contains other diagrams of G. We consider the maximal

elements α1, . . . ,αñ of α as in Lemma 16.5.3 and we set

Hα(x) =
∏
i≤ñ

H ′αi (Ui(x))
∏

f (xe), (19.24)

where the last product is over the edges in E(G,α) and where Ui = Uαi,γ . We then define
H ′α by (19.22) and (19.23). Let us stress right away the main features of this construction.
The procedures (19.22) and (19.23) are very different. In the procedure (19.22) we basically
replace a function by a certain Taylor polynomial. This does nothing to reduce the degree
of the function. The crucial procedure is (19.23), where cancellation occurs. This procedure
is applied exactly when α is active and α+ is passive (or when α = γ ).

Here is the magic formula.

Lemma 19.4.1 We have RGF = H ′γ .

The idea is very simple, and it is best to explain it in the simplest non-trivial case, where
Ĝ = {γ }, and where G \ Ĝ consists of disjoint diagrams α1, . . . ,αñ, which are the maximal
subdiagrams of γ . (We recall at this point the notations used in the analysis of the completion
of the forest {γ } performed on page 569.) Using (19.22) and (19.23) we may rewrite the
identity (19.15) as ∑

I⊂{1,...,ñ}
FIF (x) = Hγ (x).

11 To avoid using complicated notation, we do not indicate in the notation that this construction depends on the
complete forest G, which is fixed throughout the construction.
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Now, it follows from Proposition 19.3.15 that the forests FI are exactly the forests F such
that F̄ = G, so that recalling (16.15) and applying the operator (1− T d(α)) to this previous
identity yields RGF = H ′γ .

Proof of Lemma 19.4.1 The subsets J of G \ Ĝ are in one-to-one correspondence with the
forestsF with Ĝ ⊂ F ⊂ G, the correspondence being given by the mapJ �→ FJ := J ∪Ĝ.

Given a set J ⊂ G \ Ĝ we define recursively functions F ′
α,J and Fα,J on (R1,3)Eα for

α ∈ G as follows. If α contains no other element of G we define Fα,J (x) = ∏
e∈Eα f (xe).

If α �= γ we then define F ′
α,J (x) = −T d(α)Fα,J (x) if α ∈ FJ and F ′

α,J (x) = Fα,J (x) if
α /∈ FJ . If α contains other elements of G we denote by α1, . . . ,αñ these maximal elements
and we define

Fα,J (x) =
∏
i≤ñ

F ′αi,J (Ui(x))
∏

f (xe), (19.25)

where the last product is over the edges in E(G,α). If α �= γ we then define F ′
α,J as

previously: F ′
α,J (x) = −T d(α)Fα,J (x) if α ∈ FJ and F ′

α,J (x) = Fα,J (x) if α /∈ FJ .

Finally, if α = γ we define F ′
γ,J = (1− T d(γ ))Fγ,J . It should then be intuitively obvious

that for α ∈ FJ we have Fα,J = Fα , where the notation Fα refers to the construction
described on page 506 relative to the forestFJ . The reason for this is that in our construction
of Fα,J we “do nothing” for the elements α �∈ FJ , so that the construction should be the
same as if we replace G by FJ , in which case this construction is exactly the construction
of Fα .12 Consequently, by definition (16.19) of FJ F we have FJ F = Fγ,J and

F ′γ,J = (1− T d(γ ))Fγ,J = (1− T d(γ ))FJ F .

By summation of this formula over all sets J ⊂ G \ Ĝ and comparing with (19.20) we have
proved the formula

RGF =
∑

J⊂G\Ĝ
F ′γ,J . (19.26)

To prove Lemma 19.4.1 we need only to prove that the right-hand side is H ′γ . For this we
have to find an appropriate statement which we can prove by recursion. We are going to
prove that for each α ∈ G we have

H ′α =
∑

J ∈Zα

F ′α,J , (19.27)

where

Zα = {J ⊂ G \ Ĝ ; β ∈ J ⇒ β ⊂ α}.
For α = γ the right-hand sides of (19.26) and (19.27) are the same and this proves the
required equality RGF = H ′γ .

We will prove (19.27) recursively. To explain the key features of the argument we first
consider separately the case where α ∈ G is such that it does not contain any other element

12 It is of course not hard to give a formal proof of this fact.
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of G, so that {α} = {β ∈ G;β ⊂ α}. If α ∈ Ĝ we have Zα = {∅}, and Fα,∅(x) =∏
e∈Eα f (xe) = Hα(x). Since α ∈ Ĝ ⊂ F∅ we have F ′α,∅ = −T d(α)Fα,∅ and this implies

F ′
α,∅ = H ′α as desired. If α ∈ Ĝ \ G then Zα = {∅,{α}}, and Fα,∅(x) = Fα,{α}(x) =∏
e∈Eα f (xe) = Hα(x). Now, according to the definitions, since α �∈ F∅ we have F ′

α,∅ =
Fα,∅ = Hα and since α ∈ F{α} we have F ′α,{α} = −T d(α)Fα,{α} = −T d(α)Hα . Thus∑

J ∈Zα

F ′α,J = F ′α,∅ + F ′α,{α} = (1− T d(α))Hα = H ′α

as desired.
Suppose now that α contains other elements of G and let α1, . . . ,αñ be the maximal

elements as in Lemma 16.5.3, so that by the recursion hypothesis, for each i ≤ ñ we have
H ′αi =

∑
J ∈Zαi

F ′
αi,J .

Consider first the simpler case where α ∈ Ĝ. ForJ ⊂ G\Ĝ defineJi = {β ∈ J ;β ⊂ αi}
so that ifJ ∈ Zα thenJ =⋃

i≤ñ Ji , and this defines a one-to-one correspondence between
{J ;J ∈ Zα} and the set of sequences (Ji)i≤ñ such Ji ∈ Zαi . It then follows from (19.25)
that

Fα,J (x) =
∏
i≤ñ

F ′αi,J (Ui(x))
∏

f (xe).

Now, since the construction of Fα,J depends only on those β ∈ J such that β ⊂ α we
have F ′

αi,J = F ′
αi,Ji

so that

Fα,J (x) =
∏
i≤ñ

F ′αi,Ji
(Ui(x))

∏
f (xe),

and hence ∑
J ∈Zα

Fα,J (x) =
∑

J ∈Zα

∏
i≤ñ

F ′αi,Ji
(Ui(x))

∏
f (xe)

=
∏
i≤ñ

∑
Ji∈Zαi

F ′αi,Ji
(Ui(x))

∏
f (xe)

=
∏
i≤ñ

H ′αi (Ui(x))
∏

f (xe) = Hα(x), (19.28)

where we use the recursion hypothesis in one before last equality. This implies (19.27) from
our definitions.

Consider next the case α ∈ G \ Ĝ. The class of sets J ∈ Zα splits into two parts. First
the class Z−α of sets J for which α /∈ J . For these sets as above J =⋃

i≤ñ Ji . Second, the
class Z+α of sets J for which α ∈ J . For these sets J = {α} ∪⋃i≤ñ Ji . Just as in (19.28)
we prove that ∑

J ∈Z−α
Fα,J =

∑
J ∈Z+α

Fα,J = Hα . (19.29)
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Then, for J ∈ Z−α we have α /∈ J so that F ′
α,J = Fα,J . And for J ∈ Z+α we have α ∈ J

so that F ′
α,J = −T d(α)Fα,J . Consequently (19.29) implies∑

J ∈Z−α
F ′α,J = Hα ;

∑
J ∈Z+α

F ′α,J = −T d(α)Hα

and thus ∑
J ∈Zα

F ′α,J =
∑

J ∈Z−α
F ′α,J +

∑
J ∈Z+α

F ′α,J = (1− T d(α))Hα = Z′α .

19.5 Regular Rational Functions

We have made significant progress toward the proof of (19.1). Indeed, if we combine (19.19)
and Lemma 19.4.1, we see that it suffices to prove that for any complete forest G, we have

degu H
′
γ (x(u)) < − dim S. (19.30)

We will think now as if S and the complete forest G are fixed once and for all. A basic idea is
to recursively control the degree of the functions Hα of Section 19.4 with respect to certain
variables. To lighten notation we write

xα(u) = Mα(x(u)) = IαUα,γ (x(u)) ∈ kerLα ⊂ (R1,3)Eα .

We recall the functions Hα and H ′α constructed in (19.24) and (19.23), and that our goal is
to control degu H

′
γ (xγ (u)). Our induction hypotheses will involve control of the functions

Hα(xα(u)+ q), which are seen as functions of u ∈ RN and q ∈ Qα .13 The control of these
functions will be either from their degree in u or their degree in u and q.14

Let us first recall generalities about the degree of rational functions. We consider vari-
ables u = (ui)i≤N,q = (qj )j≤N ′ . We recall that a function P (u,q) is called a polynomial
in u and q if it is of the type

P (u,q) =
∑

ν1,...,νN ;μ1,...μN ′
cν1,...,νN ;μ1,...μN ′u

ν1
1 . . . u

νN
N q

μ1
1 . . . q

μN ′
N ′ , (19.31)

where the νi and the μj are integers ≥0. The degree degu,q P (u,q) is the largest value of
ν1 + · · · + νN + μ1 + · · · + μN ′ for which the corresponding coefficient cν1,...,νN ;μ1,...μN ′
is not zero. On the other hand, degu P (u,q) is the degree of P when considering q as a
constant, i.e. it is the largest value of ν1+· · ·+ νN for which a coefficient cν1,...,νN ;μ1,...μN ′
is not zero. The quantity degq P (u,q) is defined similarly. Obviously

degu P (u,q) ≤ degu,q P (u,q) ≤ degu P (u,q)+ degq P (u,q). (19.32)

13 The reader may at first wonder why instead we do not rather control the functions H ′α(xα(u)+ q), since after
all our goal is to control the function H ′γ (x(u)+ q). The reason for this is simple: the functions Hα depend
only on which subgraphs of α belong to G. On the other hand there are two different procedures to go from
Hα to H ′α which are reflected by (19.22) and (19.23). Deciding which of these procedures applies requires
knowing whether α+ is active or passive.

14 The art of recursion is to find the proper recursion hypothesis!
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For a rational function K(u,q) = P (u,q)/Q(u,q) we define

degu,q K(u,q) = degu,q P (u,q)− degu,q Q(u,q),

and degu K(u,q) similarly.15 Controlling the degree of a polynomial is easy through (19.32).
It is another matter to control the degree of rational functions, because the denominators
have a sneaky tendency to reduce their degree when we do not watch them. For example it
is not true in general that degu K(u,q) ≤ degu,q K(u,q), e.g. K(u,q) = 1/q. It is not true
either that degu K(u,q) ≤ degu K(u,0), e.g. K(u,q) = 1/(1+ uq).

The good news is that the rational functions we care about have denominators of a
very special form. Just as in Lemma 19.1.4 one sees that the denominators of the rational
functions Hα(x) are always of the type

∏
i≤s(Wε(Ji(x)ei ) + m2) where Ji is a map from

(R1,3)Eα to itself.16 Recalling that xα(u) = Ma(x(u)) and that x(u) = f0 +
∑

j≤N ujfj ,

Ji(x(u)+q)ei is of the form
∑

j≤N ujai,j+Ji(q)ei+ai where ai,j,ai ∈ R1,3. Consequently,
the denominator of a functionHα(xα(u)+q) is a product

∏
i≤s(Wε(

∑
j≤N ujai,j+bi(q))+

m2), where ai,j ∈ R1,3 and where bi(q) ∈ R1,3 is the sum of a constant term and a linear
function of q (we will call such a function a first-degree polynomial in q).

We now formalize this result by defining convenient special classes of rational functions,
and by showing that for these functions, a number of pathologies (such as the ones described
above) never occur. Rather than thinking of q as a point of RN ′ it is more convenient to think
of q as a point in a finite-dimensional space Q, and this is what we do from now on. We
also think of ε as fixed once and for all.

Definition 19.5.1 A semiregular function K(u,q), u = (ui)i≤N ∈ RN , q ∈ Q is a
rational function of the form

K(u,q) = P (u,q)

Q(u,q)
, (19.33)

where P,Q are polynomials in the components of u and q and Q is of the type

Q(u,q) =
∏
i≤N1

(
Wε

(∑
j≤N

ujai,j + bi(q)
)
+m2

)
. (19.34)

Here, as in (16.2), Wε(k) = −(1 + iε)(k0)2 + k2, bi(q) ∈ R1,3 is a first-degree
polynomial in q, and ai,j ∈ R1,3. Moreover, when each term in the product (19.34)
depends on u, that is when

∀i ≤ N1 ; ∃j ≤ N , ai,j �= 0, (19.35)

we will say that the function is regular.

We have shown the following.

Lemma 19.5.2 The functions Hα(xα(u)+ q) are semiregular.

15 There are many ways to write the same function K as a ratio of two polynomials, but if K = P ′/Q′ then
PQ′ = P ′Q so that degP − degQ = degP ′ − degQ′ and the previous definition makes sense.

16 We do not use here that Ji is a tensor map.



580 Proof of Convergence of the BPHZ Scheme

These functions will often be regular, and regular functions have nice properties which
we explore first.

Lemma 19.5.3 (a) A partial derivative of a regular function with respect to a com-
ponent of q or u is also a regular function.
(b) A product of regular functions is a regular function.
(c) For a regular function K one has

degu K(u,0) ≤ degu K(u,q) ≤ degu,q K(u,q). (19.36)

Proof (a) and (b) are easily checked. For (c) since each term in the product (19.34) actually
depends on u, we have

degu Q(u,0) = degu Q(u,q) = degu,q Q(u,q) = 2N1, (19.37)

from which the result follows since degu P (u,0) ≤ degu P (u,q) ≤ degu,q P (u,q).

Lemma 19.5.4 For a regular function K we have

degu,q T
d
q K ≤ degu,q K . (19.38)

Here and everywhere T d
q K denotes the Taylor polynomial at zero in q of order d of the

function K .17

Proof T d
q K is a sum of terms of the type K1(q)K2(u,0) where K1(q) is polynomial of

degree k ≤ d in q and where K2 is obtained from K by taking k derivatives with respect to
certain components of q. Thus

degu,q K1(q)K2(u,0) = k + degu K2(u,0) ≤ k + degu,q K2,

where we used Lemma 19.5.3 (a) and (c) in the last inequality. Now degu,q K2 ≤ degu,q
K − k because taking a derivative with respect to a component of q of a rational function
R(u,q) lowers degu,q R by at least 1, and this proves (19.38).

Proposition 19.5.5 If K is a regular function then for an integer d ≥ 0 the function
(1− T d

q )K := K − T d
q K is regular and we have

degu(1− T d
q )K ≤ degu,q K − d − 1. (19.39)

This result is the crux of the BPHZ method, as it achieves a reduction of degree. We start
our preparation for the proof with the following.

Lemma 19.5.6 (a) Consider a rational function R = P/Q where P,Q are polyno-
mials in u and q, with Q never zero. Then if T d

q R = 0 we have T d
q P = 0.

(b) If a polynomial P satisfies T d
q P = 0 then degu P ≤ degu,q P − d − 1.

17 The operator T dq should not be confused with the operator T d of Definition 16.3.1. We will study the
relationship between these operators in the next section.
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Proof (a) Stating that for a functionK of u,q we have T d
q K = 0 means that if we compute

any partial derivative of order ≤d of K with respect to the components of q and set q = 0
we obtain zero. Writing P = RQ and computing the partial derivatives of P using Leibniz
rule yields the result.
(b) Writing P as in (19.31), the condition T d

q P = 0 means that cν1,...,νN ;μ1,...μN ′ = 0 unless
μ1+· · ·+μN ′ ≥ d+1 and then the result is obvious by definition of degu and degu,q .

Lemma 19.5.7 A regular function K with T d
q K = 0 satisfies degu K ≤ degu,q

K − d − 1.

Proof Since K is a regular function it is of the type P/Q where Q is as in (19.34).
Combining (a) and (b) of Lemma 19.5.6 we have degu P ≤ degu,q P − d − 1. According
to (19.37) we have degu Q = degu,q Q and then degu K = degu P −degu Q ≤ degu,q P −
d − 1− degu,q Q = degu,q K − d − 1.

Proof of Proposition 19.5.5 It follows from Lemma 19.5.12 that the function K ′ := (1−
T d
q )K is regular and from Lemma 19.5.4 that degu,q K

′ ≤ degu,q K . The Taylor polynomial
of degree d of a polynomial of degree d is itself. So T d

q (T d
q K) = T d

q K and then T d
q K

′ = 0
so that by Lemma 19.5.7 we obtain degu K

′ ≤ degu,q K
′ − d − 1 ≤ degu,q K − d − 1.

Lemma 19.5.8 (a) Taking a derivative with respect to a component of q of a semireg-
ular function yields a semiregular function.
(b) If K is semiregular then degu K(u,0) ≤ degu K(u,q).

Proof (a) is obvious. To prove (b) we observe that (obviously) K(u,q) is of the
type R(u,q)/Q′(q) where R(u,q) is a regular rational function and Q′(q) is a polynomial.
Then degu K(u,0) = degu R(u,0) ≤ degu R(u,q) = degu K(u,q) using (19.36) in the
inequality.

Lemma 19.5.9 For a semiregular function K(u,q) we have

degu T
d
q K ≤ degu K (19.40)

and

degu,q T
d
q K ≤ degu K + d. (19.41)

Proof Similar to Lemma 19.5.4 using now Lemma 19.5.8.

To understand the difference between (19.38) and (19.41) one may consider the case
where R(u,q) does not depend on u.

Definition 19.5.10 Consider variables u and q as in Definition 19.5.1. A function
K(u,q) is called fully regular if it is semiregular and Q(u,q) does not depend on q.

Lemma 19.5.11 A fully regular function is regular.

Proof When Q(u,q) does not depend on q, each factor of Q(u,q) is either constant or
actually depends on u, so we can always write Q(u,q) = C

∏
i≤N2

(Wε(
∑

j≤N ujai,j +
bi)+m2) where C is a constant and where ∀i ≤ N2 ; ∃j ≤ N , ai,j �= 0.
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Lemma 19.5.12 For a semiregular function K , the function T d
q K is fully regular.

Proof Setting q = 0 in the derivatives removes the dependence on q in the denominators.

Definition 19.5.13 If Q and Q′ are finite dimensional spaces we say that a function
q(u,q ′) : RN ×Q′ → RN ×Q is a first-degree polynomial if it is the sum of a linear
function in u and q ′ and of a constant term. A first-degree polynomial q(q ′) : Q→ Q′
is defined similarly.

Lemma 19.5.14 When the function K is fully regular and we make a change of
variable q = q(u,q ′) where q(u,q ′) is a first-degree polynomial, then the function
(u,q ′) �→ K(u,q(u,q ′)) is regular18 and

degu,q ′ K(u,q(u,q ′)) ≤ degu,q K(u,q). (19.42)

We will need to make the change of variable q → q(u,q ′) and we need to keep controlling
the degree after we make this change of variable. It is this lemma that motivated the idea of
a fully regular function.

Proof When q(u,q ′) is a first-degree polynomial, for any polynomial P (u,q), one has

degu,q ′ P (u,q(u,q ′)) ≤ degu,q P (u,q). (19.43)

The potential problem would be that the change of variable lowers the degree of the denom-
inator, but since the function K(u,q) is fully regular, the substitution q → q(u,q ′) does not
change the denominator of this function since this denominator does not depend on q.

Lemma 19.5.15 When the function K is regular and we make a change of variable
q = q(q ′) where q(q ′) is a first-degree polynomial, then the function K(u,q(q ′)) is
regular and

degu,q ′ K(u,q(q ′)) ≤ degu,q K(u,q) ; (19.44)

degu K(u,q(q ′)) ≤ degu K(u,q). (19.45)

We will need to make the change of variable q → q(q ′) and we need to keep controlling
the degree after we make this change of variable. It is this lemma that motivated the idea of
a regular function.

Proof When the function is regular as in (19.33) the substitution q → q(q ′) does not
change the form Q(u,q) of its denominator, and it does not change its degree in u, because
the degree in u of Q(u,q) is simply twice the number of factors, see (19.37). This substi-
tution does not change either the degree in u and q of the denominator, again by (19.37).
Using (19.43) for the numerator yields (19.44). In the case of (19.45) one proceeds similarly
using that degu P (u,q(q ′)) ≤ degu P (u,q) instead of (19.43).

18 It is true that this function is fully regular, but we will only use that it is regular, so we state the lemma this
way.
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19.6 Controlling the Degree

We are ready to prove (19.30), by recursively controlling the functions H ′α . A first idea is
that, when working with the diagram α “one does not see S and one sees onlyMα(S)”. Thus
the dimension m(α) of this space is likely to be very important.

Definition 19.6.1 Recalling the map Mα = IαUα,γ of (19.12) we define

m(α) := dimMα(S). (19.46)

In particular dim S = m(γ ) so that our goal is to prove that

degu H
′
γ (x(u)) < −m(γ ). (19.47)

For our recursion arguments we need to relate m(α) to the same quantity calculated for the
maximum subdiagrams of α, and doing this is our first task.

Lemma 19.6.2 Consider α and its maximal subdiagrams α1, . . . ,αñ with respect to
G. Then if α is passive we have

m(α) ≤
∑
i≤ñ

m(αi), (19.48)

whereas if α is active we have

m(α) ≤
∑
i≤ñ

m(αi)+ dim kerLα −
∑
i≤ñ

dim kerLαi . (19.49)

The underlying idea is rather simple. When α is passive, in some sense Mα(S) cannot be
larger than the sum of the Mαi (S) because Mα(S) does not use the edges in E(α,G). When
α is active, whatever constraints were limiting the size of m(αi) do not go away. Viewing
these constraints as lower bounds on dim kerLαi −m(αi) we should have

dim kerLα −m(α) ≥
∑
i≤ñ

(dim kerLαi −m(αi)),

which is just (19.49).

Proof For each i ≤ ñ define Vi := IαiUαi,α . It follows from (19.7) that

∀x ∈ (R1,3)E ; Vi(Mα(x)) = Mαi (x). (19.50)

Consequently Vi(Mα(S)) = Mαi (S) and thus

dimVi(Mα(S)) = m(αi). (19.51)

Elementary linear algebra teaches us that given a linear operator W between two finite-
dimensional spaces E and F one has dimE≤ dim kerW + dimF . Using this for E =
Mα(S) and the operator W (x) = (Vi(x))i≤ñ yields

m(α) = dimMα(S) ≤ dim
(
Mα(S) ∩

⋂
i≤ñ

kerVi
)
+
∑
i≤ñ

m(αi). (19.52)
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The task now is to control the dimension of T := Mα(S) ∩⋂i≤ñ kerVi . Consider x ∈ S

with z = Mα(x) ∈ T . Note that by (19.50) we have Mαi (x) = 0.
Assume first that α is passive. By (19.14) we have Uαi,αMα(x) = Mαi (x) = 0 so that

ze = 0 for e ∈ Eαi . Since α is passive we have ze = 0 for e ∈ E(α,F). Thus z = 0.
Therefore T = {0} and (19.52) implies (19.48).

Assume next that α is active. Let θi be the map from (R1,3)Eαi to (R1,3)Eα given by
θi(s)e = se for e ∈ Eαi and θi(s)e = 0 otherwise. Then by (19.5)

θi(kerLαi ) ⊂ kerLα . (19.53)

Since IαiUαi,α(z)=Vi(z)= 0 then Uαi,α(z) ∈ ker Iαi = (kerLαi )
⊥, so that z ⊥ θi(kerLαi ).

Consequently T ⊂ kerLα and at the same time T ⊥ θi(kerLαi ). These later spaces are
orthogonal to each other because the diagrams αi have no edge in common since they have
no vertex in common. Since they are subspaces of kerLα , we get

dim T ≤ dim kerLα −
∑
i≤n

dim kerLαi,

and this concludes the proof.

We recall the notation xα(u) = Mα(x(u)) ∈ kerLα . We also recall that the function
Hα(xα + q) are always semiregular. We state our main induction hypotheses.

Proposition 19.6.3 (a) If α is active the functionHα(xα(u)+q) is regular and satisfies

degu,q Hα(xα(u)+ q) ≤ d(α)−m(α). (19.54)

(b) If α is passive the function Hα(xα(u)+ q) (is semiregular and) satisfies

degu Hα(xα(u)+ q) ≤ −m(α). (19.55)

Moreover, if m(α) > 0 it holds that

degu Hα(xα(u)+ q) < −m(α). (19.56)

A first understanding of the content of Proposition 19.6.3 is reached by considering the
case where α contains no other subdiagrams of G. Then

Hα(xα(u)+ q) =
∏
e∈Eα

f ((xα(u)+ q)e). (19.57)

Since α contains no other subdiagram of G, when α is passive every edge is α-passive, which
means that xα(u) does not depend on u, so that the right-hand side does not depend on u

and thus its degree in u is 0 = m(α), and (19.55) holds. When α is active, each term in the
right-hand side of (19.57) contributes −2 to the degree, so that

degu Hα(xα(u)+ q) = −2card Eα = d(α)− dim(kerL(α)) ≤ d(α)−m(α),

using that Mα(S) ⊂ kerL(α) and hence m(α) ≤ dim(kerL(α)). Furthermore the function
is regular because it is of the type 1/Q(u,q) where Q is as in (19.34).

Let us also note that the information we carry is not the same when α is active or when α
is passive. When α is active, the function Hα(xα(u)+q) is regular and we control its degree
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in u and q. When α is passive this function may not be regular (but it is semiregular), and
we control only its degree in u.

In general there may be many diagrams α which are active but such that α+ is passive.
It is at these stages of the construction that degree reduction takes place, always through
(19.23). At the other stages we do not lose or gain anything about degrees, although we
have to account precisely for this.19 This uninspiring bookkeeping is not very intuitive, but
all it takes is a little care and patience.20

Our arguments are recursive, as they must be. We consider α ∈ G and its maximal
subdiagrams α1, . . . ,αñ, and we assume that these subdiagrams satisfy the conditions of
Proposition 19.6.3 , a fact we call “the recursion hypothesis”. That is, if αi is active, the
functionHαi (xαi (u)+q) is regular and satisfies (19.54), whereas if αi is passive this function
satisfies (19.56). The goal is to prove that α satisfies (19.54) and (19.56) and that the
function Hα(xα(u)+ q) has suitable regularity properties. We lighten notation by defining
Ui = Uαi,α .

The first step of the proof of Proposition 19.6.3 is to write that according to (19.24)
we have

Hα(xα(u)+ q) =
∏
i≤ñ

H ′αi (Ui(xα(u)+ q))
∏

e∈E(α,G)

f ((xα(u)+ q)e). (19.58)

It bears repeating that we consider each term in the right-hand side as a function of u and
q. Before we turn to the details, we may try to give the overall idea of why the induction is
going to work.

• When α is active, each term in the second product in (19.58) contributes with a
degree −2. We may then expect to control the degree degu,q of each term in the
first product through the recursion hypothesis (19.54). We will then prove (19.54)
using (19.49). The quantity (19.58) is a regular function because the second product
in (19.24) is a regular function and each term in the first product is fully regular. This
is because αi ∈ Ĝ since α+i = α is active, so that we compute H ′αi as in (19.22). by
applying an operator T d

q , and we then appeal to Lemma 19.5.12.
• When α is passive, the terms in the second product in (19.58) do not depend on u.

The key point that for each i ≤ ñ we have degu H
′
αi

(Ui(xα(u) + q)) ≤ −m(αi).
There are two different reasons for which this is the case, depending on whether
αi is active or passive. If αi is passive, the induction hypothesis (19.55) asserts that
degu Hαi ≤ −m(αi), and then H ′αi = −T d(αi )Hαi and T d preserves degu by (19.40).
If αi is active, the recursion hypothesis (19.54) asserts that degu Hαi ≤ d(αi)−m(αi).
But in that case H ′αi = (1− T d(αi ))Hαi , and this degree-reducing operation reduces
the degree d(αi) − m(αi) to the degree −m(αi) − 1. This is better than the desired
degree−m(αi), which explains why one can even get (19.56). We will then conclude
using (19.48).

19 Something technically important happens at these stages though: we replace our functions by much more
regular ones.

20 After 40+ years of practice, I am still amazed at the role of preconception in discovering proofs. Probably if
you really believe my word that the proof will work, you may figure out the details yourself. On the other
hand, the surest way to miss a simple argument is to get convinced for wrong reasons that it does not exist.



586 Proof of Convergence of the BPHZ Scheme

Let us now turn to the details. We must relate the functions H ′αi (Ui(xα(u)+q)) on RN ×
Qα to the functions Hαi (xαi (u)+ qi) on RN ×Qαi of the recursion hypothesis.21 We have
to work twice, once to account for the fact that the argument of H ′αi is Ui(xα(u)+ q) rather
than xαi (u)+ qi and once to relate the functions Hαi and H ′αi .

We first study the argument Ui(xα(u)+ q).

Lemma 19.6.4 For each α we have

Ui(xα(u)+ q) = xαi (u)+ qi(u,q), (19.59)

where the function qi(u,q) ∈ Qαi is a first-degree polynomial. Furthermore if α is
passive then

Ui(xα(u)+ q) = xαi (u)+ qi(q), (19.60)

where qi(q) ∈ Qαi is a first-degree polynomial in q.

Proof We apply (19.8) to the case β = αi and tow := xα(u) = IαUα,γ (x(u)). This yields

Ui(xα(u)+ q) = IαiUiIαUα,γ (x(u))+ bi(q)+ ci(xα(u)).

Now, by (19.7) it holds that

IαiUiIαUα,γ (x(u)) = IαiUαi,γ (x(u)) = xαi (u).

It should be obvious that the quantity ci(xα(u)) is of the first degree in u, so that the function
qi(u,q) := bi(q)+ ci(xα(u)) is of the first degree in q and u. When α is passive, for all the
edges e ∈ E(G,α) the quantity xα(u)e is independent of u. Since ci(w) depends only on the
values we for e ∈ E(G,α), in this case ci(xα(u)) does not depend on u, and is a constant.
Then qi(u,q) does not depend on u and thus is of the first degree in q.

Putting things another way, if we know the function K(u,qi) := H ′αi (xαi (u) + qi), the
function K ′(u,q) := H ′αi (Ui(xα(u)+ q)) is given by the formula K ′(u,q) = K(u,qi(u,q)).
This result motivated Lemmas 19.5.15 and 19.5.14.

Next we must relate Hαi to H ′αi . This is the purpose of the next four lemmas.

Lemma 19.6.5 For i ≤ ñ the function T d(αi )
qi [Hαi (xαi (u) + qi)] is fully regular and

its degree in u and qi is ≤ d(αi)−m(αi).

Here T d(αi )
qi [Hαi (xαi (u)+ qi)] denotes the Taylor polynomial in the variable qi at qi = 0

of the function (u,qi) �→ Hαi (xαi (u)+ qi).

Proof Assume first that αi is active, so that by the induction hypothesis the function
Hαi (xαi (u)+ qi) is regular and satisfies degu,qi Hαi (xαi (u)+ qi) ≤ d(αi)−m(αi). Accord-

ing to Lemma 19.5.12 the function T
d(αi )
q [Hαi (xαi (u) + qi)] is fully regular and since in

particular it is regular, according to (19.38) its degree in u and qi is ≤ d(αi)−m(αi).

21 In order to distinguish the variable q ∈ Qα from a variable in Qαi the latter is denoted by qi .
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Assume next that αi is a passive. By the induction hypothesis the rational function
Hαi (xαi (u)+ qi) satisfies degu Hαi (xαi (u)+ qi) ≤ −m(αi). Applying (19.41) and Lemma
19.5.12 we obtain that the function T d(αi )

q [Hαi (xαi (u)+ qi)] is again fully regular and that
its degree in u and qi is ≤ d(αi)−m(αi).

Lemma 19.6.6 For i ≤ ñ the function (T d(αi )Hαi )(xαi (u)+ qi) is fully regular and

degu,q (T d(αi )Hαi )(xαi (u)+ qi) ≤ d(αi)−m(αi). (19.61)

Let us first explain the notation. For any subdiagram α and any functionH on (R1,3)Eα we
have defined in Section 16.3 the function T dH on (R1,3)Eα . Thinking of Hαi as a function
on (R1,3)Eαi we apply this operator T d(αi ) to obtain a new function (T d(αi )Hαi ) which we
then compute at the point xαi (u)+ qi .

Proof Let us recall that the function T dH (x + q) is the Taylor polynomial of degree d of
the function q �→ H (x + q) at q = 0. In particular (T d(αi )Hαi )(xαi (u) + qi) is the Taylor
polynomial of degree d(αi) of the function qi �→ Hαi (xαi (u)+ qi) at qi = 0, i.e.

(T d(αi )Hαi )(xαi (u)+ qi) = T d(αi )
q [Hαi (xαi (u)+ qi)].

Then Lemma 19.6.5 implies (19.61).

Lemma 19.6.7 For i ≤ ñ the function (T d(αi )Hαi )(Ui(xα(u)+q)) is fully regular and

degu,q (T d(αi )Hαi )(Ui(xα(u)+ q)) ≤ d(αi)−m(αi). (19.62)

Proof This follows from Lemma 19.6.6, (19.59) and Lemma 19.5.14.

Lemma 19.6.8 Assume that α is passive.
(a) If αi is passive the function

(T d(αi )Hαi )(Ui(xα(u)+ q))

is regular22 and satisfies

degu(T d(αi )Hαi )(Ui(xα(u)+ q)) ≤ −m(αi). (19.63)

If moreover m(αi) > 0 one has

degu(T d(αi )Hαi )(Ui(xα(u)+ q)) < −m(αi). (19.64)

(b) If αi is active the function

((1− T d(αi ))Hαi )(Ui(xα(u)+ q))

is regular and satisfies

degu((1− T d(αi ))Hαi )(Ui(xα(u)+ q)) < −m(αi). (19.65)

The condition that α is passive is critical and will be used through (19.60).

22 This function is actually fully regular, although we will not use this fact.
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Proof As in Lemma 19.6.6 it holds that

(T d(αi )Hαi )(xαi (u)+ qi) = T d(αi )
q [Hαi (xαi (u)+ qi)]. (19.66)

(a) Assume that αi is passive. Using the induction hypothesis and Lemma 19.5.12,
we obtain that the function (19.66) is fully regular and by (19.40) its degree in u is
≤ degu Hαi (xαi (u))+ qi). The conclusion then follows from (19.60) and (19.45).
(b) Assume now that αi is active. The recursion hypothesis (19.54) implies that the function
Hαi (xαi (u)+q) is regular and that degu,q Hαi (xαi (u)+q) ≤ d(αi)−m(αi). Thus Proposition

19.5.5 implies that the function (1− T
d(αi )
q )[Hαi (xαi (u)+ qi)] is regular and satisfies

degu(1− T d(αi )
q )[Hαi (xαi (u)+ qi)] < degu,q Hαi (xαi (u)+ q)− d(αi) ≤ −m(αi).

(19.67)

Consequently, the function

((1− T d(αi ))Hαi )(xαi (u)+ qi) = (1− T d(αi )
q )[Hαi (xαi (u)+ qi)]

is regular and satisfies

degu((1− T d(αi ))Hαi )(xαi (u)+ qi) < −m(αi). (19.68)

The conclusion then follows from (19.60) and (19.45).

Proof of Proposition 19.6.3 We first recall (19.58):

Hα(xα(u)+ q) =
∏
i≤ñ

H ′αi (Ui(xα(u)+ q))
∏

e∈E(α,G)

f ((xα(u)+ q)e). (19.58)

Assume first that α is active, so then each αi belongs to Ĝ and

H ′αi = −T d(αi )Hαi . (19.69)

According to Lemma 19.6.6 each of the functions H ′αi (Ui(xα(u)+q)) is regular, so that the
function (19.58) is product of regular functions and hence it is regular. Furthermore each of
the terms in the last product of (19.58) has degree −2 in u because the edge e is α-active.
Thus

degu,q Hα(xα(u)+ q)≤
∑
i≤ñ

degu,q H
′
αi

(Ui(xα(u)+ q))− 2card E(G,α), (19.70)

while (19.61) implies

degu,q H
′
αi

(Ui(xα(u)+ q)) ≤ d(αi)−m(αi).

Now, using that

card Eα = card E(G,α)+
∑
i≤ñ

card Eαi
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in the third line and (19.49) in the fourth line,∑
i≤ñ

(d(αi)−m(αi))− 2card E(G,α)

=
∑
i≤ñ

(dim kerLαi − 2card Eαi −m(αi))− 2card E(G,α)

=
∑
i≤ñ

(dim kerLαi −m(αi))− 2card Eα

≤ dim kerLα −m(α)− 2card Eα
= d(α)−m(α),

and this completes the proof of (19.54) when α is active.
Assume now that α is passive. Then by (19.58),

Hα(xα(u)+ q) = 1

Q(q)

∏
i≤ñ

H ′αi (Ui(xα(u)+ q)), (19.71)

whereQ is a polynomial in q. Next we prove that the functionH ′αi (Ui(xα(u)+q)) is regular
and satisfies

degu H
′
αi

(Ui(xα(u)+ q)) ≤ −m(αi), (19.72)

and that furthermore if m(αi) > 0 we also have

degu H
′
αi

(Ui(xα(u)+ q)) < −m(αi). (19.73)

The argument depends on whether αi is active or passive. If αi is active then αi ∈ G \ Ĝ, so
H ′αi = (1 − T d(αi ))Hαi and (19.73) follows from (19.65) while H ′αi is regular as stated in
Lemma 19.6.8. If αi is passive, then αi ∈ Ĝ, so that (19.69) holds, and (19.72) and (19.73)
follow respectively from (19.63) and (19.64), while H ′αi is again regular by Lemma 19.6.8.

It then follows that the right-hand side of (19.71) is a semiregular function of degree in
u ≤ −∑i≤ñ m(αi) ≤ −m(α) by (19.48). Furthermore if m(α) > 0 then for at least one i
we have m(αi) > 0 and using (19.73) this finishes the recursion.

Proof of (19.47) We recall that H ′γ = (1− T d(γ ))Hγ . We observe that m(γ ) > 0 because
we assume S �= {0}. When γ is passive, (19.47) is a consequence of (19.56) and of the fact
that according to (19.40) the degree in u can only decrease under T d(γ ) because the function
Hγ is semiregular. When γ is active, it is a consequence of (19.54) used for α = γ , of

(19.39), and of the fact that (T d(γ )Hγ )(x(u)+ q) = T
d(γ )
q [Hγ (x(u)+ q)].

Key idea to remember: The cancellation of degree central to the BPHZ method is brought
forward by suitably grouping the terms of the forest formula and appealing to Weinberg’s
power-counting theorem.





Part V

Complements

The appendices that follow are of different natures. Some are small stories, which my
curiosity led me to understand, and there is no better way to understand something than
trying to explain it to others. Others deal with important matters. Mathematicians certainly
cannot ignore the issues raised in Appendix A. The most important one is Appendix C,
where the Stone–von Neumann theorem is established. This theorem is a fundamental sanity
check for Quantum Mechanics. Appendix D is also important. While this material is widely
available, we strove to present the absolute minimum required to understand spin. Appendix
M should help the reader to taste the flavor of Haag’s theorem without plunging into the
specialized literature.





Appendix A

Complements on Representations

The present appendix consists of six sections. The first three sections are related, but are to a large
extent independent of the last three. Section A.1 can be read at the same time as Chapter 2. Section A.2
addresses some fine points of topology. These are reserved for mathematically inclined, but the main
lemma of this section is basic for Section A.3, where we prove that in rather general circumstances
finite-dimensional projective representations arise from true representations. Section A.5 motivates
the use of induced representations in Chapter 9, whereas Section A.6 justifies the way physicists use
angular momentum and can be read at any time.

A.1 Projective Unitary Representations of R

In this section we present a mathematical proof of Theorem 2.13.2.1 We restate the theorem for the
convenience of the reader.

Theorem 2.13.2 A strongly continuous projective unitary representation of R arises from a true
representation. That is, for such a projective representation U (u) we have U (u) = λ(u)V (u) where
V (u) is a true representation and |λ(u)| = 1.

Our proof does not assume differentiability and is valid in infinite dimensions. After this proof we
briefly discuss the relationship between true and projective representations.

Differentiability issues are irrelevant for physics. Apparently all functions there are differentiable
(even sometimes when they are not really defined).2 This is even more so in Quantum Field Theory,
where the mathematical issues are far more challenging than nit-picking about differentiability. On
the other hand, for a mathematician assuming differentiability is a big issue. This makes proving a
theorem easier, but makes its statement weaker. For example, what are the maps λ from R to the
complex numbers which satisfy the relation

λ(a + b) = λ(a)λ(b) ? (A.1)

Assuming that λ is differentiable, it satisfies the relation λ′(a) = λ′(0)λ(a). Since λ(0) = λ(0)2 we
get λ(0) = 0 or λ(0) = 1, and thus λ(a) ≡ 0 or λ(a) = exp(aλ′(0)). This conclusion is still valid if
one assumes only that the function λ is continuous, but the proof is quite harder.3 A mathematician
will feel that the “correct” result assumes only continuity of λ.

We turn to the proof of Theorem 2.13.2. Consider a projective unitary representationU of R. Since
R is commutative we write (2.47) as

U (a + b) = r(a,b)U (a)U (b). (A.2)

1 In particular, we use only the hypotheses stated in the theorem!
2 This is intended as a joke. Please refrain from suing me.
3 On the other hand this conclusion does not hold if one does not assume some kind of regularity for λ.
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Since a + b + c = (a + b)+ c = a + (b + c), using (A.2) implies

r(a,b)r(a + b,c) = r(a,b + c)r(b,c), (A.3)

and also, assuming U (0) = 1 without loss of generality,

r(0,a) = r(a,0) = 1. (A.4)

Lemma A.1.1 Consider a continuous function r from a neighborhood of the origin in R2 into
the complex numbers of modulus 1 which satisfies (A.3) and (A.4). Then there is an ε > 0 and
a continuous function λ from R into the complex numbers of modulus 1 which satisfies

r(a,b) = λ(a + b)/(λ(a)λ(b)) (A.5)

whenever |a| and |b| < ε.

To understand that this lemma cannot be completely trivial, imagine that I secretly choose a con-
tinuous but otherwise very nasty function λwith λ(0) = 1 and that I form the function r(a,b) of (A.5).
Then I give you this function r , and from it you will have to reconstruct my nasty function λ. This
corresponds to the situation when starting with a true representation V (a) one constructs the projective
representation U (a) = λ(a)V (a) for a continuous but otherwise nasty function λ. For a physicist such
an idea is absurd, but nonetheless, while, as will be shown later, all continuous finite-dimensional
representations of R are differentiable, this is certainly not true for projective representations.

Mathematician’s proof of Theorem 2.13.2 Let us first assume that the function r of (A.2) is contin-
uous, so that we may apply Lemma A.1.1 to find ε > 0 and λ which satisfy (A.5). We then define
W (a) = λ(a)−1U (a). This is a projective unitary representation of R and it satisfies W (a + b) =
W (a)W (b) for |a|,|b| < ε. Consequently W (2−na)2n does not depend on n for n large enough
(depending on a). We may then set V (a) := limn→∞W (2−na)2n . It is straightforward that this
defines a true unitary representation of R. Finally we prove that the projective representation U arises
from V . To see this, fix a ∈ R, and consider an integer n. Since U is a projective representation we
have U (a) = μU (2−na)2n where |μ| = 1. By definition of W we have U (2−na)2n = μ′W (2−na)2n

where |μ′| = 1. If n is large enough we have W (2−na)2n = V (a), so finally as desired we have
U (a) = λV (a) where |λ| = 1.

To complete the argument, we need to prove the continuity of r . For this we simply observe that
for any vector x, the vectors U (a + b)(x) and U (a)U (b)(x) are continuous functions of (a,b) (which
requires a little proof for the second case), and the continuity of the function r at a given point (a,b)
is then obtained by considering a vector x for which U (a + b)(x) �= 0.

A trained topologist might have noticed that we used a notion of continuity for projective repre-
sentations which is not the natural one, a matter which is clarified in the next section.

Proof of Lemma A.1.1 The proof contains no physical idea but is exquisite. Using continuity we
find ε0 > 0 for which |r(a,b) − 1| < 1 for |a|,|b| < ε0. For these values of a,b we then define
f (a,b) = i−1 log r(a,b), i.e. f (a,b) is the number −π/3 ≤ θ ≤ π/3 for which exp iθ = r(a,b).
This function is continuous, real-valued (since r(a,b) is of modulus 1) and for |a|,|b|,|c| ≤ ε0/2 it
satisfies

f (a,b)+ f (a + b,c) = f (a,b + c)+ f (b,c) (A.6)

and also

f (0,a) = f (a,0) = 0. (A.7)

Our goal is to find a real-valued function θ such that

f (a,b) = θ (a + b)− θ (a)− θ (b). (A.8)
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The function λ(a) = exp(iθ (a)) then satisfies (A.5) and the proof is finished. The proof would be
easy if we knew that f is differentiable (as we will show later). We will reduce that case by a clever
argument.

Let us then consider a real-valued infinitely differentiable function ψ with support contained in
the interval ]− ε0,ε0[ and of integral 1. For |a| < ε0 let us define4

ϕ(a) =
∫
f (a,t)ψ(t)dt,

so that ϕ(0) = 0, and for |a|,|b| ≤ ε0/2 let us define

g(a,b) = f (a,b)− ϕ(a)− ϕ(b)+ ϕ(a + b). (A.9)

Our goal is to find a function γ such that

g(a,b) = γ (a + b)− γ (a)− γ (b). (A.10)

The function g satisfies the functional equation (A.6), and moreover, since
∫
ψ(t)dt = 1, and using

the functional equation (A.6) for f in the second line,

g(a,b) =
∫

(f (a,b)− f (a,t)− f (b,t)+ f (a + b,t))ψ(t)dt

=
∫

(f (a,b + t)− f (a,t))ψ(t)dt . (A.11)

Since ∫
f (a,b + t)ψ(t)dt =

∫
f (a,u)ψ(u− b)du

this proves that the function b �→ g(a,b) is differentiable. (This magic and crucial argument is
apparently due to Masatake Kuranishi [49].) Let g′(a,b) be its differential at b. Differentiating (A.10)
in b at b = 0 gives g′(a,0) = γ ′(a)−γ ′(0), and there is no loss of generality to assume that γ ′(0) = 0
by replacing γ (x) by γ (x)− xγ ′(0), so that γ ′(a) = g′(s,0). This tells us how to find γ ! So, we now
define

γ (a) =
∫ a

0
g′(s,0)ds.

Writing (A.6) as

g(a,b)+ g(a + b,c) = g(a,b + c)+ g(b,c)

and differentiating in c at c = 0 then yields

g′(a + b,0) = g′(a,b)+ g′(b,0). (A.12)

Then, using (A.12) in the third line,

γ (a + b)− γ (a) =
∫ a+b

a
g′(s,0)ds

=
∫ b

0
g′(a + s,0)ds

=
∫ b

0
g′(s,0)ds +

∫ b

0
g′(a,s)ds

= γ (b)+ g(a,b), (A.13)

4 The majority of the appendices are purely mathematical, and from this point on we use the standard
mathematics convention to put the d in an integrand at the end.
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where we have used that g(a,0) = 0. We have proved (A.10). Therefore we have proved (A.8) for
θ (a) = γ (a)− ϕ(a). Observing that θ is real-valued the proof is finished.

Despite the ease with which we proved Lemma A.1.1, we must stress that this is due to the fact
that we considered the group R. To understand this, let us consider the functional equation (A.6) in
the case where R is replaced by R2, i.e. a = (a1,a2) ∈ R2. It is then straightforward that this equation
is satisfied for

f (a,b) = f ((a1,a2),(b1,b2)) = a2b1.

However f (a,b) �= f (b,a), so that it is impossible to find a function γ (a) for which

f (a,b) = a2b1 = γ (a + b)− γ (a)− γ (b). (A.14)

As a striking consequence of this fact, let us recall the operators U and V given by (2.53)
and (2.54).

Proposition A.1.2 For (s1,s2) ∈ R2 the formula W (s1,s2) = U (s1)V (s2) defines a projective
unitary representation of R2 which does not arise from a true representation.

Proof We recall (2.74):

V (s)U (t) = exp(its/h̄)U (t)V (s). (2.74)

Then

W (s1,s2)W (t1,t2) = U (s1)V (s2)U (t1)V (t2)

= exp(it1s2/h̄)U (s1)U (t1)V (s2)V (t2)

= exp(it1s2/h̄)U (s1 + t1)V (s2 + t2)

= exp(it1s2/h̄)W (s1 + t1,s2 + t2),

and this proves that W is a projective unitary representation of R2. The impossibility to solve (A.14)
means however that this projective representation does not arise from a true representation.

Valentine Bargmann [4] invented a powerful criterion giving conditions under which a projective
unitary representation arises from a true representation, a simple proof of which can be found in
Simms’ book [76]. Interestingly, a key step in the proof is to “produce differentiability”, and this is
done by the argument of Kuranishi used above. There are two (and only two) possible types of obstruc-
tions why a projective representation may not arise from a true representation. These are obstructions
of an algebraic nature (as in the case of the previous example) and obstructions of a topological nature
(as in the case of the group SO(3) of Chapter 4). A consequence of Bargmann’s criterion is that the
projective representations of the Poincaré group P all arise from true representations of its double
cover P∗.

A.2 Continuous Projective Unitary Representations

The naive approach we have been using in the main text toward continuity of projective representations
is not the mathematically fruitful method to consider this question. In the present section we describe
the correct method. This point can be considered as a subtle and advanced topic in topology. Do not
worry if you find it confusing, it is used nowhere else in the book. The single result of this section,
Lemma A.2.1 (which will be used in the next section) is a very simple fact.

Let us first recall that the natural topology on the unitary group U (H) is the so-called strong
topology. It is the topology corresponding to the notion of strong continuity of Definition 2.13.1.
A basis of neighborhoods of a unitary operator U consists of the sets of unitary operators of the type

W := {
V ∈ U (H) ; ∀k ≤ n , ‖V xk − Uxk‖ < η

}
(A.15)

where η > 0, n is arbitrary and x1, . . . ,xn ∈ H.
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Let us consider the map � from the unitary group U (H) into its quotient Up(H) by the group con-
sisting of multiples of identity. A map V : R→ U (H) is a projective representation (as in Definition
2.10.1) if and only if the map a �→ �(V (a)) is a group homomorphism. It is this quotient map that
is the natural object, so the natural definition of continuity should refer to the continuity of this map
a �→ �(V (a)) when Up(H) is provided with the natural topology, the quotient topology induced by
the strong topology on U (H). We will describe this situation by the sentence “the map a �→ �(V (a))
is continuous for the quotient topology”. This quotient topology is defined as the strongest topology on
Up(H) such that the map U �→ �(U ) is continuous when U (H) is provided with the strong topology.
A set Ω ⊂ Up(H) is open for this topology if and only if �−1(Ω) is open for the strong topology.
A set Ω ⊂ Up(H) is a neighborhood of �(U ) if and only if �−1(Ω) is a neighborhood of U , or,
equivalently, if �(W) ⊂ Ω for a certain neighborhood W of U . The map a �→ V (a) is continuous
for the quotient topology if and only if given any a ∈ R and any neighborhood W of V (a) for the
strong topology then V (b) ∈ �−1�(W) for b close enough to a, i.e.

∃ε > 0 , |b − a| ≤ ε⇒ ∃λ ∈ C ; |λ| = 1 , λV (b) ∈W . (A.16)

The nit-picking issue here is that if the map a �→ V (a) is strongly continuous, i.e. satisfies

∃ε > 0 , |b − a| ≤ ε⇒ V (b) ∈W,

then the map a �→ �(V (a)) is continuous for the quotient topology, but that the converse is not true.
It is a weaker and more natural hypothesis to assume that the map a �→ �(V (a)) is continuous for
the quotient topology than to assume that the map a �→ V (a) is strongly continuous. The following
lemma however shows that when the map a �→ �(V (a)) is continuous for the quotient topology, we
can redefine the map a �→ V (a) to make it strongly continuous in a neighborhood of the identity.

Lemma A.2.1 Consider a projective representation V : R → U (H) such that the map
a �→ �(V (a)) is continuous for the quotient topology. Then we can find ε0 > 0 and for
|a| ≤ ε0 numbers μ(a) of modulus 1 such that the map a �→ μ(a)V (a) is strongly continuous
for |a| ≤ ε0.

We state the result for R in order not to increase the psychological difficulty, but the very same
argument works for a general topological group.

Proof SinceV (0) is a multiple of the identity we can assume without loss of generality thatV (0)= 1.
By the very definition of the quotient topology, saying that the map a �→ �(V (a)) is continuous means
that the following condition is satisfied (as follows combining (A.15) and (A.16))

∀a ∈ R , ∀η > 0 , ∀n ∈ N , ∀x1, . . . ,xn ∈ H , ∃ε > 0 , ∀b ∈ R , |b − a| < ε⇒
∃λ ∈ C , |λ| = 1 , ∀k ≤ n , ‖λV (b)xk − V (a)xk‖ < η. (A.17)

Let us fix x0 of norm 1, so that using (A.17) for a = 0 (and since V (0) = 1) we see that for a certain
ε0 > 0, for all |b| < ε0, we can find λ of modulus 1 with ‖λV (b)x0 − x0‖ < 1/2. Consequently
|(x0,V (b)x0)| = |(x0,λV (b)x0)| > 1/2. Consequently, we can find μ(b) with |μ(b)| = 1 such
(x0,μ(b)V (b)x0) ∈ R+ and (x0,μ(b)V (b)x0) ≥ 1. Replacing V (b) by μ(b)V (b) we may assume
that for |b| < ε0 we have (x0,V (b)x0) ∈ R+ and (x0,V (b)x0) ≥ 1/2. This redefinition of V does
not change the fact that it is continuous for the quotient topology, because this continuity property
involves only the map a �→ �(V (a)) which has not changed under this redefinition. We prove that
the map a �→ V (a) is now strongly continuous in the neighborhood |a| < ε0 of 0. Indeed, by (A.17),
given x1, . . . ,xn ∈ H, a ∈ R and η > 0 we can find ε > 0 such that

|b − a| < ε⇒ ∃λ , |λ| = 1 , ‖λV (b)x0 − V (a)x0‖ ≤ η , ∀k ≤ n , ‖λV (b)xk − V (a)xk‖ ≤ η.

In particular we have

|λ(x0,V (b)x0)− (x0,V (a)x0)| ≤ η. (A.18)
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Assuming now that |a|,|b| < ε0 both (x0,V (a)x0) and (x0,V (b)x0) are positive numbers ≥ 1/2.
Dividing both sides of (A.18) by (x0,V (a)x0) implies that |λ − α| < 2η where α ∈ R+. Since λ
is a complex number of modulus 1 we then have |λ − 1| < 4η, so that ‖λV (b)xk − V (b)xk‖ ≤
4η‖V (b)xk‖ = 4η‖xk‖. Consequently, if |b − a| < ε, then ‖V (b)xk − V (a)xk‖ ≤ η(1 + 4‖xk‖),
concluding the argument.

Exercise A.2.2 Combine the previous results to prove the following improved version of The-
orem 2.13.2: A projective unitary representation of R which is continuous for the quotient
topology arises from a true representation.

A.3 Projective Finite-dimensional Representations

In the present section we prove Theorem 8.6.1 in the case of finite-dimensional representations. The
proof is related to the ideas of the previous section.

Theorem A.3.1 Consider a compact group G with the following properties.
(a) Every element a of G can be connected to the identity by a continuous curve. Moreover,
given a neighborhood W of the identity we can find a neighborhood V of the identity such that
if a ∈ V we can find such a curve entirely contained in W.
(b) G is simply connected. That is, every continuous loop passing through the unit of G can be
continuously deformed into the constant loop at the unit of G.

Then a finite dimensional continuous projective representation of G arises from a true rep-
resentation.

Our prime example of a compact group satisfying these conditions is the group SU (2) of Chapter
8, which is topologically the unit sphere of R4. Application to this case shows that “the projective
representations of SO(3) come from true representations of SU (2)” in the following sense.

Corollary A.3.2 Consider a finite-dimensional continuous unitary projective representation
π ′ of SO(3) in a finite-dimensional space. Then there exists a true unitary representation π of
SU (2) and for A ∈ SU (2) a complex number λ(A) of modulus 1 such that

∀A ∈ SU (2) ; π ′(κ(A)) = λ(A)π (A). (A.19)

Proof We apply Theorem A.3.1 to the case of G = SU (2) and to the continuous projective unitary
representation A �→ π ′(κ(A)) of G.

The proof of Theorem A.3.1 is self-contained. This result is an immediate consequence Proposi-
tions A.3.3 and A.3.4.

Proposition A.3.3 Consider a compact groupG and a finite-dimensional projective continuous
unitary representation π ′ of G. Then we can find a neighborhood W of the identity and a
continuous function a �→ λ(a) on W , where λ(a) is a complex number of modulus 1 such the
quantity π (a) = λ(a)π ′(a) satisfies

π (ab) = π (a)π (b) (A.20)

whenever a,b,ab ∈ W .

Proof As explained at the end of the previous section, the correct meaning of “continuous” is for a
certain quotient topology, but we proved in Lemma A.2.1 that if we restrict π ′ to a suitable neighbor-
hood of the identity we may assume that the map a �→ π ′(a) is strongly continuous. (Lemma A.2.1
was proved in the case of the group R in order not to confuse the reader but the argument is very
general.) As the representation is finite-dimensional, the map a �→ det(π ′(a)) is then continuous. We
may assume that π ′(e) = 1 where e is the unit of G. We may also assume that W is small enough
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so that | detπ ′(a) − 1| < 1 for a ∈ W . Let n be the dimension of the representation. The quantity
λ(a) := (detπ ′(a))−1/n is then well defined and of modulus 1. Let us set

π (a) := λ(a)π ′(a) = (detπ ′(a))−1/nπ ′(a).

Then detπ (a) = 1. Since π ′ is a projective representation, for a,b,ab ∈ W we have

π (ab) = r(a,b)π (a)π (b)

for a certain number r(a,b). Taking determinants shows that r(a,b)n = 1. Moreover, if W is small
enough, by continuity we have |r(a,b)− 1| < 1/2n, so that in fact r(a,b) = 1.

Proposition A.3.4 Consider a compact group G which satisfies the conditions of Theorem
A.3.1, a neighborhood W of the identity and a continuous map π satisfying (A.20) which
associates to each point of W an operator π (a). Then we can find a true representation π1 of
G such that π1(a) = π (a) when a is close to the identity. Moreover, if π ′ denotes a projective
representation of G such that π ′(a) = λ(a)π (a) for a ∈ W (where λ(a) is a complex number
of modulus 1) then π ′ arises from π1.

Proof Given an element a of G by hypothesis there exists a continuous map ϕ from [0,1] to G such
that ϕ(0) = e (the unit of G) and ϕ(1) = a. Using this map we will define an operator π (a,ϕ). We
will then show that in fact this operator does not depend on ϕ but only on a. This will be the operator
π1(a) we are looking for. All the other properties will be rather obvious.

To define the operator π (a,ϕ) we consider points 0 = t0 < t1 < . . . < tk = 1 such that for
t� ≤ s,t ≤ t�+1 we have ϕ(s)ϕ(t)−1 ∈ W . This is possible by continuity of ϕ. Consider then the
quantity

π (ϕ(tk)ϕ(tk−1)−1) · · ·π (ϕ(t�)ϕ(t�−1)−1) · · ·π (ϕ(t1)ϕ(t0)−1). (A.21)

It follows from (A.20) that for t�−1 < s < t� we have

π (ϕ(t�)ϕ(t�−1)−1) = π (ϕ(t�)ϕ(s)−1)π (ϕ(s)ϕ(t�−1)−1).

Thus the quantity (A.20) does not change if we add some extra points ti . Consequently it depends only
on ϕ and not on the specific choice of the points t�. Indeed if we consider two different finite families
the values of the corresponding quantities (A.21) are equal to the value of this quantity corresponding
to the union of these two families. In this manner we define the operator π (a,ϕ).

Suppose that we have a continuous map ψ : [0,1] × [0,1] → G such that ψ(0,u) = e and
ψ(1,u)= a for each u ∈ [0,1]. We may then consider the curves ϕu from e to a given by ϕu(t) =
ψ(t,u). We now prove the crucial fact: π (a,ϕu) is independent of u. For this we consider a small
neighborhood W ′ of the identity such that b,bc,bcd ∈ W and b−1 ∈ W whenever b,c,d ∈ W ′. For
u and v close enough we have

∀t , 0 ≤ t ≤ 1 , ϕu(t)ϕv(t)−1 ∈ W ′. (A.22)

It suffices to prove that under this condition we have π (a,ϕu) = π (a,ϕv). Let us consider 0 = t0 <

t1 < . . . < tk = 1 such that for t� ≤ s,t ≤ t�+1 we have ϕu(s)ϕu(t)−1 ∈ W ′ and ϕv(s)ϕv(t)−1 ∈ W ′.
Then π (a,ϕu) and π (a,ϕv) are respectively equal to

π (ϕu(tk)ϕu(tk−1)−1) · · ·π (ϕu(t�)ϕu(t�−1)−1) · · ·π (ϕu(t1)ϕu(t0)−1) (A.23)

and

π (ϕv(tk)ϕv(tk−1)−1) · · ·π (ϕv(t�)ϕv(t�−1)−1) · · ·π (ϕv(t1)ϕv(t0)−1). (A.24)

To prove that these quantities are equal to each other, we write for each �

ϕu(t�)ϕu(t�−1)−1 = b�c�d�
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where

b� = ϕu(t�)ϕv(t�)−1 ; c� = ϕv(t�)ϕv(t�−1)−1 ; d� = ϕv(t�−1)ϕu(t�−1)−1

all belong to W ′. Therefore (A.20) implies

π (ϕu(t�)ϕu(t�−1)−1) = π (b�)π (c�)π (d�).

We substitute this equality in each term of (A.23), and we notice that d� = b−1
�−1 ∈ W , so that

π (d�) = π (b�−1)−1. Since bk = d1 = e all the terms π (b�) and π (d�) cancel, leaving the product
(A.24). Thus we have proved that π (b,ϕu) does not depend on u.

Consider now the case a = e. A continuous curve ϕ from e to a is then a loop. The assumption
that G is simply connected means that we can continuously contract this loop to the origin, that is we
can find a continuous map ψ : [0,1]× [0,1]→ G such that ψ(t,0) = ϕ(t) and ψ(t,1) = e, whereas
ψ(0,u) = ψ(1,u) = e. Writing as before ϕu(t) = ψ(t,u) it is obvious that π (e,ϕ1) = 1. Since
π (e,ϕu) does not depend on u we then have

π (e,ϕ) = 1. (A.25)

From this point on everything is easy.
Let us then consider a continuous curve ϕ from e to a and a continuous curve ϕ′ from e to another

point b. We can define a continuous curve ψ from e to ab by ψ(t) = ϕ′(2t) for 0 ≤ t ≤ 1/2 and
ψ(t) = ϕ(2t − 1)b for 1/2 ≤ t ≤ 1. It is straightforward to check from the definition that

π (ab,ψ) = π (a,ϕ)π (b,ϕ′). (A.26)

Also, it is equally straightforward that if we define ϕ̂(t) := ϕ(1− t) then

π (a,ϕ)−1 = π (a−1,ϕ̂a−1). (A.27)

Considering two continuous maps ϕ1 and ϕ2 from e to a certain element a of G, let us prove that
π (a,ϕ1) = π (a,ϕ2). Consider the loop given by ϕ(t) = ϕ1(2t) for 0 ≤ t ≤ 1/2 and ϕ(t) = ϕ2(2−2t)
for 1/2 ≤ t ≤ 1, so that π (e,ϕ) = 1 by (A.25). Combining with (A.26) for b = a−1 and ϕ′(t) =
ϕ2(1− t)a−1 yields 1 = π (a,ϕ1)π (a−1,ϕ′). Since π (a−1,ϕ′) = π (a,ϕ2)−1 by (A.27) we conclude
as desired that π (a,ϕ1) = π (a,ϕ2). So we have proved that π1(a) := π (a,ϕ) depends only on a.
By hypothesis there is a neighborhood V of the identity such that ϕ is valued entirely inside W when
a ∈ V . It is then obvious that π1(a) = π (a). It follows from (A.26) that π1 is a representation.

Consider now a projective representation π ′ and assume that π ′(a)= λ(a)π (a) for a ∈ W , where
as usual |λ(a)| = 1. Therefore

π ′(a) = λ(a)π1(a) (A.28)

for a ∈ V . In the expression (A.21) we may as well assume that each term ϕ(t�)ϕ(t�−1)−1 belongs
to V . Applying (A.28) to each such term, and using that π ′ is a projective representation yields that
the quantity (A.21) equals λπ ′(ϕ(1)) where |λ| = 1. But this quantity also equals π1(ϕ(1)) by the
definition of π1. Thus, the projective representation π ′ arises from π1.

A.4 Induced Representations for Finite Groups

In this section all groups are finite. Consider a finite group G and a representation W of G, that is a
map W from G into the group of invertible linear transformations of a linear space G with W (AB) =
W (A)W (B).5 Consider a subgroup H of G. It may happen that there exists a subspace H of G such

5 In this section there are no inner products on the linear spaces involved, and we are not concerned about
unitary representations, only about representations.
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that W (A)(H) = H for A ∈ H . In this manner we obtain a representation U of H on H: U (A) is
the restriction of W (A) to H. We call U the restriction of W to H and H, and we will say that the
representation U of H is a subrepresentation of W . We will say that this subrepresentation spans W
if G is spanned by the union of the spaces W (A)(H) for A ∈ G.

We say that two representations W,W ′ of a group G into spaces G,G′ are equivalent if there is an
isomorphism (= invertible linear map) T from G to G′ such that TW (A) = W ′T (A) for each A ∈ G.
We say that a representation W of G in G is irreducible is there are no proper subspaces of G which
are invariant under all the transformations W (A) for A ∈ G.

Suppose now that we are given the representation U of H . What can we say of the representations
of G which are spanned by a subrepresentation equivalent to U? We will prove the following facts.

Theorem A.4.1 (a) Every representation of G which is spanned by a subrepresentation equiv-
alent to U has a dimension ≤ dimH × cardG/cardH . Up to equivalence there is a unique
such representation of this dimension, denoted IndG

H
U .

(b) Every representation of G which is spanned by a subrepresentation equivalent to U is in a
natural sense (which will be made precise in Lemma A.4.3) a quotient of IndG

H
U .

(c) When IndG
H
U is irreducible, every representation of G which is spanned by a subrepresen-

tation equivalent to U is equivalent to IndG
H
U .

Let us stress that up to equivalence, IndG
H
U depends only on G,H and U .

We will start by analyzing the representations of G which are spanned by a subrepresentation
equivalent of U even though we have not proved yet that there is any such representation. We begin
with some very basic observations. The binary relation ARB on G defined by ARB if and only if
B−1A ∈ H is an equivalence relation. All the equivalence classes have cardinality cardH . The set of
equivalence classes is denoted byG/H . GivenA ∈ G if B,C ∈ G are such that BRC thenABRAC.
In this manner for A ∈ G and w ∈ G/H we define A · w as being the equivalence class consisting
of the elements AB for B in the equivalence class w. This defines an action of G on G/H , that is
for A,B ∈ G and w ∈ G/H we have A · (B · w) = (AB) · w. This formula will be of constant use.
Obviously cardG/H = cardG/cardH . We denote by w∗ the class of H in G/H . Thus A ·w∗ = w∗
if and only if A ∈ H .

The following simple lemma goes a long way toward explaining the structure of representations
which are spanned by a given subrepresentation.

Lemma A.4.2 Consider a representation W of G on a space G. Consider a subspace H of G
and assume that W (A)(H) = H for A ∈ H . Then for A ∈ G the space W (A)(H) depends only
onw := A·w∗, the class ofA inG/H . We denote it by Hw . FurthermoreW (A)(Hw) = HA·w .

Proof IfA·w∗ =B·w∗ we haveB−1A ∈ H . SinceA=B(B−1A) we haveW (A)=W (B)W (B−1A).
Since W (B−1A)(H) = H we have W (A)(H) = W (B)(H). To prove the last property we notice that
if w = B · w∗ then Hw = W (B)(H) and W (A)(Hw) = W (AB)(H) = HAB·w∗ = HA·w .

In particular if G is spanned by the spaces W (A)(H) it is spanned by the spaces Hw . Each of these
has dimension dimH and there are cardG/cardH of them, so that dimG ≤ dimH× cardG/cardH .
When there is equality, G is the direct sum of the spaces Hw , and the action of an operator W (A)
shuffles these spaces around. We may then write uniquely every element x of G as a sum x =∑

w∈G/H xw where xw ∈ Hw . Then

W (A)(x) =
∑

w∈G/H
W (A)(xw) =

∑
w∈G/H

W (A)(xA−1·w),

where we have used in the last equality that w �→ A−1 · w is a permutation of G/H . The point of
this last expression is that W (A)(xA−1·w) ∈ Hw because A · (A−1 · w) = w. If we identify a family
(xw)w∈G/H with a function f : G/H → G with f (w) ∈ Hw we have discovered the formula (A.29).
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Lemma A.4.3 Under the conditions of Lemma A.4.2 consider the space Z of functions
f : G/H → G such that f (w) ∈ Hw for each w ∈ G/H . Then the formula

Z(A)(f )(w) = W (A)f (A−1 · w) (A.29)

defines a representation Z of G in Z . This representation is spanned by the space H′ = {f ∈
Z;w �= w∗ ⇒ f (w) = 0}. Its restriction to H and H′ is equivalent to the restriction U of W
to H and H. The map S : Z → G given by S(f ) =∑

w∈G/H f (w) satisfies

SZ(A) = W (A)S (A.30)

for each A ∈ G. Furthermore if U spans the representation W this map is onto.

Z Z(A)−−−−−→ Z⏐⏐"S S

⏐⏐"
G W (A)−−−−−→ G

Was a quotient of Z.

In words, if a representation W of G in a space G is spanned by a subrepresentation equivalent
to U , it is in a natural sense a quotient of the representation Z of (A.29). The remarkable fact is
that the representation Z of (A.29), which seems to depend on the whole representation W , up to
equivalence depends only on the restriction U of W to H and H. This is not apparent yet, but is the
key to everything.

Proof of Lemma A.4.3 We note that Z(A)(f )(w) = W (A)f (A−1 ·w) ∈ Hw because f (A−1 ·w) ∈
HA−1·w andW (A)(HA−1·w) = Hw . It is then straightforward to check that the formula (A.29) defines
a representation. The rest is obvious.

Corollary A.4.4 Assume either that dimG = dimH×cardG/cardH or that the representation
Z of (A.29) is irreducible. Then S is an isomorphism and the representations Z and W are
equivalent.

Proof Since dimZ = dimH × cardG/cardH , when dimG = dimH × cardG/cardH , then
dimZ = dimG. Then since S is onto it is an isomorphism, and (A.30) witnesses the equivalence
of the representations Z and W . Furthermore, according to (A.30), the space ker S is invariant by all
the operators Z(A) so that when Z is irreducible this space must be reduced to {0} and S is again an
isomorphism.

Next, let us try to understand better the representation Z of (A.29). There are many natural maps
between H and Hw , namely all the maps W (A) where A ·w∗ = w. It clarifies matters to distinguish
such a map, even though we have to do it in an arbitrary manner. So, for any w ∈ G/H let us fix
Dw ∈ G with Dw · w∗ = w.

Lemma A.4.5 For each f ∈Z the function T (f ) onG/H given by T (f )(w) = W (D−1
w )(f (w))

is valued in H. Furthermore

T (Z(A)(f )) = X(A)(T (f )) (A.31)

where for a function ϕ : G/H → H we define X(A)(ϕ) by

X(A)(ϕ)(w) = W (D−1
w ADA−1·w)(ϕ(A−1 · w)). (A.32)
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Proof Since f (w) ∈ Hw , we have T (f )(w) = W (D−1
w )(f (w)) ∈ H

D−1
w ·w = H. Next, using in the

last equality that f (w) = W (Dw)(T (f )(w)) for A−1 · w rather than w we obtain

T (Z(A)(f ))(w) = W (D−1
w A)(f (A−1 · w)) = W (D−1

w ADA−1·w)(T (f )(A−1 · w))

and the right-hand side is just X(A)(T (f ))(w).

Lemma A.4.6 For each w ∈ G/H we have D−1
w ADA−1·w ∈ H .

Proof Let us recall that A ∈ H if and only if A · w∗ = w∗. But then

(D−1
w ADA−1·w) · w∗ = (D−1

w A) · (A−1 · w) = D−1
w · w = w∗.

As a consequence the right-hand side of (A.32) depends only on the restrictionU ofW toH andH .
Since it is obvious that T is invertible, (A.31) shows that this is also the case of the representation Z
of (A.29).

Now that we have discovered the formula (A.32), it is easy to actually construct a representation
of G spanned by a subrepresentation equivalent to U . We assume for simplicity that Dw∗ = e, the
unit of G.

Lemma A.4.7 Consider the space X of functions f from G/H to H. Then the formula

X(A)(f )(w) = U (D−1
w ADA−1·w)(f (A−1 · w)) (A.33)

defines a representation of G in X , which is spanned by a subrepresentation equivalent to
U . Furthermore dimX = dimH × dimG/ dimH . Finally the representation Z of (A.29) is
equivalent to the representation X.

Proof Since D−1
w ADA−1·w ∈ H by Lemma A.4.6 the formula (A.33) makes sense. It requires only

straightforward algebra to check that this formula defines a representation. The space H′ of functions
f ∈ X such that f (w) = 0 for w �= w∗ is invariant under the transformations X(B) for B ∈ H and
the restriction of X to H and H′ is equivalent to U because for B ∈ H we have DB·w∗BDw∗ = B

since Dw∗ is the unit of G. That the spaces X(A)(H′) span X is a consequence of the fact that every
point of G/H is of the type A · w∗ for some A ∈ G. The claim concerning the dimension of X is
obvious and the last claim has been proved in (A.31).

Proof of Theorem A.4.1 We have proved that if a representation W of G is spanned by a subrepre-
sentation equivalent to U , then it is a quotient of the representation Z of (A.29), and we have proved
in Lemma A.4.7 that up to equivalence this representation Z depends only on U . The rest follows
from Corollary (A.4.4).

Finally, we give a far more elegant (but also more mysterious) construction of IndG
H
U .

Lemma A.4.8 Consider a group G, a subgroup H of G and a representation U of H in a
space H. Consider the space G of functions ϕ from G to H which satisfy the condition

∀A ∈ G , ∀C ∈ H , ϕ(AC) = U (C−1)(ϕ(A)). (A.34)

Then the formula

R(A)(ϕ)(B) := ϕ(A−1B) (A.35)

defines a representation of G in G. This representation is equivalent to IndG
H
U .

Proof For x ∈ H let us define the function T (x) on G by T (x)(A) = 0 if A �∈ H and T (x)(A) =
U (A−1)(x) if A ∈ H . It is straightforward to check that T (x) ∈ G. For C,A ∈ H and x ∈ H we have

T (U (C)(x))(A) = U (A−1)(U (C)(x)) = U (A−1C)(x)

= U ((C−1A)−1)(x) = T (x)(C−1A) = R(C)(T (x))(A)
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and thus T U (C) = R(C)T , so that the restriction of R to T (H) is equivalent to U . It is obvious that G
is of dimension dimH× cardG/cardH so that by Theorem A.4.1 the representation R is equivalent
to IndG

H
U .

If it is not obvious to you that G is of dimension dimH× cardG/cardH this is a consequence of
the fact that the map T below is an isomorphism between G and X .

Exercise A.4.9 Give a direct proof that the representations of Lemmas A.4.7 and A.4.8 are
equivalent. Hint: For ϕ ∈ G define T (ϕ) ∈ X by T (ϕ)(w) = ϕ(Dw).

A.5 Representations of Finite Semidirect Products

A.5.1 Semidirect Products

As we mentioned at the end of Section 9.3, the method of induced representations describes all the
irreducible unitary representations of the group P∗. The full proof of this theorem involves an amount
of technicality which does not fit with the spirit of the present book. On the other hand, it is interesting
and not difficult to understand why the theorem can be true by considering a simpler situation where
there are no technicalities. In this section, we describe all the irreducible unitary representations of a
semidirect product N �H where N and H are finite groups and N is commutative.

First let us explain what is a semidirect product. Since N is commutative, we will denote its
operation by addition (to bring forward the similarity with the Poincaré group). The basic structure
to construct the semidirect product is a homomorphism κ from H into the group of automorphisms6

of N . That is, for each A ∈ H , κ(A) is an automorphism of N i.e.

∀a,b ∈ N , κ(A)(a + b) = κ(A)(a)+ κ(A)(b),

and for A,B ∈ H we have

κ(A)κ(B) = κ(AB).

Definition A.5.1 The semidirect product N �H is the set N ×H endowed with the operation

(a,A)(b,B) = (a + κ(A)(b),AB). (A.36)

It is straightforward to check that (A.36) defines a group operation. Please observe that the map κ
does not appear in the notation N � H . When κ(A) is the identity of N for each A ∈ H , N � H is
simply the direct product of N and H . When N = R1,3, H = SL(2,C) and when for A ∈ SL(2,C),
κ(A) ∈ SO↑(1,3) is given by (8.21) then N �H = P∗.

We now assume that N and H are finite, and we first note a few simple facts.

Definition A.5.2 A character w of N is a group homomorphism from N into the complex
numbers of modulus 1. The dual group N̂ of N is the set of characters provided with pointwise
multiplication, i.e. ww′(a) = w(a)w′(a).

Let us observe in particular that a character satisfies

w(−a) = w(a)−1 = w(a)∗. (A.37)

As the reader will prove in Exercise A.5.10, N̂ is finite and card N̂ = cardN . The following
obvious result explains how κ induces an operation κ̂ of H on N̂ .

6 An automorphism of a group is an isomorphism of the group into itself.
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Lemma A.5.3 For A ∈ H and w ∈ N̂ we define κ̂(A)(w) ∈ N̂ by

κ̂(A)(w)(a) = w(κ(A−1)(a)).

Then for A,B ∈ H we have κ̂(A)̂κ(B) = κ̂(AB).

A.5.2 Finding All Irreducible Unitary Representations of Finite Semidirect Products

Our goal is to describe all the irreducible unitary representations of N �H . We use first, as is proved
in the next section, that such an irreducible representation is finite-dimensional. So let π (a,A) be such
an irreducible representation of N �H in a finite-dimensional Hilbert space H. We first consider the
representation � of N given by �(a) = π (a,e) where e denotes the unit of H . For w ∈ N̂ we denote

Vw = {x ∈ H ; ∀a ∈ N ; �(a)(x) = w(a)x}.
This is a subspace of H.

Lemma A.5.4 If w �= w′ then Vw and Vw′ are orthogonal.

Proof Let us consider a ∈ N with w(a) �= w′(a), and x ∈ Vw,y ∈ Vw′ . On the one hand, we have

(x,�(a)y) = w′(a)(x,y)

and on the other hand, using that �(a) is unitary, and recalling (A.37),

(x,�(a)y) = (�(a)†x,y) = (�(a)−1x,y) = (�(−a)x,y) = (w(−a)x,y)

= (w(a)∗x,y) = w(a)(x,y),

so that indeed (x,y) = 0.

Lemma A.5.5 There exists w! ∈ N̂ such that Vw! is not reduced to 0.

Proof Each subspace of H (and in particular H itself) which is invariant under all the �(a) contains
a minimal non-trivial such subspace H′, which constitutes an irreducible representation ofN . SinceN
is commutative, this representation is of dimension 1 by Schur’s lemma (Lemma 4.5.7). Considering
x �= 0 ∈ H′, for a ∈ N we then have �(a)(x) = w!(a)x for a certain complex number w!(a) of
modulus 1, and thus obviously w! is a character for which x ∈ Vw! .

Let us recall that 0 denotes the unit of N , and for A ∈ H let us write �(A) = π (0,A). We observe
the relations (a,A) = (a,e)(0,A) and (a,A) = (0,A)(κ(A−1)(a),e) and their consequences

π (a,A) = π (a,e)π (0,A) = �(a)�(A)

π (a,A) = π (0,A)π (κ(A−1)(a),e) = �(A)�((κ(A−1)(a)), (A.38)

which we will use many times.

Lemma A.5.6 For A ∈ H we have �(A)(Vw) = Vκ̂(A)(w).

Proof Consider x ∈Vw . Then, using (A.38), and using in the last equality that �(κ(A−1)(a))(x) =
w(κ(A−1)(a))x since x ∈ Vw ,

�(a)(�(A)(x)) = π (a,A)(x) = �(A)�(κ(A−1)(a))(x) = w(κ(A−1)(a))�(A)(x),

and since w(κ(A−1)(a))= κ̂(A)(w)(a) this implies that �(A)(x)∈Vκ̂(A)(w). Thus �(A)(Vw)

⊂ Vκ̂(A)(w). The other direction follows by replacing A by A−1 and w by κ̂(A)(w).
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Consider then

O = {̂κ(A)(w!) ; A ∈ H }, (A.39)

the orbit of w! under the action κ̂ of H on N̂ . It follows from Lemma A.5.6 that for w ∈ O the space
Vw is not reduced to 0. Furthermore this lemma implies that the linear span of the spaces Vw for
w ∈ O is invariant under all the transformations π (a,A), and since π is irreducible this space is H
itself. Thus H is the orthogonal sum of the spaces Vw as w varies in O. In particular x ∈ H can be
written in a unique manner as a sum x =∑

w∈O xw where xw ∈ Vw , and the square of the norm of
x is the sum of the squares of the norms of the xw . All the spaces Vw have the same dimension and
each π (a,A) just shuffles them around. In fact, we have already a complete description of π , as the
following lemma shows.

Lemma A.5.7 We have

π (a,A)
( ∑
w∈O

xw

)
=

∑
w∈O

w(a)�(A)(xκ̂(A−1)(w)), (A.40)

and

�(A)(xκ̂(A−1)(w)) ∈ Vw . (A.41)

Proof We first observe that (A.41) follows from Lemma A.5.6. Using in the second equality that
w �→ κ̂(A−1)(w) is a permutation of O we obtain using (A.38),

π (a,A)
( ∑
w∈O

xw

)
=

∑
w∈O

�(a)�(A)(xw) =
∑
w∈O

�(a)�(A)(xκ̂(A−1)(w)) (A.42)

and the result by (A.41), and since �(a)(y) = w(a)y for y ∈ Vw .

There are obvious relations between the present situation and the theory of induced representations
discussed in the previous section, but we will discuss these in Exercise A.5.12 and we give self-
contained arguments.

For each w ∈ O let us pick an element Dw ∈ H with κ̂(Dw)(w!) = w. To each function ϕ from
O to V := Vw! we associate the element T (ϕ) := ∑

w∈O �(Dw)(ϕ(w)) of H. Thus, if x = T (ϕ)
then x =∑

w∈O xw where xw = �(Dw)(ϕ(w)) ∈ Vw . Then we obtain

π (a,A)(T (ϕ)) =
∑
w∈O

w(a)�(ADκ̂(A−1)(w))(ϕ (̂κ(A−1)(w))).

Furthermore if x =∑
w∈O xw ∈ H then T−1(x)(w) = �(D−1

w )(xw), so that we obtain

T−1π (a,A)T (ϕ)(w) = w(a)�(D−1
w ADκ̂(A−1)(w))(ϕ (̂κ(A−1)(w))). (A.43)

Let us define the little group Hw! := {A ∈ H ; κ̂(A)(w!) = w!}. Then for A ∈ Hw! we have
(recalling that V = Vw! )

�(A)(V) = V,

so that the restriction U of � to Hw! and V is unitary. The remarkable feature of the right-hand side
of (A.43) is that D−1

w ADκ̂(A−1)(w) ∈ Hw! (as in Lemma A.4.6) so that this right-hand side depends

only on U . Furthermore, the map T is unitary between �2(O,V) and H. We may then state the main
result of the present section.
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Proposition A.5.8 (a) Given a character w! on N , consider its orbit O under the action of
H and a unitary representation U of the little group Hw! of w! in a finite-dimensional Hilbert
space V . For each w ∈ O fix Dw ∈ H such that κ̂(Dw)(w!) = w. Then the formula

π ′(a,A)(y)(w) = w(a)U (D−1
w ADκ̂(A−1)(w))[y (̂κ(A−1)(w))] (A.44)

defines a unitary representation of N �H in the space �2(O,V).
(b) Every irreducible unitary representation ofN�H is unitarily equivalent to a representation
of the previous type.

The formula (A.44) should be compared to the formula (9.7).

Proof (a) It is straightforward algebra to check that the formula (A.44) defines a unitary represen-
tation of N �H , following the same path as in the proof of Theorem 9.4.2.
(b) This follows from (A.43).

Proposition A.5.9 The representation of N � H constructed in Proposition A.5.8 (a) is irre-
ducible if and only if U is irreducible.

Proof If a subspace G of V is invariant under all the operators U (A), A ∈ Hw! , then �2(O,G) is
invariant under all the operators π ′(a,A). Consequently U must be irreducible if π ′ is irreducible.
The converse is the object of the next exercise.

Exercise A.5.10 (a) Prove that ifw �=w′ ∈ N̂ , then
∑

a∈N w′(a)∗w(a) = 0. As a consequence,
the elements of N̂ are linearly independent: If a sum

∑
w∈N̂ αww is such that

∑
αww(a) = 0

for each a ∈ N then αw = 0 for each w ∈ N̂ .
(b) Prove that cardN = card N̂ .
(c) Consider the space F of functions f : H → V with the property that for A ∈ H , C ∈Hw!

we have f (AC)=U (C−1)f (B), provided with the norm ‖f ‖2 =∑
A∈H ‖f (A)‖2. Prove that

the formula

λ(a,A)(f )(B) = κ̂(B)(w!)(a)f (A−1B)

defines a unitary representation ofN�H onF and that this representation is unitarily equivalent
to π (a,A).
(d) Prove that the previous representation is irreducible when U is irreducible.

Exercise A.5.11 To better connect the ideas of the present section with those of Section A.4
describe a natural map R from H/Hw! to O such that for A ∈ G and v ∈ H/Hw! we have
R(A · v) = κ̂(A)(R(v)).

Exercise A.5.12 We recall the notion of induced representations from the previous section.
(a) Prove that the representation � is equivalent to IndH

H
w!

(U ).

(b) Prove that the representation π is equivalent to the representation IndN�H
N�H

w!
(U ′) where U ′

is the restriction of π to N �Hw! and V .

A.5.3 Classifying All Unitary Representations of Finite Semidirect Products

We have proved that an irreducible unitary representation of N � H is always equivalent to a repre-
sentation given by the formula (A.44), and that conversely this formula (A.44) produces irreducible
representations. The remaining question, then, is how to recognize when two representations given
by the formula (A.44) are equivalent. A first observation is that the representation does not depend on
the choice of Dw such that κ̂(Dw)(w!)=w. The simple proof is hinted at in Exercise 9.4.3. Another
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simple observation is that in (A.39) the point w! is after all an arbitrary point of its orbit O. It is the
orbit O, not the specific point w! of this orbit which is important. If we choose another point of this
orbit we will describe the same representation in another manner. This simple result is described in
Proposition 9.4.5. (It is important to observe that the little groups of the points in the same orbit are
all isomorphic.) Besides these obvious cases, the formula (A.44) produces different representations,
as is expressed by the following, where we call the orbit O the orbit associated to the representation.

Theorem A.5.13 Consider two irreducible unitary representations of N � H produced by
the formula (A.44). If the two orbits associated to these representations are disjoint, the rep-
resentations are not unitarily equivalent. If the two orbits associated to these representations
coincide, and if we use the same point w! of these orbits to describe the two representations by
the formula (A.44), the representations are unitarily equivalent if and only if the corresponding
representations of the little group of w! are unitarily equivalent.

As we have no use for this result, which is an easy consequence of arguments given earlier in this
section we will not give the proof.

A.5.4 Formal Application to the Poincaré Group.

Now we describe the corresponding procedure in the situation of P∗ = R1,3 � SL(2,C). We recall
that what we denoted in this case as A(x) for x ∈ R1,3 and A ∈ SL(2,C) was in fact κ(A)(x),
where κ(A) is given by (8.21). The group R̂1,3 of (continuous) characters identifies to R1,3, a point
p ∈ R1,3 corresponding to the character χp : x �→ exp(i(x,p)/h̄). The action κ̂(A) of A ∈ SL(2,C)
on R̂1,3 = R1,3 is given by

κ̂(A)(χp)(x) = χp (̂κ(A)−1(x))

= exp(i(κ(A−1)(x),p)/h̄)

= exp(i(x,κ(A)(p)/h̄)

= χκ(A)(p)(x), (A.45)

so that the action of SL(2,C) on the group of characters is just its natural action on R1,3.
This explains the importance of the orbits in R1,3 under the action of SL(2,C). We will leave the

determination of these orbits as an easy exercise to the reader. These are the sets Xm = {p;p2 =
m2c2,p0 > 0}; − Xm = {p;p2 = m2c2,p0 < 0};X0 \ {0} = {p;p2 = 0,p0 > 0};{p;p2 =
0,p0 < 0};{p;p2 = −m2c2}, where m > 0, and, finally, {0} . Given such an orbit O the space
�2(O,V) of Proposition A.5.8 has to be replaced by the space L2(O,dλ,V) where dλ is a measure
on O invariant under the action of SL(2,C). By analogy with the case of finite groups, it is not that
surprising that an irreducible representation of P∗ always arises in this manner. Not all the orbits
however are physically relevant. Those which are relevant are orbits of points p with p2 ≥ 0 and
p0 ≥ 0. These orbits are exactly the sets Xm for m > 0 and the set X0 \ {0}. The natural choice
of an invariant measure on O is then dλ = dλm. Given a specific choice p∗ in Xm, in the formula
(A.44) one has to replace the value of the character w on a by exp(i(a,p∗)/h̄), and this formula is
then just the formula of induced representations (9.7), describing an irreducible representation of P∗
in the space L2(Xm,dλm,V). The choice of p∗ in Xm is up to us. When the orbit is Xm, m > 0 a
natural choice is p∗ = (mc,0,0,0). A further advantage of this choice is that given p in Xm there is
a canonical choice of Dp ∈ SL(2,C) such that κ(Dp)(p∗) = p, namely a pure boost.

A.6 Representations of Compact Groups

In the present section we prove the following fundamental theorem. In Section D.3 we apply it to the
definition of angular momentum.
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Theorem A.6.1 A unitary strongly continuous representation of a compact group has a finite-
dimensional invariant subspace.

The proof will start in about a page, after that of the following corollary.

Corollary A.6.2 A unitary strongly continuous representation of a compact group in a sepa-
rable Hilbert space is a direct sum of finite-dimensional representations.

That is, the Hilbert space is a direct sum of finite-dimensional orthogonal subspaces Hn, each of
which is invariant under all the operators π (A).

Proof Mathematicians often appeal to Zorn’s lemma for this proof, which I find absurd, so I give
a constructive proof. Consider an orthonormal basis (e�)�≥1 of H. For a finite-dimensional subspace
F of H, let us define

a(F ) =
∑
�≥1

2−�‖PF (e�)‖2,

where PF is the orthogonal projection on F . Let us denote by I the class of finite-dimensional
invariant subspaces of H. We construct by induction a sequence Hk ∈ I of mutually orthogonal
spaces, as follows. Having constructed H1, . . . ,Hk , the orthogonal complement Gk of

⊕
�≤k H� is

invariant under T , so that by Theorem A.6.1 it contains a least one space F ∈ I. We then chose Hk+1
with

a(Hk+1) ≥ 1

2
sup{a(F ) ; F ⊂ Gk , F ∈ I}. (A.46)

We prove now that the closed span G of the spaces Hk equals H. Otherwise, for some �, the projection
e′
�

of e� on the orthogonal complement G′ of G is not zero. Now, the closed linear span of the spaces
F ∈ I,F ⊂ G′ is all of G′ (for otherwise the orthogonal complement of this space in G′ would
violate Theorem A.6.1). Consequently we can find F ∈ I,F ⊂ G′ with ‖PF (e′

�
)‖2 > 0. Since

‖PF (e�)‖2 = ‖PF (e′
�
)‖2 this shows that a(F ) > 0. Since F ⊂ Gk we deduce from (A.46) that for

each k we have

a(Hk+1) ≥ 1

2
a(F ).

But since the spaces Hk are orthogonal, for each � we have
∑

k ‖PHk
(e�)‖2 ≤ ‖e�‖2 = 1, so that∑

k a(Hk) ≤ 1, which contradicts the previous condition.

In the rest of the section we give a self-contained proof of Theorem A.6.1. The reader who is afraid
of compact groups may assume that the group is SU (2). The fundamental ingredient of the proof is
that on a compact group G there exists a translation invariant probability measure da called the Haar
measure. (It is known to be unique.) Thus, for any continuous function f onG and any b∈Gwe have∫

f (a)da =
∫
f (ba)da =

∫
f (ab)da. (A.47)

Exercise A.6.3 We have seen from Lemma 8.1.7 that SU (2) naturally identifies with the sphere
of R4. There is a natural probability measure on this sphere. Prove that it is the Haar measure.
Hint: Prove (A.47).

Let us then fix a strongly continuous unitary representation π of a compact group G. Our goal is
to construct a finite-dimensional invariant subspace. (This will imply Theorem A.6.1.) We fix once
and for all a unit vector u of H and for x ∈ H we define

T (x) =
∫

(π (a)(u),x)π (a)(u)da ∈ H. (A.48)
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Lemma A.6.4 The operator T is defined everywhere, of norm ≤1, symmetric and not zero. It
commutes with all the operators π (a). Moreover, if (xn) is a bounded sequence in H,

∀y ∈ H , lim
n→∞(y,xn) = 0⇒ lim

n→∞‖T (xn)‖ = 0. (A.49)

Proof Since ‖π (a)(u)‖ ≤ 1 it is obvious that ‖T (x)‖ ≤ ‖x‖. We write

(y,T (x)) =
∫

(π (a)(u),x)(y,π (a)(u))da

=
∫

(x,π (a)(u))∗(π (a)(u),y)∗da

=
( ∫

(π (a)(u),y)(x,π (a)(u))da
)∗

= (x,T (y))∗ = (T (y),x), (A.50)

proving that T is symmetric. Now,

(x,T (x)) =
∫
|(π (a)(u),x)|2da.

For x = u the integrand is 1 when a is the unit of G. The map a �→ π (a)(u) is continuous since we
assume π to be strongly continuous. Since a neighborhood of the identity has positive Haar measure,
the right-hand side is positive. Thus T (u) �= 0.

Next we show that T commutes with π (b). We have, using (A.47) in the second equality, using in
the third equality that (π (ba)(u),π (b)(y)) = (π (a)(u),y) since π is unitary, and using that π (ba) =
π (b)π (a) in the fourth equality,

T (π (b)(y)) =
∫

(π (a)(u),π (b)(y))π(a)(u)da

=
∫

(π (ba)(u),π (b)(y))π (ba)(u)da

=
∫

(π (a)(u),y)π (ba)(u)da

= π (b)(T (y)). (A.51)

Finally we turn to the proof of (A.49). First we note that the set K = {π (a)(u);a ∈ G} is compact
because G is compact and a �→ π (a)(u) is continuous. Next, since ‖π (a)(u)‖ ≤ 1 it holds that

‖T (x)‖ ≤
∫
|(π (a)(u),x)|‖π (a)(u)‖da ≤ sup

y∈K
|(y,x)|.

SinceK is compact, given ε > 0 we can find a finite subset F ofK such that each point ofK is within
distance ε of F , and then

sup
y∈K
|(y,x)| ≤ sup

y∈F
|(y,x)| + ε‖x‖,

and this inequality should make the result obvious.

If one knows spectral theory, Theorem A.6.1 is obvious at this stage, because there exist projections
which are “functions” of the non-trivial symmetric operator T and therefore commute with everyπ (a),
and one can use (A.49) to show that these projections must have a finite-dimensional range. Rather
than using spectral theory, we prove Theorem A.6.1 by a simple self-contained argument.

Lemma A.6.5 There exists a unit vector x with ‖T (x)‖ = λ where λ = ‖T ‖ > 0. Furthermore
T 2(x) = λ2x.
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Proof Consider a sequence (yn) of unit vectors of H with limn→∞ ‖T (yn)‖ = λ = ‖T ‖. Fixing
an orthonormal basis (ek) we may assume by taking a subsequence that for each k the limit wk :=
limn→∞(ek,yn) exists. Since for each n we have

∑
k |(ek,yn)|2 = 1 it follows that

∑
k |wk |2 ≤ 1.

Let x =∑
k wkek , so that ‖x‖ ≤ 1. Consider xn = yn − x. Then ‖xn‖ ≤ 2, and for each k we have

limn→∞(ek,xn) = 0. It follows that for each z ∈ H we have limn→∞(z,xn) = 0, by approximating
in norm such a vector z by a linear combination of finitely many basis vectors. Then (A.49) implies
that limn→∞ ‖T (xn)‖ = 0 = limn→∞ ‖T (yn)− T (x)‖, and thus that limn→∞ ‖T (yn)‖ = ‖T (x)‖.
Consequently ‖T (x)‖ = λ = ‖T ‖ and since ‖x‖ ≤ 1 it follows that x is a unit vector. Then ‖T 2(x)‖ ≤
‖T ‖2 = λ2. On the other hand, since T is symmetric,

(T 2(x),x) = (T (x),T (x)) = ‖T (x)‖2 = λ2.

Thus the vector y := T 2(x)/λ2 satisfies ‖y‖ ≤ 1 and (y,x) = 1. Since x is a unit vector we have
y = x i.e. T 2(x) = λ2x.

Proof of Theorem A.6.1 The eigenspace H′ of T 2 corresponding to the eigenvalue λ2 is invariant by
π because each π (a) commutes with T 2. Assume then that H′ is infinite-dimensional, and consider
an orthogonal basis (en) of this space. Then ‖T 2(en)‖ = ‖λ2en‖ = λ2 whereas limn→∞(y,en) = 0
for all y ∈ H. But this contradicts (A.49) since ‖T 2(en)‖ ≤ ‖T ‖‖T (en)‖ → 0. Therefore H′ is a
finite-dimensional invariant subspace.



Appendix B

End of Proof of Stone’s Theorem

In this appendix we lighten notation by taking a system of units where h̄ = 1. Our goal, given a self-
adjoint operatorA, is to construct the one-parameter unitary groupU (t) of which it is the infinitesimal
generator, that is

∀x ∈ D(A) , A(t) = lim
t→0

1

it
(U (t)x − x).

The proof follows the lines of the proof of the Hille–Yosida theorem on semigroups of contractions
in a Banach space, with a little twist as we need to construct a group rather than a semigroup. The
construction is based on the Green operator G(z) = (z1−A)−1 of Definition J.1. To learn about the
Green operator, the reader is referred to Appendix J, but we now make a list of the properties of this
operator we shall need. The Green operator G(z) exists for Im z �= 0. It is a bounded operator-valued
in D(A) which satisfies ‖G(z)‖ ≤ |Im z|−1 and

∀x ∈ D(A),G(z)(z1− A)(x) = x ; ∀x ∈ H,(z1− A)G(z)(x) = x,

which we simply write as

G(z)(z1− A) = (z1− A)G(z) = 1.

Furthermore if Im z,Im z′ �= 0, then

G(z)G(z′) = G(z′)G(z). (B.1)

Let us first explain the strategy. We rewrite the equality G(z)(z1− A) = 1 as

zG(z)− 1 = G(z)A. (B.2)

We specialize to the case z = iλ where λ ∈ R and lighten notation by writing

V (λ) = iλG(iλ).

Informally we have

G(z) = 1

z1− A

so that

V (λ) = iλ

iλ1− A
,

and we should expect that

lim
λ→±∞V (λ) = 1. (B.3)

612
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A fundamental property is that

‖V (λ)‖ ≤ |λ|‖G(iλ)‖ ≤ |λ||Im (iλ)|−1 = 1. (B.4)

Now, from (B.2) it holds that

λ(V (λ)− 1) = −iV (λ)A (B.5)

and we should expect from (B.3) that the bounded operator λ(V (λ)−1) approaches−iA as λ→±∞.
We then should have

U (t) = exp(itA) = lim
λ→∞ exp(−tλ(V (λ)− 1)).

Lemma B.1 The limit (B.3) holds in the strong sense.

Proof Consider x ∈ D(A). Multiplying the identity iλx − (iλ− A)(x) = A(x) to the left by G(iλ)
we get

V (λ)(x)− x = G(iλ)A(x),

and the second inequality in (B.4) implies that this quantity goes to 0 as λ → ∞. The set of x for
which limλ→±∞ V (λ)(x) = x therefore contains D(A) so that it is dense. Since ‖V (λ)‖ ≤ 1, this set
is closed, and this concludes the proof.

Let us then define

Uλ(t) := exp(−tλ(V (λ)− 1)) = exp(tλ)
∑
n≥0

(−tλ)n

n!
V (λ)n. (B.6)

Consequently, using (B.4)

‖Uλ(t)‖ ≤ exp(tλ)
∑
n≥0

|tλ|n
n!
= exp(tλ+ |tλ|). (B.7)

This bound is useful only when t and λ have opposite signs. This creates a technical difficulty.
Let us observe that all the Uλ(t) commute with each other because, as follows from (B.1), the

operators V (λ) commute with each other. Let us also observe that for x ∈ D(A) we have, using (B.5)
in the second equality,

lim
t→0

1

it
(Uλ(t)(x)− x) = −1

i
λ(V (λ)− 1)(x) = V (λ)A(x). (B.8)

Lemma B.2 For t ≥ 0 the limit U (t) = limλ→−∞ Uλ(t) exists and ‖Uλ(t)‖ ≤ 1. Moreover
for s,t ≥ 0 we have U (s)U (t) = U (s + t) and for x ∈ D(A) we have

lim
t→0+

1

it
(U (t)(x)− x) = A(x). (B.9)

Furthermore for x ∈ D(A) we have U (t)(x) ∈ D(A) and AU (t)(x) = U (t)A(x).

Proof The crucial point is that for t ≥ 0 and λ ≤ 0 we have ‖Uλ(t)‖ ≤ 1 by (B.7).
For two commuting operators S,T of norm ≤1 it holds that

Sn − T n = (Sn−1 + Sn−2T + · · · + T n−1)(S − T )

and therefore

‖(Sn − T n)(x)‖ ≤ n‖(S − T )(x)‖.
Consider x ∈ D(A), μ ≤ 0 and let us use the previous inequality for S = Uλ(t/n) and T = Uμ(t/n).
Then

‖(Uλ(t)− Uμ(t))(x)‖ ≤ n‖Uλ(t/n)(x)− Uμ(t/n)(x)‖.
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Writing the right-hand side as

t

∥∥∥Uλ(t/n)(x)− x

t/n
− Uμ(t/n)(x)− x

t/n

∥∥∥,
letting n→∞ and using (B.8) we obtain

‖(Uλ(t)− Uμ(t))(x)‖ ≤ t‖(V (λ)− V (μ))A(x)‖. (B.10)

It then follows from Lemma B.1 that the limit limλ→−∞ Uλ(t)(x) exists for all t > 0 and all x ∈
D(A), so that it exists for all x using again that ‖Uλ(t)‖ ≤ 1. The property U (s)U (t) = U (s + t)
should be obvious. Given x ∈ D(A), (B.8) implies

d

dt
Uλ(t)(x) = iUλ(t)V (λ)A(x). (B.11)

We write

‖Uλ(t)V (λ)A(x)− U (t)A(x)‖
≤ ‖(Uλ(t)− U (t))V (λ)A(x)‖ + ‖Uλ(t)(V (λ)− 1)A(x)‖
≤ ‖V (λ)‖‖(Uλ(t)− U (t))A(x)‖ + ‖Uλ(t)‖‖(V (λ)− 1)A(x)‖
≤ ‖(Uλ(t)− U (t))A(x)‖ + ‖(V (λ)− 1)A(x)‖. (B.12)

As λ → −∞, Uλ(t) → U (t) and V (λ) → 1 in the strong sense so that the right-hand side of
(B.11) converges to iU (t)A(x) uniformly over each bounded interval in t , and the derivative of the
limit as λ→∞ is the limit as λ→∞ of the derivative i.e.

d

dt
U (t)(x) = iU (t)A(x).

To prove the last point of the lemma let us first observe a general principle. Let us say that an operator
W commutes with A if W (x) ∈ D(A) for x ∈ D(A) and AW (x) = WA(x). If the operators Wλ

commute with A, and if the strong limit limλ→∞Wλ exists then this limit commutes with A. This is
because for x ∈ D(A)

(Wλ(x),WλA(x)) = (Wλ(x),AWλ(x))

is a point in the graph of A, and this graph is closed by Lemma 2.5.14, because A is an adjoint
(since it is self-adjoint). Consequently (W (x),WA(x)) belongs to the graph of A, i.e. W (x) ∈ D(A)
and WA(x) = AW (x). Now, the operators V (λ) commute with A, and using the previous principle,
taking the limit over the partial sums which define Uλ(t) we obtain that Uλ(t) also commutes with A.
Taking λ→∞ and using the same principle again shows that U (t) commutes with A.

Lemma B.3 For t ≤ 0 the limit W (t) = limλ→∞ Uλ(t) exists and ‖W (t)‖ ≤ 1. Moreover for
s,t ≤ 0 we have W (s)W (t) = W (s + t) and for x ∈ D(A) we have

lim
t→0−

1

it
(W (t)(x)− x) = A(x). (B.13)

Furthermore the operators W (s) and U (t) commute. Finally for x ∈ D(A) we have W (s)(x) ∈
D(A) and AW (s)(x) = WA(s).

The proof is entirely similar to the proof of Lemma B.2.
To complete the proof of Stone’s theorem we define U (t) = W (t) for t < 0. It remains only to

prove that in this manner we define a one-parameter group of operators, that is we have to prove the
identity U (t)U (s) = U (t + s). We already know that this property holds for s and t of the same sign,
so let us consider without loss of generality the case s + t ≥ 0 and t ≥ 0 ≥ s. Changing s into −s, it
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suffices to prove that U (t)W (−s) = U (t − s) for 0 ≤ s ≤ t . For this we fix t , we consider x ∈ D(A),
and the function ϕ(s) = U (t)W (−s)(x)− U (t − s)(x). For s < t and 0 ≤ u ≤ t − s we write

ϕ(s + u)− ϕ(s) = U (t)(W (−u)W (−s)(x)−W (−s)(x))+ U (t − s − u)(U (u)(x)− x).

Then, using (B.9) and (B.13) together with the fact that A commutes with U (t) and W (s) we obtain
that dϕ(s)/ds = −iAϕ(s). Since A is symmetric,

d

ds
‖ϕ(s)‖2 = d

ds
(ϕ(s),ϕ(s)) = (−iAϕ(s),ϕ(s))+ (ϕ(s), − iAϕ(s)) = 0.

Consequently, and since ϕ(0) = 0, we obtain that ϕ(s) = 0 for each s ≤ t , i.e. U (t)W (−s)(x) =
U (t − s)(x) for all x in D(A) so that U (t)W (−s) = U (t − s) since D(A) is dense.



Appendix C

Canonical Commutation Relations

Let us recall from Section 2.14 the following one-parameter unitary groups of L2 = L2(R):

U (t) = exp(itX/h̄) ; V (s) = exp(isP/h̄), (C.1)

so that

U (t)(f )(x) = exp(itx/h̄)f (x) ; V (s)(f )(x) = f (x + s). (C.2)

They satisfy the relation (2.74)

V (s)U (t) = exp(its/h̄)U (t)V (s). (C.3)

As we explained in Section 2.14 the previous relation is the fruitful form of the canonical commutation
relation [X,P ] = ih̄1. We will call it the 1-ICCR, integrated canonical commutation relation, the “1”
referring to the dimension. We start to learn how to compute with this relation in Section C.1. In
Section C.2 we explain the coherent states for the harmonic oscillator and their remarkable time-
evolution. In Section C.3 we state and prove (for n = 1) the foundational Stone–von Neumann
theorem. In Section C.4 we explain in great detail why and how this theorem fails in the case “n = ∞”.
Finally, in Section C.5 we try to explain how this question is treated in physics textbooks.

C.1 First Manipulations

Definition C.1.1 For s,t in R we set

S(s,t) = exp(ist/2h̄)U (t)V (s) = exp(−its/2h̄)V (s)U (t). (C.4)

This makes sense because the last two terms are equal thanks to (C.3). The reason behind this
definition will become clear very soon, in Lemma C.1.3. The following is straightforward using (C.3)
and (C.4).

Lemma C.1.2 We have

S(s,t)S(s′,t ′) = exp(i(st ′ − s′t)/2h̄)S(s + s′,t + t ′). (C.5)

This formula encompasses at the same time the commutation relation (C.3) and the fact that U (t)
and V (s) are one-parameter groups. From now on, we mostly forget about U (t) and V (s) and think
in terms of S(s,t).

Lemma C.1.3 For s,t ∈ R we have

S(s,t) = exp(i(tX + sP )/h̄). (C.6)

616
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While tX+sP is symmetric and defined, say, on the Schwartz functions, it is by no means obvious
that this is a self-adjoint operator. As the proof will show, there exists a self-adjoint operator equal to
tX + sP on the space S of Schwartz functions.

Proof Fixing s and t for r ∈ R define T (r) = S(rs,rt). As a consequence of (C.5), we obtain
T (r)T (r ′) = T (r + r ′). Thus T is a one-parameter group of unitary operators. Moreover, for f ∈ S
it holds that

lim
r→0

h̄

ir
(T (r)(f )− f ) = tX(f )+ sP (f ).

This is obtained in a straightforward manner by writing the value of T (r)(f )(x) using (C.4) and
taking the derivative. Consequently, by Stone’s theorem, there exists a self-adjoint operator Y which
coincides with tX + sP on D(X) ∩ D(P ), and the associated one-parameter group is given by the
formula (C.6).

After the previous argument, it would be a waste not to make a small detour to prove a useful
formula connected to (C.3). It is much abused in physics textbooks which routinely apply it to opera-
tors which do not satisfy the required hypothesis or even for which the meaning of the exponential is
obscure.

Proposition C.1.4 Consider two bounded operatorsA andB which both commute with [A,B].
Then

exp(A+ B) = exp(−[A,B]/2) expA expB. (C.7)

For bounded operators the exponential is given by the sum of the usual power series. A fundamental
property is that exp(A + B) = expA expB when A and B commute. This special case of (C.7) is
used throughout the proof. Also used is the fact that (exp tA)′ = A exp tA = (exp tA)A.

Proof Considering

ϕ(t) = exp(−t2[A,B]/2) exp tA exp tB,

it is obvious that ϕ′(0) = A+ B. The plan is to prove that ϕ(s)ϕ(t) = ϕ(s + t). Indeed, then ϕ′(t) =
ϕ′(0)ϕ(t) and thus ϕ(t) = exp tϕ′(0) = exp t(A+B). Straightforward algebra proves that the relation
ϕ(s)ϕ(t) = ϕ(s + t) is equivalent to the relation

exp sB exp tA exp(−sB) = exp(−st[A,B]) exp tA. (C.8)

Given s, both the right-hand and the left-hand sides are functions ψ(t) which satisfy ψ(t)ψ(t ′) =
ψ(t + t ′) so that by the previous argument it suffices to prove that their derivatives at t = 0 are equal,
i.e. exp(sB)A exp(−sB) = −s[A,B]+A, which is in turn obvious by taking the derivative in s, and
since [A,B] commutes with exp(sB).

The following exercise explains how the commutation relations are often presented in textbooks.1

Exercise C.1.5 [The Heisenberg Group] For (s,t,r) ∈ R3 we define the unitary operator

T (s,t,r) = exp(ir/h̄)S(s,t). (C.9)

(a) Prove that

T (s,t,r)T (s′,t ′,r ′) = T (s + s′,t + t ′,r + r ′ + (st ′ − s′t)/2). (C.10)

(b) Prove that R3 provided with the composition law

(s,t,r) ∗ (s′,t ′,r ′) = (s + s′,t + t ′,r + r ′ + (st ′ − s′t)/2)

forms a group, called the Heisenberg group.

1 As to whether this presentation helps at an elementary level is left to the judgment of the reader.
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(c) Reformulate (C.10) by saying that T defines a unitary representation of the Heisenberg
group. This representation is called the Schrödinger representation of the Heisenberg group.

Let us then learn how to differentiate (C.3). In order not to worry about domain issues, we think
of all equalities between operators below as equalities valid when applied to Schwartz functions.
Differentiating both sides in t implies

V (s)U (t)X = (s1+X) exp(its/h̄)U (t)V (s),

which is straightforward to rewrite as

S(s,t)XS(s,t)−1 = X + s1. (C.11)

Effectively, conjugation by the unitary map S(s,t) transformsX intoX+s1, a remarkable property.
Next

S(s,t)X2S(s,t)−1 = (S(s,t)XS(s,t)−1)2 = X2 + 2sX + s21.

Consequently, using the result of Exercise 2.5.20, given a state |z〉 the state |zs,t 〉 := S(s,t)−1|z〉
satisfies

〈zs,t |X|zs,t 〉 = s + 〈z|X|z〉 (C.12)

and

〈zs,t |X2|zs,t 〉 = s2 + 2s〈z|X|z〉 + 〈z|X2|z〉
so that in particular if for an operator V we define �2

zV = 〈z|V 2|z〉 − 〈z|V |z〉2 we have

�2
zs,t

X = �2
zX. (C.13)

Thus we obtain the remarkable result that when going from |z〉 to |zs,t 〉 the average position is shifted
by s, but the spread around this average position is unchanged. A similar computation (watching for
a treacherous sign) yields

S(s,t)PS(s,t)−1 = P − t1, (C.14)

from which one deduces

〈zs,t |P |zs,t 〉 = −t + 〈z|P |z〉, (C.15)

and

�2
zs,t

P = �2
zP . (C.16)

C.2 Coherent States for the Harmonic Oscillator

The present section is a side story within this appendix. The main story starts in the next section.
We start with an obvious consequence of Stone’s theorem.

Lemma C.2.1 If Y is a self-adjoint operator and W is unitary, then W−1YW is self-adjoint
with domain W−1D(Y ) and exp(iW−1YW/h̄) = W−1 exp(iY/h̄)W .

The reader may now review Section 2.18 devoted to the harmonic oscillator with Hamiltonian
H = (P 2 +ω2m2X2)/2m. Let W (t) = exp(−itH/h̄) be the time-evolution. We recall that the time-
evolution (in the Heisenberg picture) of an operator Z is the operator W (t)−1ZW (t). It is then very
simple in principle to compute the time-evolution of an operator exp(irX + isP ), since by Lemma
C.2.1 it is given by

W (t)−1 exp
(
(irX + isP )/h̄)W (t) = exp

(
irW (t)−1XW (t)/h̄+ isW (t)−1PW (t)/h̄

)
. (C.17)
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However, it is not P and X which have a nice time-evolution, but rather it is

a = αX + iβP ; a† = αX − iβP

for α = √ωm/2h̄ and β = √1/2ωmh̄. This is expressed by (2.104) and (2.105) i.e.

W (t)−1aW (t) = exp(−iωt)a ; W (t)−1a†W (t) = exp(iωt)a†. (C.18)

Therefore to compute time-evolution it is easier to express combinations of X and P as combinations
of a and a† instead. For this let us consider a complex number γ = u+ iv, u,v ∈ R. Then

γ a† − γ ∗a = 2ivαX − 2iuβP, (C.19)

and we define the operator2

A(γ ) := exp((γ a† − γ ∗a)/h̄) = S(−2uβ,2vα).

where we have used (C.6) in the second equality. Combining with (C.17) and (C.18) we obtain the
magic formula

W (t)−1A(γ )W (t) = A(γ exp(iωt)). (C.20)

Consider now the ground state |0〉 of H (that is, the eigenvector with smallest eigenvalue), so that
H |0〉 = (ωh̄/2)|0〉 and thus W (t)|0〉 = exp(−iωt/2)|0〉. Let us define the state |γ 〉 := A(γ )|0〉.
Applying (C.20) to the state |0〉 we get exp(−iωt/2)W (t)−1|γ 〉 = |γ exp(iωt)〉. Changing t into −t
we obtain the time-evolution of |γ 〉:

W (t)|γ 〉 = exp(−iωt/2)|γ exp(−iωt)〉. (C.21)

The states |γ 〉 are called coherent states. A remarkably simple formula describes them. To discover
it, let us pretend that we are permitted to apply (C.7) to the operators A = γ a†/h̄ and B = γ ∗a/h̄.
Then (without worrying about what is really meant by the operator3 exp(γ a†/h̄)) we obtain

A(γ ) = exp
(
− |γ |

2

2h̄2

)
exp(γ a†/h̄) exp(γ ∗a/h̄),

and since a|0〉 = 0 this yields the formula

|γ 〉 = A(γ )|0〉 = exp
(
− |γ |

2

2h̄2

)
exp(γ a†/h̄)|0〉.

This argument, found in many textbooks, is at best heuristic, but as the following shows, it led us to
the correct formula when one interprets the quantity exp(γ a†/h̄)|0〉 in the obvious manner.

Proposition C.2.2 We have

|γ 〉 = exp
(
− |γ |

2

2h̄2

)∑
n≥0

1

n!

(γ a†

h̄

)n|0〉. (C.22)

Proof We recall from our analysis of the harmonic oscillator that the elements (en)n≥0 defined
recursively by e0 = |0〉 and en+1 = a†(en)/

√
n+ 1 form an orthonormal basis, so that in particular

(a†)n|0〉 = √n!en is of norm
√
n!. This implies the convergence of the series in (C.22) and justifies

the way we will manipulate series below. Combining (C.11) and (C.14) shows that

S(s,t)a†S(s,t)−1 = a† + (αs + iβt)1.

2 Not be confused with an annihilation operator.
3 We know how to define exp(B) when B is bounded, by the usual power series. We also know how to define

exp(iB) when B is self-adjoint by Stone’s theorem, but here neither case applies.
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Now, for γ = u + iv we have A(γ ) = S(−2uβ,2vα). Since αβ = 1/(2h̄) the preceding equality
yields

A(γ )a†A(γ )−1 = a† − (γ ∗/h̄)1

and

A(γ )a† = (a† − γ ∗/h̄)A(γ ). (C.23)

Consider then the function ϕ(t) = A(tγ )|0〉 so that ϕ(1) = |γ 〉, and using (C.23) in the last equality,

h̄ϕ′(t) = A(tγ )(γ a† − γ ∗a)|0〉 = γA(tγ )a†|0〉 = γ (a† − tγ ∗/h̄)ϕ(t).

Consequently the function ψ(t) = exp(t2|γ |2/2h̄2)ϕ(t) satisfies h̄ψ ′(t) = γ a†ψ(t) and ψ(0) = |0〉.
Since this is also the case for the function

∑
n≥0(γ ta†/h̄)n|0〉/n! these functions are equal and taking

t = 1 proves the result.

Exercise C.2.3 Prove directly from the formula (C.22) that 〈γ |γ 〉 = 1.

Exercise C.2.4 Copy the proof of (C.23) to show that A(γ )a = (a − γ /h̄)A(γ ). Prove that
a|γ 〉 = γ |γ 〉/h̄. Prove that this property characterizes |γ 〉 up to a multiplicative constant.

The special case γ = t ∈ R of (C.22) reads

exp(−2iβtP/h̄)|0〉 = exp
(
− t2

2h̄2

)∑
n≥0

1

n!

( ta†

h̄

)n|0〉. (C.24)

As we learned in Section 2.18, the state |0〉 corresponds to the function

ϕ0(x) = θ exp(−ωmx2/2h̄) = θ exp(−α2x2), (C.25)

where θ = (mω/πh̄)1/4 is the normalizing factor, whereas for a certain polynomial Pn we have
(a†)n|0〉 = Pn(αx)ϕ0(x). Let us recall from (C.1) and (C.2) that

exp(iuP/h̄)(f )(x) = f (x + u).

Using this for f = ϕ0 and u = −2βt , (C.24) yields the identity

exp(−α2(x − 2βt)2) = exp
(
− t2

2h̄2

)∑
n≥0

tnPn(αx)

h̄nn!
exp(−α2x2).

Since αβ = 1/2h̄, setting y = √2αx and u = t/h̄
√

2 we have proved the following.

Proposition C.2.5 The polynomials Hn(y) := 2n/2Pn(y/
√

2) satisfy the identity

exp(2uy − u2) =
∑
n≥0

unHn(y)

n!
. (C.26)

The polynomials Hn are classically known as the Hermite polynomials4 and (C.26) is described
by the expression “exp(2uy − u2) is the generating function of the Hermite polynomials”.

Exercise C.2.6 Try to deduce from (C.26) that

Hn(y) = (−1)n exp(y2)
dn

dyn
exp(−y2) = exp(y2/2)

(
y − d

dy

)n
exp(−y2/2). (C.27)

How does this relate to the formula (2.97)?

4 According to Wikipedia, there are two versions of these polynomials, one in probability, one in physics. Here it
is the “physics version”.
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Exercise C.2.7 Prove that the functions en of Section 2.18 are given by

en(x) =
(mω
πh̄

)1/4 1√
2nn!

Hn(x
√
mω/h̄) exp(−mωx2/2h̄).

The following properties relate coherent states with the macroscopic behavior of the harmonic
oscillator.5

Exercise C.2.8 (a) Using (C.13) and (C.16) convince yourself that for a coherent state the
uncertainty on momentum and position is as small as permitted by (2.12). (Even though we did
not discuss (2.12) in the context used here, it can be shown to be true in this context.)
(b) Convince yourself using (C.11) and (C.14) that the average position and momentum of the
state |γ exp(ωt)〉 correspond to a trajectory of the classical oscillator (2.95).

C.3 The Stone–von Neumann Theorem

From this point on we use a system of units in which h̄ = 1. Consider the space L2(Rn), thought
of as a position space of a particle, the position operators Xi given by Xi (f )(x) = xif (x) for x =
(xi )i≤n and the momentum operatorsPi = −i∂/∂xi . These self-adjoint operators satisfy the canonical
commutation relations

[Xi,Pi ] = i1, (C.28)

with all other commutators being 0. To avoid domain issues, as in the case n = 1 we consider a
stronger version of these relations. For t = (ti )i≤n let us define the operator U (t) by

U (t)(f )(x) = exp(it · x)f (x), (C.29)

where t · x is the dot product
∑

i≤n tixi of t and x. For s = (si )i≤n let us define the operator V (s) by

V (s)(f )(x) = f (x + s). (C.30)

Then, recalling (2.74) (or proceeding directly) we have the following

U (t)U (t ′) = U (t + t ′) ; V (t)V (t ′) = V (t + t ′) (C.31)

and

V (s)U (t) = exp(it · s)U (t)V (s), (C.32)

which are called the integrated version of the canonical commutation relations (C.28), and are a
multidimensional version of (2.74).

We say that two strongly continuous families V (s),U (t) for s,t ∈ Rn of unitary operators on a
Hilbert space H constitute a realization of n integrated canonical commutation relations (n-ICCR) if
they satisfy the relations (C.31) and (C.32). We say that this realization is irreducible if no non-trivial
subspace of H is invariant under all the maps U (t)V (s).

Theorem C.3.1 (The Stone–von Neumann Theorem) Two non-trivial irreducible realiza-
tions of the n-ICCR are unitarily equivalent.

That is, if U ′(t) and V ′(s) constitute another non-trivial irreducible realization of the n-ICCR on
a Hilbert space H′ then there exists a one-to-one unitary map W : H′ → H such that

U (t)V (s) = WU ′(t)V ′(s)W−1. (C.33)

5 It is typically a difficult problem to use Quantum Mechanics to derive the macroscopic properties of matter.
Here we brilliantly succeed in the case of the harmonic oscillator.
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This theorem is foundational, as it shows the uniqueness of the model implied by the relations (C.28).
A very readable proof can be found in [40]. Nonetheless, since the proof in Hall’s textbook [40] is
presented within the study of Weyl quantization, a topic which we do not cover, we present in this
section a self-contained proof in the simplest possible case n = 1.

We denote by U0(t),V0(s) the operators (C.2) and S0(s,t) the corresponding quantity (C.4). We
consider another irreducible realizationU (t), V (s) of the 1-ICCR, and S(s,t) the corresponding quan-
tity (C.4). We proceed to prove that these two realizations are unitarily equivalent, that is to construct
an operator W such that WS0(s,t)W−1 = S(s,t). The relation (C.5), both for S and S0 will be of
constant use, for the reason explained below (C.5). The following simple fact is left as an exercise, as
we have often used this type of argument.

Exercise C.3.2 Prove that the realization S0(s,t) of the 1-ICCR is irreducible.

First we recall the following standard result (whose proof can be found in Appendix N.)

Lemma C.3.3 For any α > 0 and any a ∈ C we have∫
exp(−αx2 + ax)dx =

√
π

α
exp

( a2

4α

)
. (C.34)

Then the norm-1 function

τ0(x) = (π )−1/4 exp(−x2/2) (C.35)

has the property that

(τ0,S0(s,t)(τ0)) = exp(−(s2 + t2)/4), (C.36)

as follows from (C.34) in a straightforward manner.6

The importance of (C.36) is that, thanks to the 1-ICCR, it entirely determines all the inner products

(S0(s′,t ′)(τ0),S0(s,t)(τ0)),

and therefore all the structure of the operators S0(s,t) (as will be detailed at the end of the proof).
Suppose now that you are given a realization of the 1-ICCR which is unitarily equivalent to S0,

that is, for a certain unitary operator, we have S(s,t) = WS0(s,t)W−1. Then, obviously, the function
τ = W (τ0) satisfies

(τ,S(s,t)(τ )) = exp(−(s2 + t2)/4). (C.37)

Consequently, for the Stone–von Neumann theorem to be true, we must be able to find such a function
τ in any realization of the 1-ICCR. Moreover, since the relation (C.37) will also encode all the structure
of the S(s,t), finding such a function will be the key step of the proof.

The natural idea to find such a function τ is to “write a formula for τ0” in terms of the operators
S0(s,t), hoping that the very same formula, but using instead the operators S(s,t) will let us find τ .
To “write a formula for τ0” we describe the orthogonal projector P0 on the span of τ0 as a mixture of
the operators S0(s,t), i.e.

P0 =
∫
g(s,t)S0(s,t)dsdt .

Therefore the function g(s,t) should be such that for each (reasonable) function f one has∫
g(s,t) exp(ist/2) exp(itx)f (x + s)dsdt = P0(f )(x) = τ0(x)(τ0,f )

= (π )−1/2 exp(−x2/2)
∫

exp(−y2/2)f (y)dy. (C.38)

6 If you wonder what kind of magic is going on here, let me reassure you that any resemblance between (C.35)
and (2.103) is certainly not a coincidence, although some choice of parameters has been made to obtain clean
formulas.
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It is then easy to discover the correct formula for g,

g(s,t) = 1

2π
exp

(
− s2 + t2

4

)
, (C.39)

or to check that it satisfies (C.38) by integrating first in t using (C.34) and making the change of
variables y = x + s.

Lemma C.3.4 The map (s,t) �→ S(s,t) = exp(ist/2)U (t)V (s) is strongly continuous.

Proof It suffices to prove that for each x ∈ H the map (s,t) → U (t)V (s)(x) is continuous. For
simplicity of notation we prove continuity at s = t = 0. Since the maps t �→ U (t) and s �→ V (s) are
strongly continuous by hypothesis, given ε > 0 we can find α > 0 such that ‖U (t)(x) − x‖ ≤ ε/2
and ‖V (s)(x)− x‖ ≤ ε/2 for |t |,|s| ≤ α. Then for such s,t , we have

‖U (t)V (s)(x)− x‖ ≤ ‖U (t)V (s)(x)− U (t)(x)‖ + ‖U (t)(x)− x‖
≤ ‖V (s)(x)− x‖ + ‖U (t)(x)− x‖ ≤ ε

since U (t) is an isometry.

Lemma C.3.5 In any realization of the 1-ICCR, if h ∈ S2 = S(R2) is such that∫
h(s,t)S(s,t)dsdt = 0 (C.40)

then h = 0.

Proof It is straightforward from (C.5) that

S(−s′, − t ′)S(s,t)S(s′,t ′) = exp(i(st ′ − s′t))S(s,t). (C.41)

We denote by C the class of functions hwhich satisfy (C.40). Applying S(−s′,−t ′) to the left of (C.40)
and S(s′,t ′) to the right, and using (C.41) we get that if h ∈ C then (s,t) �→ exp(i(st ′−s′t))h(s,t) ∈ C.
Consequently for any g ∈ S2 we have gh ∈ C because g can be written as an average of the functions
exp(i(st ′ − s′t)), using the Fourier transform. Assume for contradiction that h(s0,t0) �= 0. Consider
a unit vector x. Then by Lemma C.3.4 there exists α > 0 such that ‖S(s,t)(x) − x‖ ≤ 1/2 for
|s − s0|,|t − t0| ≤ α. Consider then g ∈ S2 such that g(s,t)h(s,t) = 0 unless |s − s0|,|t − t0| ≤ α

and gh ≥ 0,
∫
g(s,t)h(s,t)dsdt = 1. Then clearly∥∥∥ ∫ g(s,t)h(s,t)S(s,t)(x)dsdt − x

∥∥∥ ≤ ∫
g(s,t)h(s,t)‖S(s,t)(x)− x‖dsdt ≤ 1/2,

so that ‖ ∫ g(s,t)h(s,t)S(s,t)(x)dsdt‖ ≥ 1/2, contradicting the fact that gh ∈ C.

The heart of the proof of the Stone–von Neumann theorem is then the following, where g is the
function (C.39).

Proposition C.3.6 In any realization of the 1-ICCR, the operator

P =
∫
g(s,t)S(s,t)dsdt (C.42)

is self-adjoint and satisfies

PS(a,b)P = exp
(
− a2 + b2

4

)
P . (C.43)

Proof We observe from (C.5) that S(s,t)† = S(s,t)−1 = S(−s, − t) and then

P † =
∫
g(s,t)∗S(−s, − t)dsdt =

∫
g(−s, − t)∗S(s,t)dsdt,
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so thatP † = P because g(−s,−t)∗ = g(s,t) from (C.39). To prove (C.43), let us computePS(a,b)P .
Using (C.42), and the consequence

S(s,t)S(a,b)S(s′,t ′) = RS(s + s′ + a,t + t ′ + b)

for R := exp(i(sb + st ′ − ta − ts′ + at ′ − bs′)/2) from the relation (C.5), we obtain

PS(a,b)P =
∫
h(s,t,s′,t ′,a,b)S(s + s′ + a,t + t ′ + b)dsdtds′dt ′

where

h(s,t,s′,t ′,a,b) = exp(i(sb + st ′ − ta − ts′ + at ′ − bs′)/2)g(s,t)g(s′,t ′). (C.44)

Let us make a change of variables t ′ = x − t − b and s′ = y − s − a so that

PS(a,b)P =
∫
h(s,t,y − s − a,x − t − b,a,b)S(x,y)dsdtdxdy.

Therefore it suffices to show that∫
h(s,t,y − s − b,x − t − a,a,b)dsdt = exp(−(a2 + b2)/4)g(x,y). (C.45)

Recalling (C.44), this amounts to computing an elementary integral. This computation is not very
appealing but a magic argument (which I learned in Hall’s book [40]) bypasses it. According to Lemma
C.3.5, to prove that two functions of x,y in S(R2) are equal, it suffices to check that they have the
same integral when multiplied by S0(x,y). We use this for the two functions of x,y given by the left-
and right-hand sides of (C.45), thinking of a and b as parameters. Performing the same manipulations
as previously in the reverse order, the equality (C.45) is equivalent to the equality

P0S0(a,b)P0 = exp(−(a2 + b2)/4)P0

which is an obvious consequence of (C.36) and the fact that P0(f ) = τ0(τ0,f ).

We are at last ready to prove the Stone–von Neumann theorem in the case n = 1. Consider the
operator P given by (C.42). Then, using (C.43) for a = b = 0 we obtain that P 2 = P . We also know
from Lemma C.3.5 that P �= 0. Consider then a unit vector τ in the range of P . Then τ = P (y) for
some y ∈ H and since P 2 = P we have τ = P (τ ). The rest of the proof amounts to showing (as will
be used later) that “τ entirely determines W”. Using that P is self-adjoint in the second equality and
(C.43) in the third equality, together with the fact that τ is a unit vector, we get

(τ,S(s,t)(τ )) = (P (τ ),S(s,t)P (τ )) = (τ,PS(s,t)P (τ )) = exp
(
− s2 + t2

4

)
.

The exact form of the right-hand side is not relevant, what matters is that this is the right-hand side of
(C.36), and thus

(τ,S(s,t)(τ )) = (τ0,S0(s,t)(τ0)). (C.46)

Now we observe, using (C.46), (C.5) (and also S(s,t)† = S(−s, − t)), that

(S(s,t)(τ ),S(s′,t ′)(τ )) = (τ,S(−s, − t)S(s′,t ′)(τ ))

= exp(−i(st ′ − s′t))(τ,S(s′ − s,t ′ − t)(τ )),

and a similar relation for S0. Consequently (C.46) implies the all-important relation that for all s,t,s′,t ′
we have

(S(s,t)(τ ),S(s′,t ′)(τ )) = (S0(s,t)(τ0),S0(s′,t ′)(τ0)). (C.47)

The span of the vectors of the type S0(s,t)(τ0) is dense in L2 because this realization of the 1-ICCR
is irreducible as previously checked. The span of the vectors of the type S(s,t)(τ ) is dense in H
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because we assume that the realization is irreducible. Moreover it follows from (C.47) that the linear
combinations

∑
i αiS(si,ti )(τ ) and

∑
i αiS0(si,ti )(τ0) have the same norm. Consequently there exists

a linear isometry W : L2 → H such that for each s,t

WS0(s,t)(τ0) = S(s,t)(τ ).

Now,

WS0(a,b)S0(s,t)(τ0) = exp(i(at − bs)/2)WS0(a + s,b + t)(τ0)

= exp(i(at − bs)/2)S(a + s,b + t)(τ )

= S(a,b)S(s,t)(τ )

= S(a,b)WS0(s,t)(τ0),

so that WS0(a,b)(h) = S(a,b)W (h) for each element h of the type S0(s,t)(τ0) and since these
elements span L2 we have WS0(a,b) = S(a,b)W . The proof is complete.

Exercise C.3.7 The Stone–von Neumann theorem is not as trivial as you might think. To
convince yourself of this consider real numbers α,β,γ,δ,u,v with αδ − βγ = 1, and

P ′ = αP + βX + u1 ; X′ = γP + δX + v1.

In as many cases as you can, find explicitly a unitary map with W−1P ′W =P and W−1X′
W =X. (E.g. try the case α = δ = 1,β = γ = 0.)

Exercise C.3.8 (a) Convince yourself that neither the exact form of (C.36) nor the actual value
of g is really used in the proof (although computing g might be the fastest way to prove that
such a function exists). (b) Prove the Stone–von Neumann theorem for general n by a simple
extension of the previous arguments.

We have proved that there is no non-trivial subspace invariant under all the operators S(s,t). If
we were working with finite-dimensional spaces, we could conclude from Schur’s lemma that every
operator commuting with these is a multiple of identity. This argument does not work here because
we are not in a finite-dimensional space. Using the spectral theory for unitary operators one may show
in full generality that a unitary operator commuting with all the operators of an irreducible unitary
representation is a multiple of the identity, see [48, Proposition 3.4.17]. We give an elementary self-
contained proof in the present case. This simple argument will be useful later.

Theorem C.3.9 Two irreducible realizations of the 1-ICCR are unitarily equivalent in an
essentially unique way, that is the intertwining operator (C.33) is unique up to multiplication
by a phase (i.e. a complex number of modulus 1).

Proof By Theorem C.3.1 we reduce to the case where these representations are both S0, so it suffices
to prove that if a unitary operator W on L2(R) is such that

∀s,t ∈ R ; WS0(s,t)W−1 = S0(s,t)

then W is a multiple of the identity. The map W is entirely determined by τ := W (τ0) since
WS0(s,t)(τ0) = S0(s,t)(τ ) and since the elements S0(s,t)(τ0) are dense in H. Furthermore τ satisfies

∀s,t , (τ,S0(s,t)(τ )) = exp(−(s2 + t2)/4), (C.48)

which can be written explicitly as∫
τ (x)∗ exp(ist/2) exp(itx)τ (x + s)dx = exp(−(s2 + t2)/4). (C.49)
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Taking s = 0 implies that |τ |2 is the inverse Fourier transform of exp(−t2/4), so that |τ |2 and hence
|τ | decreases fast. Taking t = 0 implies∫

τ (x)∗τ (x + s)dx = exp(−s2/4).

Using Plancherel’s formula, this yields∫
τ̂ (p)∗τ̂ (p) exp(ips)

dp

2π
= exp(−s2/4),

so that |τ̂ |2 is the Fourier transform of exp(−s2/4) and hence τ̂ decreases fast. Using that τ is the
inverse Fourier transform of τ̂ (and the formulas corresponding to (1.23) for the inverse Fourier
transform) shows that τ is infinitely differentiable and that all its derivatives are bounded. This justifies
the differentiation operations we perform in the sequel. Taking s = 0 in (C.49) and differentiating
twice in t at t = 0 we obtain ∫

τ (x)∗τ (x)x2dx = 1

2
.

Taking t = 0 and differentiating twice in s at s = 0 we obtain, using also integration by parts,∫
τ ′(x)∗τ ′(x)dx = −

∫
τ (x)∗τ ′′(x)dx = 1

2
.

Differentiating (C.49) in t at t = 0 we obtain∫
τ (x)∗

( is

2
+ ix

)
τ (x + s)dx = 0

and differentiating this at s = 0 yields∫
τ (x)∗

( τ (x)

2
+ xτ ′(x)

)
dx = 0

and therefore since (τ,τ ) = 1, as follows from (C.49) for s = t = 0,∫
xτ ′(x)∗τ (x)dx =

∫
xτ (x)∗τ ′(x)dx = −1

2
.

Combining these we obtain ∫
|xτ (x)+ τ ′(x)|2dx = 0.

Therefore τ ′(x) = −xτ (x), from which it follows that τ = λτ0. Moreover |λ| = 1 since these are
both unit vectors.

Let us summarize the situation.

Corollary C.3.10 To each irreducible representation S(s,t) of the 1-ICCR corresponds an
element τ of the state space such that (τ,S(s,t)(τ )) = exp(−(s2 + t2)/4). This element is
unique up to a phase (i.e. multiplication by a complex number of modulus 1).

Exercise C.3.11 Prove the generalization of Theorem C.3.9 to the n-ICCR. Hint: Use exactly
the same argument to show that ∂kτ = −xkτ for each k ≤ n.
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C.4 Non-equivalent Unitary Representations

To get some concrete feeling, let us consider U and V as in (C.29) and (C.30), and a number ρ > 0.
Let us then define Uρ (t) = U (ρt) and V ρ (s) = V (s/ρ), which obviously satisfy the n-ICCR. It is
quite straightforward to see that (C.33) is satisfied for the unitary map

W (f )(x) = ρ−n/2f (x/ρ).

The mapW however does not make sense for n = ∞. In imprecise terms we are going to show that
indeed as soon as one considers an infinite number of relations (C.28) then the Stone–von Neumann
theorem fails. As it makes no sense to consider L2(Rn) for n = ∞ we first prove the following.

Lemma C.4.1 Consider on R the probability measure μ1 of density

(π )−1/2 exp(−x2).

The operators on L2(μ1) given by

U (t)(f )(x) = exp(itx)f (x) (C.50)

V (s)(f )(x) = exp
(
− sx − s2

2

)
f (x + s) (C.51)

are unitary and satisfy (C.32). Moreover if τ0 denotes the function of constant value 1, and if

S0(s,t) = exp(ist/2)U (t)V (s) (C.52)

then

(τ0,S0(s,t)(τ0)) = exp(−(s2 + t2)/4). (C.53)

Proof It would be straightforward to check these claims directly, but this is not necessary as they are
obtained from the corresponding formulas in L2(R) by transporting these formulas to L2(dμ1) using
the unitary map W from L2(R) to L2(dμ1) given by W (f )(x) = (π )1/4 exp(x2/2)f (x).

The operators X and P now take the form

Xf (x) = xf (x) ; Pf (x) = −if ′(x)+ ixf (x).

The operator P “does not look symmetric” because of the last term, but here the base measure is not
Lebesgue’s measure.

Exercise C.4.2 Convince yourself using integration by parts that P is symmetric.

To state our example, we need the fact that there exists a probability measure μ on RN which is
the product measure when one puts μ1 on each factor. As the reader may not be familiar with this
object, we list the properties which one needs to understand the rest of the section. First, consider
a function f on RN, which depends only on the first n coordinates of x ∈ RN. In other words,
f (x) = g(x1,x2, . . . ,xn) for a certain function g on Rn. Then one has the formula∫

f (x)dμ(x) = (π )−n/2
∫
. . .

∫
exp

(
−
∑
k≤n

x2
k

)
g(x1, . . . ,xn)dx1 · · · dxn.

In the space L2(dμ) the subspaces L2
n of functions depending only on the first n coordinates form

an increasing sequence:

L2
0 ⊂ · · · ⊂ L2

n ⊂ L2
n+1 ⊂ · · · ⊂ L2(dμ).
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A fundamental fact is that
⋃
n L

2
n is dense in L2(dμ). Equivalently, denoting by �n the orthogonal

projection of L2(dμ) on L2
n, we have

∀f ∈ L2(dμ) ; lim
n→∞‖f −�nf ‖ = 0. (C.54)

Let us denote by R(N) the set of sequences s = (si )i≥1 such that only finitely many of the terms
si are not zero. Then for s,t ∈ R(N) the quantity t · x =∑

k≥1 tkxk is well defined for x ∈ RN, and

the quantity ‖s‖2 =∑
k≥1 s

2
k

is also well defined. We can define the following operators on L2(dμ):

U (t)(f )(x) = exp(it · x)f (x) (C.55)

V (s)(f )(x) = exp
(
− s · x − ‖s‖

2

2

)
f (x + s). (C.56)

These are unitary and satisfy the relations (C.31) and (C.32). This can be checked directly, or deduced
from Lemma C.4.1. These are the integrated versions of the canonical commutation relations, but now
for an infinite sequence of operators rather than for just n of them. The corresponding self-adjoint
operators Xk,Pk for k ≥ 1 are given by

Xkf (x) = xkf (x)

and

Pkf (x) = −i
∂f

∂xk
(x)+ ixkf (x).

These operators satisfy

[Xk,Pk] = i1

all the other commutators being 0. That is, there is now a whole sequence of operators satisfying the
relations (C.28). The relations (C.31) and (C.32) can also be reformulated as

S(s,t)S(s′,t ′) = exp(i(s · t ′ − s′ · t)/2)S(s + s′,t + t ′) (C.57)

for S(s,t) = exp(is · t/2)U (t)V (s). In the rest of this appendix, such a family of operators will be
simply called a realization of the ICCR. The particular realization described above will be called the
canonical realization of the ICCR. On the other hand, the case n = 1 will still be called the 1-ICCR.
This terminology is by no means standard or to be remembered beyond this appendix, its sole purpose
is purely local. The following is better left as an exercise.

Lemma C.4.3 The canonical realization of the ICCR is irreducible, in the sense that there is
no non-trivial subspace of L2(dμ) which is invariant under all maps U (t)V (s).

We now investigate whether another realization (which without loss of generality we may assume
to take place on the same spaceL2(dμ)) of the ICCR is unitarily equivalent to the canonical realization.
There is a simple criterion to decide this. We adorn with a ′ the operators relative to this new realization.

Theorem C.4.4 A realization S′(s,t) of the ICCR on L2(dμ) is unitarily equivalent to the
canonical realization if and only if it is irreducible and there exists a function τ ∈ L2(dμ) such
that

∀s,t ∈ R(N) ; (τ,S′(s,t)τ ) = exp(−(‖s‖2 + ‖t‖2)/4). (C.58)

The most important part for our purpose is the “only if” one: If no such function τ exists, the
realization S′(s,t) is not unitarily equivalent to the canonical representation.
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Proof If there exists a unitary map W such that

S′(s,t)W = WS(s,t),

then τ = Wτ0 satisfies

(τ,S′(s,t)τ ) = (Wτ0,S
′(s,t)Wτ0) = (Wτ0,WS(s,t)τ0) = (τ0,S(s,t)τ0)

and this is exp(−(‖s‖2 + ‖r‖2)/4) by using (C.53) on each coordinate. To prove the converse, we
proceed exactly as in the proof of Theorem C.3.1 (the straightforward arguments are given after
(C.46)).

We first use this criterion in a simple situation.

Theorem C.4.5 For ρ > 0 considerUρ (t) = U (ρt) andV ρ (s) = V (s/ρ). These operators are
an irreducible realization of the commutation relations (C.31) and (C.32). Yet for two different
values of ρ these representations of the commutations relations are not unitarily equivalent.7

Proof We prove here only that the case ρ = 1 is not unitarily equivalent to the case ρ �= 1. Otherwise,
according to (C.58) there would exist a unit vector τ such that (among other conditions)

(τ,V ρ (sn)(τ )) = exp(−1/4), (C.59)

where sn ∈ R(N) has all its components equal to zero except the component of rank n which is equal
to 1. Consider ε > 0. Then, according to (C.54), for some m large enough, τm := �mτ satisfies
‖τ − τm‖ ≤ ε. Since V ρ (s) is unitary, the most brutish estimates yield

|(τm,V ρ (sn)(τm))− (τ,V ρ (sn)(τ ))| ≤ 3ε. (C.60)

The key observation is that since τm does not depend on the (m+ 1)th coordinate, one has

(τm,V
ρ (sm+1)(τm)) = (τm,V (sm+1/ρ)(τm)) = exp(−1/(4ρ2))‖τm‖2, (C.61)

as would follow from (C.53) if it were true that τm is constant. To see this, when computing the inner
product (τm,V (sm+1/ρ)(τm)) we integrate first in the (m + 1)th coordinate at a given value of the
first m coordinates, using (C.53), and then integrate in these afterwards. But then (C.59) and (C.61)
contradict (C.60) if ε is small enough. The irreducibility is proved as before.

We now analyze far more precisely some general situations of interest. All our arguments are
rigorous, but we gloss over some purely technical points which would belong to a course on measure
theory but not to the present text.8

Among the elements ofL2(dμ), some remarkable ones are the functions which are simply a product
of functions depending only on one coordinate. To bring this idea forward, for a sequence of functions
wk of L2(dμ1), such that wk ≡ 1 for k large enough, we define the function

⊗
k≥1 wk by⊗

k≥1

wk(x) =
∏
k≥1

wk(xk),

where the product makes sense since all terms for k large enough are equal to 1. The canonical
representation of the ICCR has the remarkable property that (recalling the operator S0 of (C.52))

S(s,t)
⊗
k≥1

wk =
⊗
k≥1

S0(sk,tk)wk .

7 It is essential for this result to be in “infinite dimensions” as is shown by the first equation in this section.
8 As this author spent far too many years studying this type of question, you are probably safe to trust him for

these matters.
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We now investigate in detail the situation where the representation S′ of the ICCR has a similar
property

S′(s,t)
⊗
k≥1

wk =
⊗
k≥1

Sk(sk,tk)wk, (C.62)

where Sk(s,t) are unitary maps on L2(dμ1) which are a realization of the 1-ICCR. According to
Corollary C.3.10, there exists a function τk ∈ L2(dμ1) such that

∀s,t ∈ R , (τk,Sk(s,t)τk) = exp(−(s2 + t2)/4). (C.63)

To get a clean statement we assume that
∫
τkdμ1 �= 0 for each k. Since τk is defined only up to a

phase, we may then assume that ∫
τkdμ1 > 0.

As τk is of norm 1, the Cauchy-Schwarz inequality then implies

0 < Ak :=
∫
τkdμ1 ≤ 1. (C.64)

We are going to prove the very clean following result:

Theorem C.4.6 A realization S′(s,t) of the ICCR satisfying the previous conditions is unitarily
equivalent to the canonical realization if and only if∏

k≥1

Ak =
∏
k≥1

∫
τkdμ1 > 0. (C.65)

Since 0 < Ak ≤ 1 the infinite product in (C.65) is well defined as∏
k≥1

Ak := lim
m→∞

∏
1≤k≤m

Ak .

Condition (C.65) is rather stringent. In particular it always fails when Sk is independent of k (except
in the trivial case where S′ = S). Let us note for further use the following consequence of (C.65):

lim
m→∞

∏
k≥m

Ak = 1. (C.66)

To prove Theorem C.4.6, the strategy is to use Theorem C.4.4. The obvious candidate for the
function τ there is given by

τ (x) =
∏
k≥1

τk(xk). (C.67)

Lemma C.4.7 The formula (C.67) defines a bona fide function of L2(dμ) if and only if (C.65)
holds.

Proof Consider the function gm defined by

gm(x) =
∏

1≤k≤m
τk(xk).

We observe that if n ≥ m we have
∫
g∗ngmdμ = ∫ |gm|2dμ

∫ ∏
m<k≤n τ∗k dμ =∏

m<k≤n Ak so that

‖gm − gn‖2 = 2
(

1−
∏

m<k≤n
Ak

)
,
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so that as a consequence of (C.66) the sequence (gm) is a Cauchy sequence and its limit is what we
mean by (C.67). Conversely, (staying a bit informal for these measure-theoretic technicalities) if the
formula (C.67) makes sense, for a function h ∈ L2

m we should have

(h,τ ) = (h,gm)
∏
k>m

Ak ≤ ‖h‖
∏
k>m

Ak, (C.68)

as is seen by integrating first in all the variables xk for k > m. But from (C.54) we can find m large
enough that (�mτ,τ ) > 0 and using the previous inequality for h = �mτ proves (C.65).

“Half” of Theorem C.4.6 is now obvious: Under (C.65), the realization of the ICCR is equivalent to
the canonical realization, because the function (C.67) satisfies (C.58). This is an obvious consequence
of (C.62) and (C.63) because (C.58) has to be checked only for s,t ∈ R(N), so that s,t have only finitely
many non-zero coordinates.

To prove the converse, the strategy is to prove first that the only choice for a function τ in (C.58) is
given by (C.67). But then this function can exist only under (C.65). The main step of the program is to
prove that for each k the function τ has to be of the type τ (x) = τk(xk)g(x) where g(x) is independent
of xk . It is obtained through an extension of the argument of Theorem C.3.9, which we formulate now.

Lemma C.4.8 Consider a function τ (x,λ), where x ∈ R and λ belongs to some parameter
space, on which there is a probability measure ν. Consider a realization S̄ of the 1-ICCR on
L2(dμ1). Assume that for each s,t ∈ R one has∫

(τ (·,λ),S̄(s,t)τ (·,λ))dν(λ) = exp(−(s2 + t2)/4), (C.69)

where τ (·,λ) denotes the element of L2(dμ1) given by x �→ τ (x,λ). Then τ is of the form
τ (x,λ) = τ0(x)g(λ) where

∫
dν(λ)|g(λ)|2 = 1 and

∫ |τ0(x)|2dμ1(x) = 1.

Proof Let us first consider a function τ (x,λ) such that for each s,t ∈ R one has∫
τ (x,λ)∗ exp(ist/2) exp(itx)τ (x + s,λ)dxdν(λ) = exp(−(s2 + t2)/4). (C.70)

We will leave to the reader as a challenge to prove that it is actually permitted to differentiate in
(C.70) (which is more cumbersome to prove than in the case of Theorem C.3.9). Given this, it is
rather amazing that the same argument goes through, as we obtain now (denoting by τ ′ the derivative
in x) ∫

τ (x,λ)∗τ (x,λ)x2dxdν(λ) = 1

2∫
τ ′(x,λ)∗τ ′(x,λ)dxdν(λ) = 1

2∫
xτ ′(x,λ)∗τ (x,λ)dxdν(λ) =

∫
xτ (x,λ)∗τ ′(x,λ)dxdν(λ) = −1

2
,

which can be combined into ∫
|τ ′(x,λ)+ xτ (x,λ)|2dxdν(λ) = 0.

Therefore τ ′(x,λ) = −xτ (x,λ) so that τ (x,λ) = τ0(x)g(λ). Taking s = t = 0 in (C.69) shows that∫ |τ (x,λ)|2dxdν(λ) = 1 so that we may assume
∫ |g(λ)|2dλ= ∫ |τ0(x)|2dx = 1.

To prove the lemma, we use that S̄ is equivalent to S0. Thus there exists a unitary operator
W : L2(dμ1)→ L2(R) such that for all s,t ∈ R we have

(f,S̄(s,t)f ) = (Wf,S0(s,t)Wf ) =
∫

(Wf )(x)∗ exp(ist/2) exp(itx)(Wf )(x + t)dx.
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Thus (C.69) implies that (C.70) holds for the function τ̄ such that τ̄ (·,λ) = W (τ (·,λ)) instead of τ .
We then obtain that τ (x,λ) = g(λ)W−1(τ0)(x).

Proof of Theorem C.4.6 Let us assume that the representation S′(s,t) is unitarily equivalent to the
canonical realization, and consider the function τ of (C.58). Considering k ≥ 1 we consider this
function as a function of xk and λ, where λ = (x1, . . . ,xk−1,xk+1, . . .). Thus (C.69) holds for S̄ =
Sk , and we obtain that τ (x) is of the type τk(xk)g(λ). By iteration of this principle, for each m the
function τ must be of the type τ (x) =∏

k≤m τk(xk)gm(x) where gm does not depend on x1, . . . ,xm.

Computing the L2 norm shows that ‖gm‖ = 1 so that
∫ |gm(x)|dμ(x) ≤ 1 by the Cauchy-Schwarz

inequality, and then ∫
|τ (x)|dμ(x) ≤

∫ ∏
k≤m

τk(xk)dμ(x) =
∏
k≤m

Ak . (C.71)

This proves (C.65) because the left-hand side of (C.71) is positive since τ is of norm 1.

C.5 Orthogonal Ground States!

There is little doubt that most physicists would consider the previous material as extremely bizarre,
as they certainly do not think in these terms.9 Let us go back to the space L2(dμ). Then, rather than
the operators Xk and Pk let us consider

ak =
1√
2

(Xk + iPk) ; a†
k
= 1√

2
(Xk − iPk), (C.72)

which satisfy the commutation relations

[ak,a
†
k

] = 1, (C.73)

with all the other commutators equal to zero. This is what we call “the canonical commutation rela-
tions” in the rest of this appendix. As a physicist never uses an explicit state space, these commutation
relations describe all the information available. She asserts that there should exist a distinguished
element, |0〉, which is sent to 0 by all the annihilation operators ak :

∀k ≥ 1 , ak |0〉 = 0. (C.74)

The interpretation here is simply that ak “removes particles of type k” and that |0〉 is “the vacuum”,
that is the state where there are no particles of any type to be removed. The “boson Fock space” H
is then obtained by repeated applications of the creation operators to the vacuum, i.e. considering
a

†
k1
a

†
k2
· · · a†

kn
|0〉. With our choice L2(dμ) as a state space, the vacuum |0〉 is simply the constant

function 1. Applying a†
k

to this function one gets the function x �→ xk/
√

2. The functions of this type

span the subspace H0 of L2(dμ) consisting of functions of the type x �→∑
n≥1 αnxn. We encourage

the reader to convince herself that applying the creation operators to the vacuum generates the whole
space L2(dμ). It is worth stressing the picture here:

L2(dμ) can be viewed in this manner as a concrete realization of
the boson Fock space of H0. (C.75)

Consider now another sequence a′
k

of operators which satisfies the same commutation relations
(C.73). Two examples often considered in physics textbooks are

a′k = cosh sak + sinh sa†
k
; a′†

k
= cosh sa†

k
+ sinh sak, (C.76)

9 They might describe L2(dμ) as “the state space of a sequence of independent harmonic oscillators”.
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for some s ∈ R, or, for γk ∈ C,

a′k = ak + γk1 ; a′†
k
= a

†
k
+ γ ∗k 1. (C.77)

These will be analyzed in exercises below. Corresponding to these new operators is a new vacuum
|0〉′ which satisfies

∀k ≥ 1 , a′k |0〉′ = 0. (C.78)

The first questions that come to the mind of a mathematician here are whether such an object exists
and is unique but physicists are trained differently, and worry about such matters only if ignoring them
creates disaster. The operator W satisfying

W (a†
k1
a

†
k2
· · · a†

kn
|0〉) = a

′†
k1
a
′†
k2
· · · a′†

kn
|0〉′ (C.79)

is then a natural candidate for an operator for whichW−1a
†
k
W = a

′†
k

(or, equivalently, ifW is unitary,

WakW
−1 = a′

k
, i.e. W transforms ak into a′

k
). At least at the formal level, this is exactly what we

do in Theorem C.4.4. The function τ there corresponds to the state |0〉′, and completely determines
W . (In the setting of this theorem, the operators X′

k
and P ′

k
are obtained in the obvious manner by

differentiation of S′(s,t) and the operators a′
k

and a′†
k

are defined as the suitable linear combinations.)
What, then, could go wrong in this beautifully simple picture? Explicit computation in some cases

yields

〈0|0〉′ = 0, (C.80)

at which point many physics textbooks conclude without further comment that “one says in this case
that the representations of the canonical commutation relations are not unitarily equivalent”. I cannot
fathom which mental image they form to reach this conclusion. What is certain however is that (C.80)
is obtained by showing that a certain infinite product of quantities 0 < Ak ≤ 1 is zero. The same
argument (which in our language is contained in (C.68)) shows that actually

∀k1, . . . ,kn ; 〈0|ak1 · · · akn |0〉′ = 0, (C.81)

and this spells trouble, as it implies that the unit vector |0〉′ is orthogonal to each element a†
k1
· · · a†

kn
|0〉

of the boson Fock space. In physics flowery language, the vacuum |0〉′ “is outside of the Fock
space”.10 In the setting of Theorem C.4.6 the condition 〈0|0〉′ = 0 means simply

∫
τdμ= ∏

k≥1
Ak = 0, so it is a less formal but nonetheless correct way to express the same conclusions as our
analysis.

Exercise C.5.1 Show that the situation of (C.76) corresponds to the situation of Theorem C.4.5
for ρ = exp s.

Exercise C.5.2 The purpose of this exercise is to show that, as a consequence of Theorem
C.4.6, the representation (C.77) of the canonical commutation relations is unitarily equivalent
to the canonical representation if and only if

∑
k≥1 |γk |2 <∞.

(a) Defining Ak(γ ) = exp(γ a†
k
− γ ∗ak) prove that

Ak(γ )akAk(γ )−1 = ak − γ1. (C.82)

(b) Prove that this corresponds to the situation where in (C.63) one has τk = Ak(γk)τ0 where
here τ0 is the constant function 1 in L2(dμ1).
(c) Prove that

∫
τkdμ1 = exp(−|γk |2/2).

(d) Conclude.

10 In the same line of flowery language, this also reads sometimes as two vectors “lie in different Hilbert spaces”.
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We discussed the “discrete setting” of a single sequence of operators for mathematical clarity, but
in physics one needs the “continuous setting”. This problem is addressed in the following exercise. It
is probably best to delay studying this exercise until after reading Chapter 5.

Exercise C.5.3 We consider the space H = L2(d3p/(2πh̄)3) and the corresponding boson
Fock space B. Consider the operators b(p) and b†(p) as in (3.59). Consider a function γ (p),
which is assumed to be infinitely differentiable for simplicity. Define formally the operators

a(p) = b(p)+ γ (p)1 ; a†(p) = b†(p)+ γ (p)∗1. (C.83)

The problem is to know whether there is a unitary operator W on B such that

Wb(p)W−1 = a(p) ; Wb†(p)W−1 = a†(p). (C.84)

(a) Prove that this can be the case only if γ ∈ H i.e. if γ is square-integrable. Hint: Reduce to
the previous exercise by considering operators B(ϕk) where the ϕk are appropriately chosen, in
particular with disjoint supports.

The goal is now to prove the converse.
(b) Prove the following abstract result, in the setting of Theorem 3.4.2. If ψ is a continuous
linear functional on H the family of operators on B given by

A(ξ ) = B(ξ )+ ψ(ξ )1 ; A†(η) = B†(η)+ ψ(η)∗1,

is unitarily equivalent to the family B(ξ ),B†(η). Hint: Choose an appropriate basis.
(c) Prove that W exists as in (C.84) when γ ∈ H.



Appendix D

A Crash Course on Lie Algebras

Even though in our treatment Lie Algebras play a minimum role, it is of importance to learn the
basic ideas underlying this fundamental tool, at least at a very elementary level, if only to understand
the relationship between some of the material we present and what is found in physics textbooks.
Excellent sources are available, e.g. [39]. Our limited goal here is to provide a self-contained treatment
in mathematical language of the material found at the beginning of any treatise on Quantum Field
Theory. This also does bring light to some topics we have covered. Our treatment is at the same level
of detail as the rest of the book, which is not as high a level as achieved in Hall’s book [39].

We denote by Gl(n,C) the group of invertible n× n complex matrices.

Definition D.1 A Lie group of matrices is a subgroup ofGl(n,C) which is closed for the natural
topology.1

Observe that the definition does not prevent the Lie group from consisting only of matrices with
real entries.

The only examples which really concern us here are O(3), the group of 3 × 3 real orthogonal
matrices, the Lorentz group O(1,3) and two groups of 2 × 2 matrices, the groups SL(2,C) and
SU (2).2 Thus the largest matrices you will have to think about are 4 × 4. Since we are not using
any other Lie group than groups of matrices, we shall simply say “group” rather than “Lie group of
matrices”.

The two basic ideas of the theory are:

• Instead of studying the Lie group G, a complicated set, try to study its Lie algebra, a finite-
dimensional vector space over R.

• Instead of studying the product onG, a complicated operation, try to study a simpler operation,
the Lie bracket on its Lie algebra.

D.1 Basic Properties and so(3)

The essential tool is the exponential of matrices. We recall that for a square matrix X its exponential
is defined by the series

expX =
∑
n≥0

Xn

n!
(D.1)

1 Gl(n,C) is a subset of Cn
2

on which the natural topology is induced, say, by the usual distance.
2 These two groups of 2× 2 matrices were introduced in Section 8.1. Do not worry if you have not read it yet.

635
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where X0 = 1.3 Thus

XY = YX⇒ exp(X + Y ) = expX exp Y, (D.2)

because the term of degree n in the right-hand side is∑
k≤n

Xk

k!

Yn−k
(n− k)!

= (X + Y )n

n!
.

Let us stress that in general exp(X+ Y ) �= expX exp Y . In fact, it is not easy at all to relate these two
quantities (see however Proposition C.1.4). The following should also be obvious:

expX† = (expX)†, (D.3)

as well as a similar formula for the transpose XT . Again obvious is that

A(expX)A−1 = exp(AXA−1). (D.4)

As a consequence of (D.2), exp(t + u)X = exp tX exp uX, where to lighten notation we write
exp tX rather than exp(tX). Given X, the matrices of the type exp tX form a group. Since exp(t +
s)X − exp tX = (exp sX − 1) exp tX = exp tX(exp sX − 1) it follows that

d

dt
exp tX = X exp tX = (exp tX)X. (D.5)

Definition D.1.1 The Lie algebra g of a group G of n× n matrices is the set of n× n matrices
X such that

∀t ∈ R ; exp tX ∈ G.

Mathematicians and physicists differ again here. Physicists would insert a factor i in the exponen-
tial. Here we will follow mathematician’s practice.4

In the previous definition, it is the small values of t which matter, as the following shows.

Exercise D.1.2 Assume that for some sequence εk → 0 we have exp εkX ∈ G. Prove that then
X ∈ g. Hint: Use that G is closed.

Let us consider the case where G = O(3), the group of real orthogonal matrices. Thus, A ∈ G if
and only if A is a 3× 3 matrix with real entries which satisfies AAT = 1 where T is the transpose of
A. In particular for A ∈ O(3) we have 1 = detA detAT = (detA)2, so that detA = ±1. Consider
X in the Lie algebra of G. First, since for all t the matrix exp tX ∈ O(3) has real entries this is also
the case for X by (D.5). Furthermore exp tX(exp tX)T = 1 for each t ∈ R. Taking the derivative at
t = 0 yields X +XT = 0, i.e. XT = −X. Such a matrix is called skew-symmetric. Conversely, if X
is skew-symmetric, exp tX satisfies

exp tX(exp tX)T = exp tX exp(tXT ) = exp tX exp−tX = 1,

so that exp tX ∈ O(3). Thus the Lie algebra of O(3) is exactly the set of skew-symmetric 3 × 3
matrices with real entries. We observe now that the function t �→ det(exp tX) is continuous. When X
is skew-symmetric, this function is valued in {1,−1}, and for t = 0 it takes the value 1. It thus takes the
value 1 everywhere. Consequently, expX ∈ SO(3), the subgroup of O(3) consisting of matrices of
determinant 1. In particular O(3) and SO(3) have the same Lie algebra (the space of skew-symmetric
matrices) and this Lie algebra is denoted by so(3). Thus we have proved:

3 This series converges in operator norm because ‖Xn‖ ≤ ‖X‖n.
4 This practice has the distinct advantage of being less confusing when one works both with real and complex

Lie algebras, which we will not do here. Generally speaking physicists often do not distinguish clearly which
numbers are real and which can be complex, and this can be very confusing, even to themselves.
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Proposition D.1.3 The Lie algebra so(3) of the groups O(3) and SO(3) is the set of real 3×3
skew-symmetric (i.e. X = −XT ) matrices.

We have just seen in the case G = O(3) that the exponential map from g to G is in general not
onto. As will be soon apparent it is in general not one-to-one either, so the basic idea of replacing the
study of G by that of g will at best work approximately.

Definition D.1.4 The Lie bracket [X,Y ] of two n× n matrices is defined as

[X,Y ] = XY − YX. (D.6)

The Lie bracket is anti-symmetric, [Y,X] = −[X,Y ]. It is straightforward that the Lie bracket
satisfies the Jacobi identity

[X,[Y,Z]]+ [Y,[Z,X]]+ [Z,[X,Y ]] = 0. (D.7)

This identity is fundamental in the theory of Lie algebras, although this will not become apparent
during our short excursion there.

The Lie bracket is closely connected to the group structure of G. The reason why this group
structure is hard to understand is that in general AB �= BA. This lack of commutativity is measured
by the fact that ABA−1B−1 is usually not the identity matrix. When A = exp tX, B = exp tY , for t
small this matrix differs from the identity by about t2[X,Y ]:

exp tX exp tY (exp tX)−1(exp tY )−1 = 1+ t2[X,Y ]+O(t3). (D.8)

In the right-hand side the addition is the ordinary addition of matrices. The physicist’s notation O(t3)
in (D.8) denotes a matrix of the form t3R(t) where R(t) is a matrix that stays bounded (for example
in the sense that the sum of the absolute values of its entries stays bounded) as t stays bounded.
The relation (D.8) is proved simply by expanding the exponentials and computing the coefficients of
t and t2. It shows that the Lie bracket should capture some of the “non-commutativity” of the group.
When G is commutative, the left-hand side of (D.8) is 1 so that the bracket is identically zero on its
Lie algebra.

Theorem D.1.5 The Lie algebra g of a matrix groupG is a vector space over the real numbers.
It is closed under the bracket (D.6), i.e. if X,Y ∈ g then [X,Y ] ∈ g. Moreover, if X ∈ g and
A ∈ G then AXA−1 ∈ g.

As this theorem is obvious by inspection in all the specific cases we consider, we refer to Hall’s
textbook [39] for the proof for a general matrix group (which takes only a few lines).

We will at times need the following result.

Lemma D.1.6 There exists a neighborhood W of 0 in g such that the map X �→ expX is
one-to-one from W to a neighborhood of unity in G.

Proof of Lemma D.1.6 for G = SO(3) The difficult part of the proof is to show that V := expW
is a neighborhood of unity. For this we have to find a neighborhood V ′ of the unity in G such that
A ∈ V ′ is of the type expX for X ∈ W . The obvious choice is X = logA. The function log is well
defined in a neighborhood of unity by the formula

logA =
∑
n≥1

(−1)n
(A− 1)n

n
.

What is not obvious though is that logA ∈ g. It is true that exp(logA) = A ∈ G but this does not
suffice.5 In the present case of SO(3) since AT = A−1 we have

(logA)T = log(AT ) = logA−1 = − logA

5 To prove that logA ∈ g we have to prove exp t logA ∈ G for all t .
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so that logA ∈ so(3). Clearly logA ∈ W if V ′ is small enough, and Lemma D.1.6 is proved in
that case.

It will be equally obvious how to prove this result in all the specific cases we need. For the general
case, we are unable to improve upon the (simple) arguments in Hall’s book [39, Theorem 3.42], to
which we refer the reader.

We define now what should be called a real Lie algebra of matrices. As we shall not explicitly
consider complex Lie algebras6 we will simply call this a Lie algebra.

Definition D.1.7 A Lie algebra h is a set of square matrices of given dimension which is a vector
space over the real numbers and which is closed under the Lie bracket,X,Y ∈ h⇒ [X,Y ] ∈ h.

Thus our terminology makes sense: Theorem D.1.5 shows that the Lie algebra g of a group G is a
Lie algebra in the sense of Definition D.1.7. Again, the idea is that the structure of the Lie bracket on
g encodes much of the structure of G.

For the rest of this section we concentrate on the study of so(3) and of the properties of the
exponential map from so(3) to SO(3). Let us stress the following obvious but fundamental general
fact. Since the Lie bracket [X,Y ] is bilinear it is completely determined by the values it takes for X,Y
in a basis of the Lie algebra (where “basis” means “basis as a vector space”). The traditional basis of
so(3) consists of the matrices

J1 =
⎛⎝0 0 0

0 0 −1
0 1 0

⎞⎠ ; J2 =
⎛⎝ 0 0 1

0 0 0
−1 0 0

⎞⎠ ; J3 =
⎛⎝0 −1 0

1 0 0
0 0 0

⎞⎠ . (D.9)

One then calculates

[J1,J2] = J3 ; [J2,J3] = J1 ; [J3,J1] = J2. (D.10)

The relations (D.10) completely determine the structure of the Lie algebra so(3). When exploring a
new Lie algebra the first task is often to compute the value of the Lie bracket on a suitable basis.

Often people use the notation J = (J1,J2,J3) and u · J = ∑
i uiJi . Let us denote by v ∧ u the

cross product of the vectors v and u. Writing down what this means, one obtains the following very
useful fact.

Lemma D.1.8 The matrix of the operator x �→ u ∧ x is u · J.

In the present case the nature of the exponential map is clarified by the following result.

Proposition D.1.9 Consider a unit vector u and θ ∈ R. Then

R(u,θ) := exp θu · J (D.11)

is the matrix of a rotation of axis u and angle θ .

Proof We have

d

dθ
R(u,θ) = u · JR(u,θ),

so that (identifying a matrix with the corresponding operator on R3) we deduce from Lemma D.1.8
that

d

dθ
R(u,θ)(x) = u · JR(u,θ)(x) = u ∧ R(u,θ)(x). (D.12)

6 A complex Lie algebras is simply a Lie algebra which is also a complex vector space, e.g. the set glC(m) of all
m×m complex matrices.
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Denoting now by S(θ ) the rotation of angle θ around the axis determined by a unit vector u, you will
convince yourself using high-school geometry that for any vector x we have the relation

d

dθ
S(θ )(x) = u ∧ (S(θ )(x)).

Comparing with (D.12) and using the uniqueness of solutions of ordinary differential equations this
completes the proof.

Exercise D.1.10 Use (D.10) to prove that for u,v ∈ R3 one has

[u · J,v · J] = (u ∧ v) · J. (D.13)

Exercise D.1.11 Prove that every element X of SO(3) is of the type exp θu · J. Hint: Use the
fact proved in Section 4.2 that the operator of matrix X has 1 as an eigenvalue.

Exercise D.1.12 In this exercise we identify a matrix A and the corresponding linear operator
on R3. Prove that for A ∈ SO(3) and v ∈ R3 we have

A(v · J)A−1 = A(v) · J. (D.14)

This property (D.14) is often expressed by saying that J “transforms as a vector under rotations”.
Hint: A = exp u · J for a certain u. For A(t) = exp tu · J compute the derivative of the function
t �→ A(t)−1((A(t)(v)) · J)A(t) using (D.13) and (D.12).

D.2 Group Representations and Lie Algebra Representations

In this section we explain why Lie algebras are such a convenient method to study (finite-dimensional)
group representations. In the present appendix we are not particularly interested in unitary repre-
sentations. Thus in contrast with the main text, where “representation” means by default “unitary
representation” in the present appendix a representation of G is a continuous group homomorphism
from G to the group of invertible linear operators on a finite-dimensional real or complex vector
space. Most of the time this finite-dimensional space will be complex, and we then take it to be Cm.
(Obvious adaptations are needed when the space is real rather than complex vector space.) The group
of invertible linear operators on Cm is then the linear group Gl(m,C) and a representation of G is a
continuous group homomorphism from G to Gl(m,C). The Lie algebra glC(m) of Gl(m,C) is the set
of all m×m complex matrices. Let us stress here that with this point of view, we do not distinguish
between a linear operator on Cm and its matrix in the canonical basis of Cm. The Lie algebra glC(m)
has a distinguished feature: it is naturally a vector space over the complex numbers, not only over the
real numbers.

As we stressed, the essential structure in a Lie algebra is the Lie bracket (D.6). This motivates the
following definition.

Definition D.2.1 A Lie Algebra homomorphism π ′ from a Lie algebra g to a Lie algebra g′ is
a real linear map from g to g′ which respects the Lie bracket,

π ′([X,Y ]) = [π ′(X),π ′(Y )]. (D.15)

We can now state and prove the following fundamental result.

Theorem D.2.2 For any continuous group homomorphism π : G→ Gl(m,C) and any X in g
the derivative

π ′(X) := d

dt
π (exp tX)|t=0 (D.16)
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exists. The map π ′ : g→ glC(m) is a Lie algebra homomorphism. Moreover

π (expX) = expπ ′(X). (D.17)

Please note that while π is a group homomorphism (multiplicative) then π ′ is linear. A Lie alge-
bra homomorphism from g to glC(m) is sometimes called a representation of g. We will use both
terminologies interchangeably. Let us stress the content of Theorem D.2.2.

• The representation π of G determines a representation π ′ of g.

• This representation π ′ is a linear map. It is a simpler object than the group homomorphism π .

• Moreover the knowledge of π ′ determines the value of π on the elements of G of the type
expX, so probably it basically determines π .

The following principle will be of constant use.

Lemma D.2.3 Consider a continuous one-parameter groupV (t) of linear operators on a finite-
dimensional space. Then the map t �→ V (t) is differentiable and V (t) = exp tV ′(0).

Here of course the exponential is defined by the power series (D.2).

Proof The argument of Lemma 2.14.5 proves that the derivative exists, and that V ′(t) = V ′(0)V (t).

Proof of (D.17) It is straightforward that V (t) = π (exp tX) is continuous and satisfies V (s + t) =
V (s)V (t). Thus π ′(X) = V ′(0) exists and Lemma D.2.3 implies (D.17).

Lemma D.2.4 If A = 1+O(tk) then π (A) = 1+O(tk).

Proof We use Lemma D.1.6 and its proof. If A is close to unity,

π (A) = π (exp logA) = expπ ′(logA).

Then we obtain successively that logA = O(tk), π ′(logA) = O(tk) and π (A) = 1+O(tk).

Proof of Theorem D.2.2 It remains to prove that π ′ is a Lie algebra homomorphism. We first prove
that π ′ is linear. It is obvious from the definition that π ′(aX) = aπ ′(X) for a ∈ R so we prove that
π ′ is additive. Given X,Y ∈ g we define S(t) ∈ G by

S(t) := exp t(X + Y )(exp tY )−1(exp tX)−1. (D.18)

Applying π to this identity and using (D.17) we obtain

exp tπ ′(X + Y ) = π (S(t)) exp tπ ′(X) exp tπ ′(Y ). (D.19)

It follows from (D.18) (replacing each exponential by the corresponding power series) that, in the
physicists notation, S(t) = 1 + O(t2) so that the desired equality π ′(X + Y ) = π ′(X) + π ′(Y )
follows by using Lemma D.2.4 for k = 2 and looking at the terms of order t in (D.19).

Next we prove that π ′ respects the Lie bracket. Given again X,Y in g we define now S(t) ∈ G by

exp tX exp tY (exp tX)−1(exp tY )−1 := exp(t2[X,Y ])S(t). (D.20)

It follows from (D.8) that S(t) = 1+O(t3), so that π (S(t)) = 1+O(t3) by using Lemma D.2.4 for
k = 3. Applying π to (D.20) and using (D.17) we get

exp tπ ′(X) exp tπ ′(Y )(exp tπ ′(X))−1(exp tπ ′(Y ))−1 = exp(t2π ′([X,Y ]))(1+O(t3)).

The required equality follows by equating the coefficients of t2 in the left- and right-hand sides.
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As a first example, consider the group homomorphism π fromGl(m,C) toGl(1,C) = C\{0} given
by π (A) = detA. Then obviously det exp tX = det(1+ tX+O(t2))) = 1+ t trX+O(t2), where trX
is the trace of X, that is the sum of its diagonal coefficients. Thus (D.16) implies that π ′(A) = trA.
Then (D.17) takes the form

det(expX) = exp(trX). (D.21)

Furthermore tr is a Lie algebra homomorphism, tr[A,B] = [trA,trB] = 0 i.e. trAB = trBA, which
of course can be simply proved directly.

The reader should watch for the tricky notation we use now. To each group homomorphism π we
associate a Lie algebra homomorphism π ′, but the notation π ′ also stands for a generic Lie algebra
homomorphism. The fundamental question then is whether Theorem D.2.2 has a converse: Given a Lie
algebra homomorphism π ′ from g to glC(m) can we find a representation π which satisfies (D.17)?
This will be discussed shortly. In the meantime we show that deciding whether the representation π
is irreducible can be done by studying a similar property for π ′.

Definition D.2.5 A Lie algebra homomorphism π ′ : g→ glC(m) is called irreducible if there
is no proper subspace H of Cm which is invariant under all the operators π ′(X), i.e. for which
π ′(X)(H) ⊂ H for all X ∈ g.

Theorem D.2.6 Assume that the group G is generated by the elements expX for X ∈ g. Then
the group homomorphism π : G→ Gl(m,C) is an irreducible representation of G if and only
if the Lie algebra homomorphism π ′ : g→ glC(m) is irreducible.

Proof If π is not irreducible, there is a proper subspace H of Cm such that π (A)(H) ⊂ H for each
A in G and it should be obvious that this implies that π ′(X)(H) ⊂ H for each X ∈ g. Conversely if
the space H has this property then (D.17) and (D.1) imply that π (A)(H) ⊂ H whenever A is of the
type expX for X ∈ g and since these elements generate G by hypothesis this is true for each A ∈ G,
so π is not irreducible.

As we have seen (in Exercise D.1.11) SO(3) is generated by the elements of the type expX, but
this is not the case for O(3). More generally it is possible to show that G is generated by the elements
expX if and only if it is connected (in the topological sense), see [39].

Let us also note the following trivial fact.

Proposition D.2.7 If the group homomorphism π is valued in a Lie group G′ ⊂ Gl(m,C) then
π ′ is valued in the Lie algebra g′ of G′, so is a Lie algebra homomorphism from g to g′.

D.3 Angular Momentum

Consider first a unitary representation π of SO(3) in a Hilbert space H (possibly of infinite dimen-
sion). Given a non-zero vector u we recall from (D.11) that exp(θu · J) is a rotation of angle θ‖u‖
and axis u. Let us then consider

U (θ ) = π (exp θu · J). (D.22)

This is a one-parameter semigroup of unitary operators, so that by Stone’s theorem (and using a unit
system where h̄ = 1) we have

U (θ ) = exp(−iθJ ′u) (D.23)

for a certain self-adjoint operator J ′u. When u is a unit vector this operator is called the operator of
angular momentum with respect to u. But how do we relate these operators as u varies? It is not even
clear that they are commonly defined on a dense subspace. But Corollary A.6.2 allows one to reduce to
the case where H is finite-dimensional. Then we know from (D.17) that π (exp θu ·J) = exp θπ ′(u ·J)
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and comparison with (D.23) shows that J ′u = iπ ′(u ·J). Writing J ′
k

:= J ′ek = iπ ′(Jk) where e1,e2,e3
are the standard basis vectors, we then have

J ′u = i
∑
k

ukπ
′(Jk) =

∑
k

ukJ
′
k,

whereas the commutation relation (D.10) together with the fact that π ′ respects the Lie bracket yields
the relations

[J ′1,J
′
2] = iJ ′3 ; [J ′2,J

′
3] = iJ ′1 ; [J ′3,J

′
1] = iJ ′2.

D.4 su(2) = so(3)!

Let us determine the Lie algebra su(2) of the group SU (2) of 2 × 2 complex unitary matrices with
determinant 1, so A ∈ SU (2) if and only if AA† = I and detA = 1. Using (D.3), a matrix X is
in su(2) if and only if exp tX exp tX† = I and det exp tX = 1 for each t . Taking the derivative at
t = 0 of the first condition gives X + X† = 0 i.e. X = −X†. Such a matrix is called skew-adjoint.
It follows from (D.21) that the condition det exp tX = 1 is equivalent to trX = 0. A matrix of trace
zero is called traceless and we have proved the following.

Proposition D.4.1 The Lie algebra su(2) of SU (2) is the space of skew-adjoint traceless 2×2
complex matrices.

To study this Lie algebra we look for a nice basis. To find it, let us recall the Pauli matrices

σ1 =
(

0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
. (D.24)

These are traceless, but self-adjoint (=Hermitian) rather than skew-adjoint. One checks by compu-
tation that they satisfy the identities

σ1σ2 − σ2σ1 = 2iσ3 ; σ2σ3 − σ3σ2 = 2iσ1 ; σ3σ1 − σ1σ3 = 2iσ2. (D.25)

The matrices

Xj = −
iσj
2

(D.26)

are traceless skew-adjoint. They form a basis of su(2), and (D.25) implies that they satisfy the relations

[X1,X2] = X3 ; [X2,X3] = X1 ; [X3,X1] = X2. (D.27)

These are the same relations as in (D.10), and this shows that the Lie algebras so(3) and su(2) are
isomorphic.7 The corresponding groups SO(3) and SU (2) are however rather different. What happens
here is a special feature of a general fact: The Lie algebra of a group captures only the “local” structure
of a group, where “local” means in a neighborhood of the identity, but it does not capture its global
structure.

We now turn to the construction of a fundamental two-to-one homomorphism κ̃ from SU (2) to
SO(3). (This map is simply the restriction of the map κ of Section 8.4 to SU (2) but we perform the
construction from scratch again.) First, if X is self-adjoint traceless, this is also the case for AXA−1

for any A ∈ SU (2). The Pauli matrices form a basis of the space of self-adjoint traceless matrices, so
each such matrix is of the form

x · σ :=
∑
j≤3

xj σj =
(

x3 x1 − ix2
x1 + ix2 −x3

)
, (D.28)

7 Specifically, the unique linear map T : so(3)→ su(2) such that T (Ji ) = Xi is a Lie algebra isomorphism.
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for a certain x ∈ R3. This is similar to (8.19), with the difference that we are here considering only
traceless matrices. Since the matrix A(x ·σ )A−1 = A(x ·σ )A† is traceless Hermitian, it is of the type
(κ̃(A)(x)) · σ for a certain vector κ̃(A)(x) ∈ R3. Thus we have constructed a group homomorphism
κ̃ from SU (2) into the group Gl(3,R) of linear transformations of R3, these transformations being
identified with their corresponding matrices. The homomorphism κ̃ is valued in O(3) because

‖x‖2 = − det x · σ = − detA(x · σ )A−1 = − det(κ̃(A)(x)) · σ = ‖κ̃(A)(x)‖2.

When κ̃(A) = I the matrix A commutes with all the matrices x · σ . Just writing what it means that
A commutes with the matrices σ1 and σ2 implies that A is then diagonal, so that A = ±I since
det(A) = 1. Since κ̃ is a group homomorphism this shows that κ̃ is two-to-one.

The map κ̃ is continuous, since for any x ∈ R3 the components of κ̃(A)(x) are second-degree
polynomials in the entries of A. Since SU (2) is connected its image is contained in the connected
component of the identity in O(3) i.e. in SO(3). It then follows from Proposition D.2.7 that the map
κ̃ ′ is a Lie algebra homomorphism from su(2) to so(3). To compute it we consider Y ∈ su(2) and we
differentiate the equality

(κ̃(exp tY )(x)) · σ = (exp tY )(x · σ ) exp(−tY )

at t = 0, getting

(κ̃ ′(Y )(x)) · σ = [Y,x · σ ]. (D.29)

The safest attitude here is to take a pencil and check that for Xj given by (D.26) this implies that

κ̃ ′(Xj ) = Jj, (D.30)

so that κ̃ ′ is just the natural isomorphism between su(2) and so(3) that we had described earlier. A
far fancier way is to use your pencil to check the property of Exercise D.1.10 and proceed as follows.
For u ∈ R3 define u · X =∑

j≤3 ujXj , so that u · X = −iu · σ/2 and (D.29) becomes

κ̃ ′(Y )(x) · X = [Y,x · X].

In the case where Y = y · X the right-hand side is (y ∧ x) · X. Consequently

κ̃ ′(y · X)(x) = y ∧ x,

and Lemma D.1.8 implies that the matrix of the operator κ̃ ′(y ·X) is therefore y · J, implying (D.30).
Having calculated κ̃ ′ we may now use (D.17) to write

κ̃(exp u · X) = exp(u · J). (D.31)

This may give you the illusion that you understand κ̃ very well. The problem however is that to use
this formula to calculate κ̃(A) for A ∈ SU (2) you must write A as an exponential exp u · X and this
is not a trivial task.

Let us spell out the following consequence of (D.31): If u is a unit vector, the image by κ̃ of

exp
(
− i

2

∑
j≤3

θuj σj

)
= exp(−iθu · σ/2)

is the rotation of angle θ around the axis u, see (D.11).
Now, in the reverse direction, does there exist a group homomorphism λ from SO(3) to SU (2) such

that λ′ : so(3)→ su(2) is the Lie algebra isomorphism given by u·J→ u·X? Such a homomorphism
would satisfy

λ(exp(u · J)) = exp(u · X). (D.32)

In particular one would have

λ(exp(θJ3)) = exp(−iθ
σ3

2
).
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The obvious problem with this formula is that for θ = 2π , exp(θJ3) is a rotation of angle 2π , i.e. the
identity I , while the right-hand side is −I , so that λ cannot be a group homomorphism.

This does not stop physicists from “defining” a representation of SO(3) on C2 precisely by the
formula (D.32). They acknowledge of course that there is a “sign ambiguity” in this definition, in
the sense that the right-hand side is “defined up to a sign”.8 Thus, in our language, they construct a
“double-valued representation”.

D.5 From Lie Algebra Homomorphisms to Lie Group Homomorphisms

Although this is not obvious at all, the root of the problem with SO(3) is that this group is not nice
topologically. As we discuss in Section 8.5 it is not simply connected. For simply connected groups
(i.e. in which all loops can be continuously contracted to one point), we have the following:

Theorem D.5.1 If G is a compact simply connected Lie group of matrices and ϕ a Lie algebra
homomorphism from g to glC(m), then there is a group homomorphism � from G to Gl(m,C)
such that �(expX) = expϕ(X) for X ∈ g.

This is a rather deep result, which we shall not use. As I wanted to understand this result, I provide
an elementary and essentially self-contained proof. (The hypothesis that G is compact is not really
needed.)

Let us consider a neighborhoodW of 0 in g as in Lemma D.1.6. Then each element of V := expW
is of the type expX for a unique X ∈ g. We may then define a map � : V → Gl(m,C) by

�(expX) = expϕ(X). (D.33)

The main step of the proof is as follows.

Theorem D.5.2 There exists a neighborhood V ′ of the unit in G such that whenever A,B,
AB ∈ V ′ then

�(AB) = �(A)�(B). (D.34)

Proof of Theorem D.5.1 It follows from (the first part of) Proposition A.3.4 that there exists a group
homomorphism� fromG toGl(m,C) such that�(A) = �(A) forA close to unity. Then�(expX) =
expϕ(X) for X ∈ g close to 0. Thus ϕ = �′ and �(expX) = expϕ(X) for each X.

The main tool for the proof of Theorem D.5.2 is the following.

Proposition D.5.3 For square matrices X,Y we have

d

dt
exp(tX + Y )

∣∣∣
t=0
= �(X,Y ) exp Y, (D.35)

where �(X,Y ) is given by the converging series

�(X,Y ) = X + 1

2!
[Y,X]+ 1

3!
[Y,[Y,X]]+ 1

4!
[Y,[Y,[Y,X]]]+ · · · . (D.36)

More generally, for a differentiable matrix-valued function U (t) we have

d

dt
expU (t) = �(U ′(t),U (t)) expU (t). (D.37)

8 Then they point out that the sign ambiguity does not matter for Quantum Mechanics so that everything is fine.
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During our analysis of this result, we will see that it boils down to a clever algebraic identity. We
could not care less about the exact form of the function�. What matters is that since ϕ is a Lie algebra
homomorphism, for X,Y ∈ g we have

�(ϕ(X),ϕ(Y )) = ϕ(�(X,Y )). (D.38)

Proof of Theorem D.5.2 We choose V ′ small enough that for expX, exp Y ∈ V ′ and 0 ≤ t ≤ 1 we
have exp tX expY ∈ V = expW . Fixing such X,Y ∈ g we may then define U (t) by expU (t) =
exp tX expY . First, differentiating both sides and using (D.37) we obtain

�(U ′(t),U (t)) expU (t) = X expU (t),

and hence the identity

�(U ′(t),U (t)) = X. (D.39)

Combining with (D.38) we then get

�
(
(ϕ(U ′(t)),ϕ(U (t))

) = ϕ(X). (D.40)

Consider then the function

A(t) := expϕ(U (t)).

Then, using (D.37) and (D.40) we obtain

A′(t) = �
(
ϕ(U ′(t)),ϕ(U (t))

)
A(t) = ϕ(X)A(t).

The function B(t)= exp tϕ(X) expϕ(Y ) satisfies the same differential equation. Since A(0)= exp
ϕ(Y ) = B(0) we then have A(t) = B(t) for each 0 ≤ t ≤ 1. For t = 1 this means

�(expX exp Y ) = expϕ(U (1)) = expϕ(X) expϕ(Y ) = �(expX)�(exp Y ).

Next, we turn to the proof of Proposition D.5.3. We will prove only (D.35) as the proof of (D.37) is
entirely similar. We fix X and Y . We define Z0 = X and inductively Z� = [Y,Z�−1] so that

�(X,Y ) =
∑
�≥0

Z�

(�+ 1)!
.

We first reduce the proof of Proposition D.5.3 to the proof of the following clever identity.

Lemma D.5.4 For each k we have

Sk := YkX + Yk−1XY + · · · +XYk =
∑

0≤�≤k

(
k + 1

�+ 1

)
Z�Y

k−�. (D.41)

Proof of Proposition D.5.3 It is straightforward from the series expansion that the left-hand side of
(D.35) equals ∑

k≥0

Sk

(k + 1)!
. (D.42)

On the other hand, using the explicit expression for
(k+1
�+1

)
one may rewrite (D.41) as

Sk

(k + 1)!
=

∑
0≤�≤k

Z�

(�+ 1)!

Yk−�
(k − �)!

.

Substitution in (D.42) and regrouping the terms completes the proof.
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One way to discover (D.41) is to use the commutation relations to push all the factors X to the left.
Thus, since YX = XY + Z1, we have

YkX = Yk−1XY + Yk−1Z1.

Next, using also YZ1 = Z1Y + Z2, we obtain

YkX = Yk−2XY 2 + 2Yk−2Z1Y + Yk−2Z2,

and by induction over n we obtain that for 1 ≤ n ≤ k one has

YkX =
∑

0≤�≤n

(
n

�

)
Yk−nZ�Y k−�.

In particular for n = k we have finished pushing the X factors to the left:

YkX =
∑

0≤�≤k

(
k

�

)
Z�Y

k−�. (D.43)

As the following proof shows, this is all there is to (D.41).

Proof of Lemma D.5.4 The proof goes by induction over k. For the step from k to k + 1, using that
Sk+1 = SkY + Yk+1X we have to check that∑

0≤�≤k

(
k + 1

�+ 1

)
Z�Y

k+1−� + Yk+1X =
∑

0≤�≤k+1

(
k + 2

�+ 1

)
Z�Y

k+1−�.

Using that (
k + 2

�+ 1

)
=
(
k + 1

�+ 1

)
+
(
k + 1

�

)
,

this coincides with (D.43).

D.6 Irreducible Representations of SU (2)

Our goal is to classify the finite-dimensional irreducible representations of SU (2). All results will be
easy consequences of the following central fact.

Proposition D.6.1 Consider a finite-dimensional complex vector space H and three operators
Z,A+,A− on H which satisfy the relations

[Z,A+] = 2A+ ; [Z,A−] = −2A− (D.44)

[A+,A−] = Z. (D.45)

Then the largest eigenvalue of Z is an integer m. Consider further an eigenvector e0 corre-
sponding to this eigenvalue, and define recursively the vectors

ek+1 = A−(ek). (D.46)

Then (remembering that m is the largest eigenvalue of Z),

em �= 0 ; em+1 = 0. (D.47)
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Furthermore,

Z(ek) = (m− 2k)ek, (D.48)

A+(e0) = 0 ; k > 0⇒ A+(ek) = k(m− k + 1)ek−1, (D.49)

the vectors e0,e1, . . . ,em are linearly independent and their span G is invariant under the
operators Z,A±. In particular if no proper subspace of H is invariant under these operators
then H = G. Moreover, no proper subspace of G is invariant under Z and A±.

The relations (D.46) and (D.48) to (D.49) completely describe the operatorsZ,A+,A− in the basis
e0, . . . ,em of G. Conversely, when G = H it is straightforward that the operators determined by these
relations satisfy the required commutation relations (D.44) and (D.45).

Proposition D.6.1 relates to representations of SU (2) as follows.

Lemma D.6.2 Consider a representation π of SU (2) in Ck and the map π ′ as provided by
(D.17). Consider the elements Xj of su(2) given by (D.26), and the elements Zj = π ′(Xj ).
Then the operators

Z = 2iZ3 ; A+ = iZ1 − Z2 ; A− = iZ1 + Z2 (D.50)

satisfy the relations (D.44) and (D.45).

Proof The elements Xj satisfy the commutation relations (D.27) and therefore the elements Zj =
π ′(Xj ) satisfy the same commutation relations. The relations (D.44) and (D.45) then follow by straight
computation. For example,

[A+,A−] = [iZ1 − Z2,iZ1 + Z2] = i([Z1,Z2]− [Z2,Z1]) = 2iZ3 = Z

and

[Z,A+] = [2iZ3,iZ1 − Z2] = −2[Z3,Z1]− 2i[Z3,Z2] = −2Z2 + 2iZ1 = 2A+.

Proof of Proposition D.6.1 The fundamental observation is as follows. Assume that we are given a
vector e with Z(e) = λe. Applying the identity ZA− − A−Z = −2A− to e we obtain ZA−(e) −
λA−(e) = −2A−(e). The vector f = A−(e) satisfies Z(f ) = (λ − 2)f . A similar result holds
for A+.

Since we are working with complex vector spaces, the operatorZ has an eigenvalue. Let us consider
the eigenvalue λ of Z with the largest real part, and a corresponding eigenvector e0. For k ≥ 0 we
define recursively ek+1 = A−(ek). As we previously showed,

Z(ek) = (λ− 2k)ek . (D.51)

Let us next define e−1 = 0 and prove by induction over k ≥ 0 that

A+(ek) = k(λ− k + 1)ek−1. (D.52)

For k = 0 this means A+(e0) = 0. This holds because ZA+(e0) = (λ + 2)A+(e0) and we have
assumed that λ is the eigenvalue of Z with the largest possible real part. To go from k to k + 1 we
write, using (D.45) in the second equality,

A+(ek+1) = A+A−(ek) = A−A+(ek)+ Z(ek).

We then use the induction hypothesis and (D.51) to obtain

A+(ek+1) = A−(k(λ− k + 1)ek−1)+ (λ− 2k)ek = (k + 1)(λ− k)ek,

completing the proof of (D.52).
Now, since H is finite-dimensional, (D.51) implies that the vectors ek cannot be all non-zero, for

then they would be linearly independent. Thus there exists exactly one m with em �= 0 and em+1 = 0.
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Using (D.52) for k = m + 1 yields λ = m. The span of e0, . . . ,em is invariant under the action of
Z,A+,A−. According to (D.48) these vectors are independent, so that they form a basis of G.

It remains to prove that no proper subspace of G is invariant under Z and A±. Consider such a
subspace G′ and x ∈ G′,x �= 0. Then x =∑

0≤k≤m akek , where not all the coefficients ak are zero.

Let � be the largest such that a� �= 0. Then A+�(x) ∈ G′, and (D.49) proves that A+�(x) is a non-zero
multiple of e0. Thus e0 ∈ G′ and G′ = G since by (D.46) G′ contains all vectors ek .

Lemma D.6.3 Consider an irreducible representation π of SU (2) in Ck . Then the vectors
e0, . . . ,em provided by Proposition D.6.1 span Ck (so that k = m+ 1).

Proof Indeed their span G is invariant under the operators Z,A+,A−. According to (D.50) every
operator π ′(Xj ) is a linear combination of these, so that G is invariant under all the operators π ′(X).

Since we assume that the representation is irreducible the space G equals Ck by Theorem D.2.6, and
since every element of SU (2) is of the type expX for X ∈ su(2), as is obvious using an orthonormal
basis where this element is diagonal.

Let us recall that we say that two representations π1,π2 of a group in vector spaces H1 and H2
are equivalent if there is an invertible linear operator V : H1 → H2 such that Vπ1(g) = π2(g)V for
each element g of the group.

Theorem D.6.4 Two irreducible representations of SU (2) in spaces of the same dimension are
equivalent.

Proof Let us consider an irreducible representation π of SU (2) in Ck , and recall the operators
Z,A+,A− of (D.50). According to Lemma D.6.3, Proposition D.6.1 then completely describes the
operators Z,A+,A− on Ck in the distinguished basis e0, . . . ,ek−1 of Ck . According to (D.50) each
operator π ′(Xj ) (j ≤ 3) is a linear combination of these, so that this proposition completely describes
the operators π ′(Xj ) on this basis. Consider now two irreducible representations π1 and π2 of SU (2)

in Ck with corresponding distinguished basis e1
0, . . . ,e

1
k−1 and e2

0, . . . ,e
2
k−1 respectively. Then for

j ≤ 3 the description of π ′1(Xj ) in the basis (e1
�
) is the same as the description of π ′2(Xj ) in the

basis (e2
�
). The linear operator V of Ck such that V (e1

�
) = e2

�
for 0 ≤ � ≤ k − 1 therefore satisfies

Vπ ′1(Xj ) = π ′2(Xj )V , and since the Xj form a basis of su(2), it satisfies Vπ ′1(X) = π ′2(X)V for
every element X of su(2). Using that π (expX) = expπ ′(X) this operator then witnesses that the
representations are equivalent.

One good point of this result is that the proof is constructive, allowing us (in principle) to build the
required intertwining operator.

In order to deal with unitary representations, we prove now the simple fact that there is essentially
at most one Hilbertian norm that makes a given irreducible representation unitary.

Proposition D.6.5 Consider a finite-dimensional irreducible unitary representation π of a
group G and another Hilbertian norm N (·) for which this representation is also unitary. Then
N is proportional to the original norm.

Proof Saying that the norm N is Hilbertian means that N (x)2 = B(x,x) where B(x,y) is a sesqui-
linear form which satisfies B(y,x) = B(x,y)∗. Defining the operator A by B(x,y) = (x,A(y)), we
obtain

(A(y),x) = (x,A(y))∗ = B(x,y)∗ = B(y,x) = (y,A(x))

so that A is Hermitian. We can therefore diagonalize it in an orthonormal basis. That is, if n is the
dimension of the underlying space, we can find an orthonormal basis (ei )i≤n for the original norm
such that N (

∑
i xiei )

2 = ∑
i≤n αi |xi |2 where the sequence αi is non-increasing. Assume that k is

such that α1 = α2 = . . . = αk > αk+1. Then the span of e1, . . . ,ek consists exactly of the vectors x
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such that
√
α1‖x‖ = N (x) so it is stable under all the maps π (C) forC ∈ G since these are isometries

for both norms. Since π is irreducible we have k = n.

Corollary D.6.6 Consider two irreducible unitary representations π1 and π2 of SU (2) on
Hilbert spaces H1,H2 and assume that for some operator W : H1 → H2 one has Wπ1(A) =
π2(A)W for eachA ∈ SU (2). Then eitherW = 0 or there is λ > 0 such that λW is an isometry.
In particular if π1 and π2 are equivalent they are unitary equivalent.

Proof Use Proposition D.6.5 for the norm N on H1 given by N (x) = ‖W (x)‖.
Although we do not need this fact, for each finite-dimensional representation of SU (2) (or, in fact

of a compact group) one can find an equivalent norm which makes it unitary. (Proving this is the goal
of the next exercise.) This explains why the study of unitary representations is not different from the
study of general representations.

Exercise D.6.7 This exercise uses the standard fact that a compact group has a Haar measure,
that is a measure dμ which is invariant under translations. That is, if f is a continuous function
on G, then for each h ∈ G it holds that∫

f (g)dμ(g) =
∫
f (gh)dμ(g) =

∫
f (hg)dμ(g).

Consider now an irreducible representation V of G on a Hilbert space H with norm ‖ · ‖.
Defining the norm N by

N (x)2 =
∫
‖V (g)(x)‖2dμ(g),

prove that V is unitary when H is provided with the norm N . Prove (at least when H is finite-
dimensional) that N is equivalent to the original norm and that it is Hilbertian.

Theorem D.6.8 Two irreducible unitary representations of SU (2) of the same dimension are
unitarily equivalent.

Proof This follows from Theorem D.6.4 and Corollary D.6.6.

Let us also note the following.

Proposition D.6.9 A representation π of SU (2) in a space H of dimensionm+1 is irreducible
if and only if the operator Z = 2iπ ′(X3) has m as an eigenvalue.

Proof It should be obvious that the condition is necessary. To prove that it is sufficient we recall
with the notation of Proposition D.6.1 that we proved there that the largest eigenvalue m′ of Z is an
integer and that G is of dimension m′ + 1. Thus if m is an eigenvalue of Z then m′ ≥ m and thus
dimG = m′ + 1 ≥ m + 1 = dimH. Thus G coincides with H, and irreducibility follows from the
last assertion of this proposition.

It is good to keep in mind for further use the following simple fact.

Lemma D.6.10 For an irreducible representation π of SU (2) of dimension m + 1 the eigen-
values of Z are exactly the elements of the set

Am := {m,m− 2, . . . , −m}. (D.53)

Exercise D.6.11 With the notation of the proof of Theorem D.6.4, find explicitly the operators
Z,A+,A− in the case of the representation πj of Definition 8.2.3. Find an eigenvector of Z
with eigenvalue j .

Exercise D.6.12 Combine the previous exercise with the last argument of Proposition D.6.1 to
obtain a self-contained proof that πj is irreducible. Convince yourself that this proof is identical
to the second proof we gave of this property.
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D.7 Decomposition of Unitary Representations of SU (2) into Irreducibles

A finite-dimensional unitary representation π of SU (2) on a finite-dimensional space H decomposes
in an orthogonal sum of irreducible representations. (Let us recall that this is an almost obvious
consequence of the fact that the orthogonal complement of an invariant subspace is invariant.) How
may one determine these? The answer turns out to be very simple, as explained in this section. To
lighten terminology, a subspace G of H which is invariant under π and such that the restriction of π to
G is irreducible will be called “an irreducible”. Let us consider a decomposition of H as an orthogonal
sum H = ⊕

1≤k≤N Hk of irreducibles. According to Theorem D.6.8 the restriction of π to Hk is
equivalent to the representation πjk of Definition 8.2.3 for a certain jk ≥ 0 (and dimHk = jk + 1).
We want to determine the sequence (jk)1≤k≤N , which without loss of generality we may assume to
be non-increasing (i.e. jk+1 ≤ jk).

Definition D.7.1 For �∈Zwe definem� as the dimension of the eigenspaceG� ofZ= 2iπ ′(X3)
with eigenvalue �.9

Lemma D.7.2 The sequence (jk)1≤k≤N determines the sequence (m�)�∈Z and conversely, the
sequence (m�)�∈Z determines N and the sequence (jk)1≤k≤N . Moreover m� = m−� so that
the sequence (m�)�≥0 determines N and the sequence (jk)1≤k≤N .

Proof According to Lemma D.6.10, in Hk the operator Z has each element of the set Ajk as an
eigenvalue. As k varies, the corresponding eigenvectors are orthogonal. We then get one dimension
for G� for each value of k such that � ∈ Ajk . Thus

m� ≥ card {1 ≤ k ≤ N ; � ∈ Ajk }.
On the other hand, ∑

�∈Z
m� =

∑
�∈Z

dimG� ≤ dimH

whereas ∑
�∈Z

card {1 ≤ k ≤ N ; � ∈ Ajk } = card {(�,k) ; � ∈ Z , 1 ≤ k ≤ N , � ∈ Ajk }

=
∑

1≤k≤N
cardAjk =

∑
1≤k≤N

(jk + 1)

=
∑

1≤k≤N
dimHk = dimH (D.54)

and consequently for each � ∈ Z,

m� = card {1 ≤ k ≤ N ; � ∈ Ajk }. (D.55)

This proves that the sequence (jk)1≤k≤N determines the sequence (m�)�∈Z. Since by the definition
of Aj we have � ∈ Aj if and only if −� ∈ Aj this also proves that m� = m−�.

So we have proved that the sequence (jk)k≤N determines the sequence (m�)�∈Z by the formula
(D.55). We prove that conversely the sequence (m�)�∈Z given by (D.55) determines the sequence
(jk)1≤k≤N . For this consider another sequence (j ′

k
)1≤k≤N ′ and the sequence (m′

�
)�∈Z given by

m′� = card {1 ≤ k ≤ N ; � ∈ Aj ′k }.
Assuming that the sequences (jk)1≤j≤N and (j ′

k
)1≤j≤N ′ are different we will prove that the

sequences (m�)�∈Z and (m′
�
)�∈Z are different. Assume first that there exists k ≤ min(N,N ′) for

9 And m� = 0 if � is not an eigenvalue.
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which jk �= j ′
k
, and consider the smallest such k. Assume without loss of generality that j ′

k
< jk .

Then jk /∈ Aj ′s for s ≥ k because jk > j ′
k
≥ j ′s . Consequently

m′jk = card {1 ≤ s < k ; jk ∈ Aj ′s }.
On the other hand, j ′s = js for s < k, and jk ∈ Ajk , so that mjk ≥ m′

jk
+ 1. Thus the sequences (mj )

and (m′
j

) are different. The case where jk = j ′
k

for k ≤ min(N,N ′) and N �= N ′ is similar.

As the sequence (mj ) is defined independently of any decomposition of H as a sum of irreducibles
we obtain the following.

Corollary D.7.3 The sequence (jk)1≤k≤N does not depend on the decomposition of H as an
orthogonal sum of irreducibles.

This does not say that the decomposition H = ⊕
Hk is unique, a question we investigate later

in Exercises D.7.5 and D.7.9. The trouble comes from the different values of k which have the same
value of jk . On the other hand, when all the terms of the sequence (jk) are different, the decomposition
of H as an orthogonal sum of irreducibles is unique and when this is the case we will talk of “the
decomposition of H into irreducibles”.

Corollary D.7.4 If Z has an eigenvalue ≥ � ≥ 0 then H contains an irreducible of dimension
≥ �+ 1.

Proof Consider an eigenvalue �′ ≥ � of Z. Then m�′ ≥ 1, and by (D.55) we can find k for which
�′ ∈ Ajk , so that jk ≥ �′ ≥ �, and dimHk = jk + 1 ≥ �+ 1.

Exercise D.7.5 Consider two integers n,n′ ≥ 0 and assume that jk = n+ n′ − 2k for 0 ≤ k ≤
N = min(n,n′), so that the sequence (jk)1≤k≤N is the sequence

n+ n′,n+ n′ − 2, . . . ,|n− n′|.
Consider the sequence (m�) given by (D.55). Prove that m� = 0 unless � = n + n′ − 2r for
some r ∈ N. Prove that moreover when � ≥ 0 is such that � = n+ n′ − 2r it holds that

m� = 1+min(r,n,n′) = card {(k,k′) ; 0 ≤ k ≤ n ; 0 ≤ k′ ≤ n′ ; k + k′ = r}. (D.56)

Let us define the representation π = πn ⊗ πn′ by

πn ⊗ πn′ (C)(x ⊗ x′) = πn(C)(x)⊗ πn′ (C)(x′) (D.57)

for x ∈ Hn, x′ ∈ Hn′ . As a sample application we prove the following standard result of Quantum
Mechanics (which is known there under the name of “addition of angular momenta”).

Proposition D.7.6 For the representation πn ⊗ πn′ the sequence (jk) is given by n + n′,n +
n′ − 2, . . . ,|n− n′|.

Proof Copying the proof of the Leibniz’s rule, the definition of π ′ and (D.57) imply

π ′(X3)(x ⊗ x′) = π ′n(X3)(x)⊗ x′ + x ⊗ π ′n′ (X3)(x′). (D.58)

Now there is a basis e0, . . . ,en of Hn with 2iπ ′n(X3)(ek) = (n − 2k)ek for 0 ≤ k ≤ n, and a basis
e′0, . . . ,e

′
n′ of Hn′ with 2iπ ′

n′ (X3)(e′
k′ ) = (n′ −2k′)e′

k′ for 0 ≤ k′ ≤ n′. Therefore from (D.58), letting
Z = 2iπ ′(X3), we have

Z(ek ⊗ e′k′ ) = (n+ n′ − 2k − 2k′)(ek ⊗ e′k′ ).

In this manner we obtain (n + 1)(n′ + 1) = dimHn ⊗ Hn′ linearly independent eigenvectors of
Z, so we have found a basis of eigenvectors. Thus for r ∈ N we know that the dimension m� of
the eigenspace of Z with eigenvalue � = n + n′ − 2r is exactly the number of possible choices for
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0 ≤ k ≤ n and 0 ≤ k′ ≤ n′ with k + k′ = r . Now Lemma D.7.2 shows that the sequence (m�)
and the sequence (jk) determine each other, and in Exercise D.7.5 we computed the sequence (jk)
corresponding to the particular sequence (m�) here.

Proposition D.7.7 Consider a finite-dimensional unitary representation π of SU (2). Then:
(a) For any irreducible G and any eigenvector e of Z = 2iπ ′(X3) with eigenvalue > dimG−1,
e is orthogonal to G.
(b) Two irreducibles G,G′ of different dimensions are orthogonal.

Proof We first show that, as a consequence of the representation being unitary, Z is self-adjoint. For
this we copy the argument with which we determined su(2). For each t , π (exp tX3) = exp tπ ′(X3)
is unitary, so that exp tπ ′(X3)† exp tπ ′(X3) = 1 and taking the derivative at t = 0 shows that π ′(X3)
is skew-adjoint so that Z is self-adjoint. Consequently, eigenvectors of Z with different eigenvalues
are orthogonal. The rest of the argument relies again on the analysis of Proposition D.6.1. Let m =
dimG − 1. Then G is spanned by e0,e1, . . . ,em which are eigenvectors of Z with eigenvalues ≤ m.
Thus if e is an eigenvector of eigenvalue > m it is orthogonal to e0,e1, . . . and hence to G, and this
proves (a). To prove (b) assume without loss of generality that m′ = dimG′ − 1 > m. Then we know
that G′ contains an eigenvector e′0 of Z = 2iπ ′(X3) of eigenvalue m′, so that e′0 is orthogonal to G by

(a). Thus e′0 is contained in the orthogonal complement G⊥ of G. Since G⊥ is invariant under π and

G′ is irreducible then G′ ⊂ G⊥.

Exercise D.7.8 Prove that the conclusion of Proposition D.7.7 does not hold if dimG = dimG′.
Hint: Consider an irreducible representation π of SU (2) on H and the representation � on
H ⊕H given by �(X)(x,y) = (π (X)(x),π (X)(y)). For α ∈ C consider the subspace Hα of
H⊕H given by {(x,y) ; x = αy}. Show that Hα is an irreducible.

Exercise D.7.9 Prove that in the decomposition H = ⊕
Hk in an orthogonal sum of irre-

ducibles, the space

Gn =
⊕

dimHk=n
Hk

is independent of the decomposition. Hint: Use Proposition D.7.7.

D.8 Spherical Harmonics

The material of the present section is not used at all in the main text, and is provided simply because
it is standard in many physics textbooks and requires very little extra effort at this stage. We have
already met the fundamental representation of SO(3) in L2(R3,d3x) given by

U (R)(f )(x) = f (R−1(x)). (D.59)

This representation is very far from being irreducible because if r1 < r2 the space of functions f
which are zero unless r1 ≤ ‖x‖ ≤ r2 is invariant. To avoid this phenomenon, we consider the sphere
S2 of R3 provided with its canonical probability measure dμ, which is invariant under rotations. We
can then define a unitary representation V of SO(3) in L2(S2,dμ) by

V (R)(f )(y) = f (R−1(y)) (D.60)

for y ∈S2. We will prove that this representation decomposes as an orthogonal sum of finite-
dimensional irreducibles which we will determine. (Generally speaking, we know that a finite-
dimensional unitary representation decomposes as a sum of irreducibles. Furthermore, as proved in
Section A.6, every unitary representation of a compact group decomposes as an orthogonal sum of
finite-dimensional irreducibles.)
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We first note that the space Hj of restrictions of homogeneous polynomials of degree j to S2

is invariant. The dimension of this space is the number of triples a,b,c of elements of N with sum
equal to j . There are (j − a + 1) such triples where a is fixed, so the total number of triples is
(j +1)+ j +· · ·+1 = (j +1)(j +2)/2. Next the map which restricts a homogeneous polynomial of
degree j to S2 is injective, because obviously this restriction determines the polynomial (using that
the polynomial is homogeneous of degree j ). Consequently

dimHj =
(j + 1)(j + 2)

2
. (D.61)

When f ∈ Hj−2 is the restriction to S2 of the homogeneous polynomial Q of degree j − 2, it is

also the restriction of the homogeneous polynomial (x2
1 + x2

2 + x2
3 )Q of degree j . Consequently

Hj ⊃ Hj−2 ⊃ Hj−4 ⊃ . . .. The restriction of V to Hj is not irreducible because its subspace
Hj−2 is invariant. Let us denote by Gj the orthogonal complement of Hj−2 in Hj . Then

dimGj = dimHj − dimHj−2 =
(j + 1)(j + 2)

2
− (j − 1)j

2
= 2j + 1, (D.62)

and Gj is invariant because both Hj and Hj−2 are invariant.

Theorem D.8.1 The restriction of V to Gj is irreducible. The restriction fj to S2 of the

polynomial Pj = (x1 + ix2)j belongs to Gj and is an eigenvector of eigenvalue 2j of
Z = 2iV ′(J3) (where J3 is given in (D.9)). The spaces Gj are orthogonal to each other

and they span L2(S2,dμ).

As a preparation for the proof, let us compute Z in the most elementary way. If R(θ ) = exp(θJ3)
is the rotation of angle θ around the third axis, then R(θ ) sends the point (x1,x2,x3) to the point
(x1 cos θ − x2 sin θ,x1 sin θ + x2 cos θ,x3), and thus for a differentiable function P on R3,

U (R(θ ))(P )(x) = P (R(θ )−1(x)) = P (x1 cos θ + x2 sin θ, − x1 sin θ + x2 cos θ,x3),

so that

U ′(J3)(P )(x) := dU (R(θ ))(P )(x)

dθ

∣∣∣
θ=0
= x2

∂P

∂x1
(x)− x1

∂P

∂x2
(x). (D.63)

For a homogeneous polynomial P on R3 let us denote by T P its restriction to S2. It should be obvious
from the previous formula that

V ′(J3)(T P ) = T
(
x2

∂P

∂x1
− x1

∂P

∂x2

)
, (D.64)

from which it is obvious that fj = T Pj is an eigenvector of Z = 2iV ′(J3) of eigenvalue 2j .
Another observation is that results such as Proposition D.7.7 remain true for a unitary represen-

tation π of SO(3) rather than SU (2) (and when then Z = 2π ′(X3) is replaced by Z = 2π ′(J3)).
This is seen by applying Proposition D.7.7 (etc.) to the representation A �→ π (κ̃(A)) where κ̃ is the
two-to-one homomorphism SU (2)→ SO(3) constructed in Section D.4.

Proof of Theorem D.8.1 We prove by induction over j that the irreducibles of Hj are Gj,Gj−2, . . .

where the last term is G1 when j is odd and G0 when j is even. This is obvious for j = 0 and j = 1.
Since Hj contains fj , which is an eigenvector of Z with eigenvalue 2j , by Corollary D.7.4 (in the
version described before the start of this proof) it contains an irreducible G′

j
of dimension ≥ 2j + 1,

and this irreducible is orthogonal to Hj−2 by the induction hypothesis and Proposition D.7.7, (b).
Thus G′

j
⊂ Gj and then G′

j
= Gj because dimGj = 2j + 1. This completes the proof that Hj

decomposes into the irreducibles Gj,Gj−2, . . .. Next, it follows from Proposition D.7.7 (a) that fj is
orthogonal to Gj−2,Gj−4, . . . and therefore fj ∈ Gj .
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It remains only to prove that the spaces Gj span L2(S2,dμ), or equivalently that the union of

the spaces Hj is dense in this space. This is really easy, since a continuous function on S2 can be
uniformly approximated by a polynomial.

The next result provides another standard characterization of Gj , see e.g. [40, Theorem 17.12]. We

recall that on R3 the Laplacian � is the operator
∑

j≤3 ∂
2/∂x2

j
, and that a function is harmonic if

its Laplacian is zero. A fundamental property of the Laplacian is that it commutes with the operators
U (R),

�U (R)f = U (R)�f . (D.65)

The proof is straightforward using the chain rule.

Exercise D.8.2 Write down the proof.

Proposition D.8.3 Gj coincides with the space Ĝj of restrictions to S2 of harmonic homoge-
neous polynomials of degree j .

Proof According to (D.65) the space Ĝj is invariant under the representation V . It is obvious that
fj ∈ Ĝj so that Gj ⊂ Ĝj . To prove that Gj = Ĝj it then suffices to prove that they have the
same dimension 2j + 1. Consider the space Fj of homogeneous polynomials of degree j . Obviously
�(Fj ) ⊂ Fj−2. We will prove that �(Fj ) = Fj−2 so that dim Ĝj = dim ker� = dimFj −
dim�(Fj ) = dimFj − dimFj−2 = 2j + 1. For this we note that

�(xn1
1 x

n2
2 x

n3
3 ) = n1(n1 − 1)xn1−2

1 x
n2
2 x

n3
3 + n2(n2 − 1)xn1

1 x
n2−2
2 x

n3
3 + n3(n3 − 1)xn1

1 x
n2
2 x

n3−2
3 .

Taking n1 = n2 = 0,n3 = j proves that xj−2
3 ∈ �(Fj ), and then by induction on q ≤ j − 2 that

x
n1
1 x

n2
2 x

j−q−2
3 ∈ �(Fj ) for n1 + n2 = q.

According to Proposition D.6.1 a basis of Gj is obtained by the functions (A−)kfj for 0 ≤ k ≤ 2j ,
where A− = iV ′(J1) + V ′(J2). These functions go under the name of spherical harmonics and are
useful in physics.

D.9 so(1,3) = slC(2)!

Let us recall the matrix � of (4.10), and that a matrix A belongs to the Lorentz group O(1,3) if and
only if AT �A = �. Denoting by so(1,3) the Lie algebra of the Lorentz group, and computing the
differential at zero of the map t �→ (exp tX)T � exp tX we obtain that if X ∈ so(1,3) then

XT �+�X = 0. (D.66)

Conversely, if �−1XT � = −X then for each t , �−1(exp tX)T � = exp(−tX) so that exp tX ∈
O(1,3) and X ∈ so(1,3). The reason for the notation so(1,3) is that this is also the Lie algebra of the
group SO↑(1,3). Indeed for t ∈ R and X ∈ so(1,3) we have exp tX ∈ SO↑(1,3) by continuity of
the map t �→ exp tX.

Since the matrix � is diagonal the condition (D.66) is far simpler than it looks. The diagonal
elements of X must be 0, and the elements above the diagonal determine those below the diagonal so
that so(1,3) is of dimension 6. The traditional choice of a convenient basis is

J1 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ ; J2 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞⎟⎟⎠ ; J3 =

⎛⎜⎜⎝
0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ (D.67)
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and

K1 =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ; K2 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎠ ; K3 =

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎠ . (D.68)

One then has to compute the commutation relations between these objects. Get ready, this requires
patience. The good news is that the computation is done once and for all:

[J1,J2] = J3 ; [J2,J3] = J1 ; [J3,J1] = J2 (D.69)

[K1,K2] = −J3 ; [K2,K3] = −J1 ; [K3,K1] = −J2 (D.70)

[K1,J1] = 0 ; [K1,J2] = K3 ; [K1,J3] = −K2 (D.71)

[K2,J1] = −K3 ; [K2,J2] = 0 ; [K2,J3] = K1 (D.72)

[K3,J1] = K2 ; [K3,J2] = −K1 ; [K3,J3] = 0. (D.73)

To write these in a compact, intelligible form, for u,v ∈ R3 we introduce the notation

u · J :=
∑
j≤3

uj Jj ; v ·K :=
∑
j≤3

vjKj .

Then (D.69) and (D.70) become respectively10

[u · J,u′ · J] = (u ∧ u′) · J ; [v ·K,v′ ·K] = −(v ∧ v′) · J, (D.74)

while the other three relations become

[u · J,v ·K] = (u ∧ v) ·K. (D.75)

While studying the Lorentz group we have introduced “rotations” and “pure boosts”. After our
study of SO(3) it should be obvious that “rotations” are exactly the elements of the form exp u · J,
and we turn to the investigation of pure boosts.

We first prove a remarkable consequence of (D.75). To state it we note thatA = exp u ·J is a trans-
formation of R4 which leaves e0 and the span of e1,e2,e3 invariant. It thus induces a transformation
Â of R3.

Lemma D.9.1 If A = exp u · J then

A(v ·K)A−1 = Â(v) ·K. (D.76)

In physics, this property is described by the sentence “K transforms like a vector under rotations”.

Proof The simplest-minded proof is for A(t) = exp(tu · J) to consider the function

t �→ A(t)−1(Â(t)(v) ·K)A(t)

and to show that its derivative is zero. This derivative is

A(t)−1
(
− [u · J,Â(t)(v) ·K]+ (Â′(t)(v)) ·K

)
A(t),

whereas, using (D.75) in the first equality and (D.12) in the second equality,

[u · J,Â(t)(v) ·K] = (u ∧ Â(t)(v)) ·K = (Â′(t)(v)) ·K.

10 The second relation below, showing that rotations may arise from boosts has a remarkable consequence in
relativity called Thomas precession.
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Proposition D.9.2 Given a unit vector v ∈ R3 and s ∈ R+, we have

exp(sv ·K) = Bp, (D.77)

where Bp is the pure boost sending (1,0,0,0) to the point p = (cosh s, sinh sv) ∈ R4.

Proof Combining (D.4) and (D.76) we obtain that if A = exp(u · J) then

A exp(p ·K)A−1 = exp(Â(p) ·K).

Observing that A(p0,p) = (p0,Â(p)) and comparing to (4.23) it suffices to prove the result when v

is parallel to the third axis. The proof is then straightforward by explicit computation.

Let us then turn to the study of the Lie algebra slC(2) of SL(2,C). It is obvious that this is the set of
traceless 2× 2 complex matrices. As a real vector space, it has dimension 6. For a nice basis, besides
the matrices Xj of (D.26) we use the matrices

Yj =
σj

2
= iXj . (D.78)

With obvious notation we may write the commutation relations as

[u · X,u′ · X] = (u ∧ u′) · X ; [v · Y,v′ · Y] = −(v ∧ v′) · X ; [u · X,v · Y] = (u ∧ v) · Y. (D.79)

The first relation is the form (D.13) of (D.25) and the other two relations follow from this one and the
fact that Y = iX. These are the same relations as in the case of so(1,3): Sending Xj to Jj and Yj to
Kj witnesses the isomorphism of these algebras.

Exercise D.9.3 Prove that the homomorphism κ of (8.21) from SL(2,C) to SO↑(1,3) satisfies

κ ′(Xj ) = Jj ; κ ′(Yj ) = Kj .

Exercise D.9.4 Prove that (with obvious notation) the matrix exp(v ·Y) is positive Hermitian.
Hint: Use the result of Lemma D.9.1 to reduce to the case v1 = v2 = 0.

D.10 Irreducible Representations of SL(2,C)

In this section we prove that all irreducible representations of SL(2,C) are equivalent to a represen-
tation of the type (j,k), as introduced in Definition 8.3.2. As we use only these representations for
0 ≤ j,k ≤ 1, the material of this section is presented just for fun. The point is again that much of the
work has already been done.

To study irreducible representations π of su(2) we made the clever combinations (D.50) of the
operators π ′(Xi ) ∈ glC(m) satisfying simpler commutation relations, which could then be analyzed
through Proposition D.6.1. Our strategy here will be exactly the same. Given an irreducible represen-
tation π of slC(2) in Cm we consider the operators Lj := π ′(Xj ) and Mj = π ′(Yj ) which satisfy
commutation relations as in (D.69) to (D.73). We set

A = 1

2
(L− iM) ; B = 1

2
(L+ iM), (D.80)

and we observe the relations

[u · A,v · A] = (u ∧ v) · A ; [u · B,v · B] = (u ∧ v) · B ; [u · A,v · B] = 0.

Thus, we have found two sets of operators, each with the same commutation structure as in the case
of su(2), and which commute with each other. The joint analysis of two sets of operators commuting
with each other just cannot be much more difficult than the analysis of the two sets separately (which
we already performed). Before doing this, however, let us build our intuition by investigating the
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simple situation of the representation π = (1,0), which, now that we identify operators with the
corresponding matrices, is simply the identity from SL(2,C) to itself. Thus

Lj = Xj = −
iσj
2
; Mj = Yj =

σj

2
= iXj

and in that case we have Bj = 0 and Aj = Xj .
Physicists “define” the action of a Lorentz transformation exp(u · J + v · K) on a column vector

C ∈ C2 by the formula

exp(u · J+ v ·K)C := exp((u+ iv) · X)C. (D.81)

As in the case of SO(3), this is really a “double-valued representation”.
In the case of the representation (0,1), which is the map A→ A†−1, then π ′(X) = −X†. Thus

Lj = Xj = −
iσj
2
; Mj = −Yj = −

σj

2
= −iXj

and in that case we have Aj = 0. The formula (D.81) is modified in the obvious manner exp(u · J+
v ·K)C = exp((u− iv) · X)C.

Let us now move to the key point. Looking back at (D.50), we set

Z = 2iA3,A
± = iA1 ∓ A2 ; W = 2iB3,C

± = iB1 ∓ B2.

We turn to the analysis of these relations following the pattern of Proposition D.6.1.

Proposition D.10.1 Consider a finite-dimensional complex vector space H. Consider six oper-
ators Z,A+,A− and W,C+,C− on H. Assume that each of the first three operators commute
with each of the last three. Moreover assume that (D.44) and (D.45) hold, as well as the
corresponding relations for the last three operators:

[W,C+] = 2C+ ; [W,C−] = −2C− (D.82)

[C+,C−] = W . (D.83)

Assume moreover that there is no proper subspace of H which is invariant by A±, Z, C±, W .
Then we can find integers m,n and a basis ek,�, 0 ≤ k ≤ m,0 ≤ � ≤ n of H with the following
properties:

Z(ek,�) = (m− 2k)ek,�, (D.84)

W (ek,�) = (n− 2�)ek,�, (D.85)

A−(em,�) = 0 ; k < m⇒ A−(ek,�) = ek+1,�, (D.86)

C−(ek,n) = 0 ; � < n⇒ C−(ek,�) = ek,�+1, (D.87)

A+(e0,�) = 0 ; k > 0⇒ A+(ek,�) = k(m− k + 1)ek−1,�, (D.88)

C+(ek,0) = 0 ; � > 0⇒ C+(ek,�) = �(n− �+ 1)ek,�−1. (D.89)

When Z = A+ = A− = 0 the preceding means that we simply construct a sequence (e�)�≤m
which satisfies (D.85), (D.87) and (D.89).
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Proof The operators Z and W commute, so there exist vectors which are eigenvectors for both these
operators. We select such a vector e0,0, for which the sum of the real parts of the corresponding
eigenvalues λ and μ is as large as possible. We then set ek,� = (A−)k(C−)�(e0,0), and we compute
A+(ek,�) by induction on k and C+(ek,�) by induction on �, and using in an essential manner that
Z,A+,A− commute with W,C+,C−. We then find that λ = m, where m is the largest integer for
which em,0 �= 0, while μ = n where n is the largest integer with e0,n �= 0. The proof goes very much
as in Proposition D.6.1 so the details are left to the reader.

So it follows that the irreducible representations of SL(2,C) are classified by a family depending
on two integers m and n, and it remains to show that these are in fact the representations (m,n) of
Definition 8.3.2, a task we leave to the reader in the next two exercises.

Exercise D.10.2 Consider a basis (ek,�)0≤k≤m,0≤�≤n and operators Z,A+, A−, W, C+ and
C− as in (D.84) to (D.89). Prove that there is no proper subspace that is invariant by all the six
operators.

Exercise D.10.3 Since we have not proved yet that the representation (k,�) is irreducible we
cannot use Proposition D.10.1 to study it. Show directly that the structure described by this
proposition exists in this representation by exhibiting it. Conclude using the previous exer-
cise that this representation is irreducible. Prove then that every irreducible representation of
SL(2,C) is equivalent to a representation (m,n).

Exercise D.10.4 Consider an irreducible representation π of SL(2,C). Prove that it is of the
type (m,0) if and only if π ′(Xi ) = iπ ′(Yi ) for i ≤ 3, and of the type (0,n) if and only if
π ′(Xi ) = −iπ ′(Yi ) for i ≤ 3.

D.11 QFT Is Not for the Meek

The purpose of this section is to explain how the Lie algebra so(1,3) comes about in some physics
textbooks, e.g. [77, page 32] or [24, page 173]. We have brought the notations closer to ours, but
we reproduce their approach and try to make the link with mathematicians’ view. You may skip this
section if you are not interested in reading physics textbooks.11 It requires some familiarity with the
mechanism of lowering and raising indices described at the end of Section 4.1. We will write matrices
in so(1,3) the same way we write Lorentz matrices, using two indices that can be lowered or raised
like any other Lorentz indices. The first step is to notice that the relation (D.66) means

Xμ,ν = −Xν,μ. (D.90)

To see this we observe that taking the product �X amounts to changing the sign of Xμ
ν when μ ≥ 1

i.e. to consider Xμ,ν .
Consequently X depends linearly on the six independent parameters Xμ,ν for 0 ≤ μ < ν ≤ 3, so

that we can write

X =
∑

0≤μ<ν≤3

Xμ,νJ
μ,ν, (D.91)

where Jμ,ν is “the 4 × 4 matrix of the ‘coefficients’ of Xμ,ν”. Defining now Jμ,ν = −J ν,μ for
μ > ν and using (D.90) one can rewrite (D.91) in the much nicer form

X = 1

2
Xμ,νJ

μ,ν, (D.92)

11 In all fairness it must be said that the sample presented here has not been chosen in an unbiased manner, but
rather to illustrate again the near un-bridgeable gap of cultures.
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where repeated indices are summed as usual. This is an implicit way to introduce the matrices (D.67)
and (D.68). Furthermore, if we have operators Aμ,ν such that

∀X ∈ so(1,3) ; Xμ,νAμ,ν = 0, (D.93)

then

∀μ,ν , Aμ,ν = Aν,μ, (D.94)

which a physicist would express by saying that “the anti-symmetric part of Aμ,ν is zero”. To prove
this we simply observe that

Xμ,νA
μ,ν =

∑
0≤μ<ν≤3

Xμ,ν (Aμ,ν − Aν,μ)

and that the variables Xμ,ν in the right-hand side can take any real values.
Let us consider a representation π of SO↑(1,3). For A,B ∈ SO↑(1,3) it holds that

π (ABA−1) = π (A)π (B)π (A)−1. (D.95)

We think of a matrixX ∈ so(1,3) as having the property that for ε infinitesimal, 1+εX is an “infinites-
imal Lorentz transformation”, but rather than εX physicists use δX, an “infinitesimal matrix”. They
consider as self-evident that

π (1+ δX) � 1+ 1

2
δXμ,νM

μ,ν, (D.96)

for certain operators Mμ,ν , where repeated indices are summed, and where δXμ,ν are the entries of
the matrix δX.12 Of course, once (D.92) has been spelled out, (D.96) is simply the linearity of the
derivative, and Mμ,ν = π ′(Jμ,ν ).

Using (D.95) for B = 1+ δX and also (D.96) one obtains

π (1+ AδXA−1) � 1+ 1

2
δXμ,νπ (A)Mμ,νπ (A)−1, (D.97)

which is simply another way to obtain the mathematician’s relation

π ′(AXA−1) = π (A)π ′(X)π (A)−1. (D.98)

We now want to use (D.96) again, this time for the infinitely small matrix AδXA−1 rather than δX.
We have to figure out the entries of this matrix. Generally speaking for matrices A,B,C we have

(ABC)μ,ν = Aμ,αB
α
βC

β
ν . Now, as is shown at the end of Section 4.1, for C = A−1 we have

C
β
ν = A

β
ν , so that (ABA−1)μ,ν = Aμ,αB

α
βA

β
ν = A α

μ A
β
ν Bα,β . Using this for B = δX, and then

(D.96) for the matrix AδXA−1 we obtain

π (1+ AδXA−1) � 1+ 1

2
A α
μ A

β
ν δXα,βM

μ,ν,

and comparing with (D.97) this yields

1

2
A α
μ A

β
ν δXα,βM

μ,ν � 1

2
δXμ,νπ (A)Mμ,νπ (A)−1.

Since the coefficients of δXμ,ν are anti-symmetric they must be equal (as implied by (D.94)),

π (A)Mμ,νπ (A)−1 = A
μ
α A ν

β M
α,β, (D.99)

which the physicists express by saying that the quantities Mμ,ν “transform as tensors” (see more
about this in Section D.12). This is simply a way to rewrite (D.98) in another language, and brings no

12 This atrocious notation is unfortunately rather common.
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extra information. We can now use (D.99) itself in the case A = 1+ δX. Comparing the “first-order
terms” in (D.99) we then obtain

1

2
δXα,β [Mα,β,Mμ,ν ] = δX

μ
α Mα,ν + δX ν

β M
μ,β

= δXα,λη
λ,μMα,ν + δXβ,γ η

γ,νMμ,β, (D.100)

which we rewrite as

δXα,β

(1

2
[Mα,β,Mμ,ν ]− ηβ,μMα,ν + ηα,νMμ,β

)
= 0,

and then expressing as in (D.93), (D.94) that “the anti-symmetric part of the coefficient of Xα,β is 0”
we obtain the relation

[Mα,β,Mμ,ν ] = ηβ,μMα,ν − ηα,νMμ,β − ηα,μMβ,ν − ηβ,νMμ,α (D.101)

In the case Mμ,ν = Jμ,ν (corresponding to the case where π is the identity) one can check that
(D.101) is a (particularly cryptic) way to write the relations (D.69) to (D.73), and the general case of
these relations is equivalent to this special case since Mμ,ν = π ′(Jμ,ν ) and π ′ is a Lie algebra homo-
morphism. Physicists sometimes call the relations (D.101) “the Lie algebra of the Lorentz group”.13

The Lie algebra relations for the Poincaré group can be obtained in a similar manner.

D.12 Some Tensor Representations of SO↑(1,3)

In this section we enjoy certain concrete non-trivial representations of SO↑(1,3).

Proposition D.12.1 If j + � is even there exists a representation �j,� of SO↑(1,3) such that
the representation A �→ �j,�(κ(A)) of SL(2,C) is equivalent to the representation (j,�) of

Definition 8.3.2. Furthermore a representation U of SO↑(1,3) is equivalent to �j,� if and
only if the representation A �→ U (κ(A)) of SL(2,C) is equivalent to the representation (j,�).

Proof For clarity we denote by πj,� the (j,�) representation of SL(2,C). The key point is that (as
is obvious from the definition of this representation)

πj,�(−A) = (−1)j+�πj,�(A).

Thus when j + � is even (and only in that case) we have πj,�(A) = πj,�(−A), so that we can define

�j,�(B) for B ∈ SO↑(1,3) by setting �j,�(B) = πj,�(A) where A is such that κ(A) = B. This does
not depend on the choice of A, since the only other possible choice is−A which gives the same value
πj,�(−A). It is then straightforward to check that �j,� is a representation. The last assertion is also
straightforward.

The goal of this section is to investigate some of the representations �j,� of SO↑(1,3). In physics
they are called tensor representations as opposed to the case j + � odd, where the representations
(j,�) (seen as projective representations of SO↑(1,3)) are called spinor representations.

We will first show in Exercise D.12.4 that �1,1 is the “defining representation” of SO↑(1,3)
obtained by letting a matrix operate on column vectors of R4 by matrix multiplication. (What else
indeed could it be?) The main step toward this result is as follows.

Proposition D.12.2 The representation (1,1) of SL(2,C) is equivalent to the representation θ
of SL(2,C) on the space M of 2× 2 matrices such that θ (A) is the operator M �→ AMA†.

13 Several authors present the previous arguments in a far more concise manner, and let the reader try and figure
out the meaning of (D.101) entirely on her own. This motivates the title of this section.
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Proof Since the representations A† and A∗−1 are equivalent, it should be clear that θ is equivalent
to the representation r given by

r(A) : M �→ AMA∗−1 = AMBT , (D.102)

where B = A†−1. Denoting bymi,j the entries of the matrixM , the entries tn,k of r(A)(M) are given
by

tn,k =
∑

i,j=1,2

An,imi,jBk,j =
∑

i,j=1,2

An,iBk,jmi,j . (D.103)

Comparing with the formula describing the action of A on a tensor (xi,j ) in the representation (1,1)
proves the result.

Exercise D.12.3 Give a complete proof of the “it should be clear that”.

Exercise D.12.4 If you have not already done so, solve Exercise 8.4.4. Hint: Use Proposition
D.12.2. Using the last assertion of Proposition D.12.1 proves that �1,1 is equivalent to the
defining representation of SO↑(1,3).

In the rest of the present section we investigate concrete representations which are equivalent
to �2,0 and �0,2. To follow the computations the reader should be familiar with the technique of
raising and lowering indices as explained at the end of Section 4.1. The starting point is the defining
representation of SO↑(1,3) on R4. Taking the tensor product of this representation with itself, we
consider tensors (xμ1,μ2 ) where 0 ≤ μ1,μ2 ≤ 3. This space of tensors is of dimension 16, and
L ∈ SO↑(1,3) operates on it by

x = (xμ1,μ2 ) �→ U (L)(x) = (Lμ1
ν1L

μ2
ν2x

ν1,ν2 ). (D.104)

Here as usual repeated indices are summed over. This representation is not irreducible because the
space of anti-symmetric tensors, i.e. tensors satisfying xμ1,μ2 = −xμ2,μ1 is invariant. This space, of
dimension 6, is not irreducible either. There exists an operator T which commutes with eachU (L) and
satisfies T 2 = −1. The two eigenspaces corresponding to the eigenvalues ±i are therefore invariant.
To describe T we consider the unique anti-symmetric tensor (εμ1,μ2,μ3,μ4 ) with ε0,1,2,3 = 1 (so that
e.g. ε0,0,1,2 = 0 and ε0,1,3,2 = −1). For x = (xμ1,μ2 ) we define T (x) by

T (x)μ1,μ2 = 1

2
εμ1,μ2,μ3,μ4xμ3,μ4,

where in the right-hand side we have lowered the indices of x. The right-hand side represents a sum
in which there are only two terms that are not zero and are equal, so we get very simple relations such
as T (x)0,1 = x2,3. To prove that T 2 = −1 we observe that

T (x)μ3,μ4 =
1

2
εμ3,μ4,μ5,μ6x

μ5,μ6,

so that

T 2(x)μ1,μ2 = 1

4
εμ1,μ2,μ3,μ4εμ3,μ4,μ5,μ6x

μ5,μ6 .

Observing that εμ3,μ4,μ5,μ6 = −εμ3,μ4,μ5,μ6 we check that

εμ1,μ2,μ3,μ4εμ3,μ4,μ5,μ6

equals −2 if (μ1,μ2) = (μ5,μ6), equals 2 if (μ1,μ2) = (μ6,μ5) and equals 0 in the other cases,
proving that T 2 = −1. Next we prove that T commutes with U (L). The relation T U (L) = U (L)T
is equivalent to

εμ1,μ2,μ3,μ4L
ν3
μ3L

ν4
μ4 = L

μ1
ν1L

μ2
ν2ε

ν1,ν2,ν3,ν4 . (D.105)
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Recalling that by (4.18) the matrices Lμν and L μ
ν are inverse of each other, multiplying both sides by

L
λ1
μ1 L

λ2
μ2 , summing over μ1,μ2 and changing ν3,ν4 to λ3,λ4 this is equivalent to

εμ1,μ2,μ3,μ4L
λ1
μ1 L

λ2
μ2 L

λ3
μ3 L

λ4
μ4 = ελ1,λ2,λ3,λ4, (D.106)

which simply says that the tensor εμ1,μ2,μ3,μ4 is Lorentz invariant. To prove this we observe that both
sides are zero if the indices λj are not all distinct. Using anti-symmetry it then suffices to consider
the case where λj = j − 1 in which case the left-hand side is simply the determinant of L, which we
know to be equal to 1.

A trained physicist will think of the previous situation in a rather different way. In physics, a tensor
(xμ1,μ2 ) is “a quantity which transforms under the rule (D.104) under a Lorentz transformation”,
with obvious adaptation of this rule for more indices including lower indices. Then (D.106) means
that “εμ1,μ2,μ3,μ4 is a tensor”. Furthermore, it is a general fact that “contracting some upper indices
with some lower indices” in a tensor one still gets a tensor. An example of such a contraction is
the tensor x̃μ1,μ2 = (1/2)εμ1,μ2,μ3,μ4xμ3,μ4 , sometimes called the dual of xμ1,μ2 . The property
that one obtains a tensor by contracting tensor indices is a consequence of the fact that by (4.18) the
matrices Lμν and L

μ
ν are inverse of each other. With this point of view, it is obvious to a physicist

that U (L) commutes with T , because she has learned to use the elements of the previous proof in a
systematic way.

We now know thatU induces a representation of SO↑(1,3) on the spaces of anti-symmetric tensors
T that satisfy either the condition T (x) = ix or T (x) = −ix. Each of these spaces is of dimension 3.
Since�j,� is of dimension (j+1)(�+1), the only representations of this type which are of dimension
3 are �2,0 and �0,2. But which is which? To answer this question, we will look at it another way.
Let us recall the representation θ of Proposition D.12.2, which we view as a representation on the
space M of tensors (mij )i,j=1,2. Then we may define a representation θ ⊗ θ on M⊗M such that
θ ⊗ θ (A) = θ (A)⊗ θ (A). We may identify M⊗M with the space of tensors m = (mi1,j1,i2,j2 ) with
all indices equal to 1 or 2.

We recall the Pauli matrices σν . The following asserts that the representations A �→ U (κ(A)) and
A �→ θ ⊗ θ (A) are equivalent.

Lemma D.12.5 Consider the map V : R4 ⊗ R4 →M⊗M given for x = (xμ1,μ2 ) by

V (x) = xμ1,μ2σμ1 ⊗ σμ2 .

Then for A ∈ SL(2,C) we have

V (U (κ(A))(x)) = θ ⊗ θ (A)(V (x)). (D.107)

Proof Recalling that M(x) = xμσμ the definition M(κ(A)(x)) = AM(x)A† of κ(A) reads κ(A)μν
xνσμ = xμAσμA

† so that κ(A)μνσμ = AσνA
† = θ (A)(σν ). Now,

U (κ(A))(x)μ1,μ2 = κ(A)μ1
ν1κ(A)μ2

ν2x
ν1,ν2,

and hence

V (U (κ(A))(x)) = κ(A)μ1
ν1κ(A)μ2

ν2x
ν1,ν2σμ1 ⊗ σμ2

= xν1,ν2θ (A)(σν1 )⊗ θ (A)(σν2 )

= xν1,ν2 (θ ⊗ θ )(A)(σν1 ⊗ σν2 )

= (θ ⊗ θ )(A)(xν1,ν2σν1 ⊗ σν2 )

The invariant subspaces of θ ⊗ θ are easy to analyze.

Proposition D.12.6 The following subspaces of M⊗M are invariant under θ ⊗ θ :

{(mi1,j1,i2,j2 ) ; ∀i1,i2,j1,j2 , mi1,j1,i2,j2 = mi2,j1,i1,j2 , mi1,j1,i2,j2 = mi1,j2,i2,j1 }. (D.108)
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{(mi1,j1,i2,j2 ) ; ∀i1,i2,j1,j2 , mi1,j1,i2,j2 = mi2,j1,i1,j2 , mi1,j1,i2,j2 = −mi1,j2,i2,j1 }. (D.109)

{(mi1,j1,i2,j2 ) ; ∀i1,i2,j1,j2 , mi1,j1,i2,j2 = −mi2,j1,i1,j2 , mi1,j1,i2,j2 = mi1,j2,i2,j1 }. (D.110)

{(mi1,j1,i2,j2 ) ; ∀i1,i2,j1,j2,mi1,j1,i2,j2 = −mi2,j1,i1,j2,mi1,j1,i2,j2 = −mi1,j2,i2,j1 }. (D.111)

These spaces are respectively of dimensions 9,3,3,1. The restriction of θ⊗θ to these spaces are
respectively equivalent to the representations (2,2), (2,0), (0,2), (0,0).

Proof Let us write the action of θ ⊗ θ (A) on a tensor m:

θ ⊗ θ (A)(m)i1,j1,i2,j2 =
∑

k1,�1,k2,�2

Ai1,k1Bj1,�1Ai2,k2Bj2,�2mk1,�1,k2,�2,

where B = A∗. It is then obvious that the subspaces above are invariant under this action. The
statements about the dimension of these spaces are elementary. To prove that the restriction to the
space (D.109) is equivalent to (2,0) we observe that mi1,1,i2,1 = mi1,2,i2,2 = 0 and mi1,2,i2,1 =
−mi1,1,i2,2, so that using that detB = 1 we obtain

θ ⊗ θ (A)(m)i1,1,i2,2 =
∑
k1,k2

Ai1,k1Ai2,k2mk1,1,k2,2.

The case of the space (D.110) is similar, and the case of the space (D.108) is much easier.

Corollary D.12.7 Consider a subspace G of M ⊗M and assume that G is invariant under
θ ⊗ θ , and that the restriction of θ ⊗ θ to G is equivalent to the representation (j,�). Then
V−1(G) is invariant under U and the restriction of U to V−1(G) is equivalent to �j,�.

Proof The first statement is obvious. The last one follows from Proposition D.12.1.

Proposition D.12.8 The image under V of the space of anti-symmetric tensors x that satisfy
the relation T (x) = ix is the space (D.109). Consequently the restriction of U to this space is
�2,0.

Proof The second statement is obvious. As for the first statement, I wish I knew a conceptual proof.
This image is an invariant space of dimension 3, so that it can be only one of the two spaces (D.109)
or (D.110) and the statement can be painfully checked by hand.

Exercise D.12.9 Show that the inverse image by V of the space (D.108) is the space of sym-
metric traceless tensors, i.e. xμμ = 0. Conclude that the restriction of U to this space is �2,2.



Appendix E

Special Relativity

E.1 Energy–Momentum

A good method to describe a curve in R3 is to parameterize it as the collection of points x = x(θ )
where the parameter θ runs in a certain interval. Many different parameterizations describe the same
curve. However when the curve is nice, one learns (or, depending on one’s age, one teaches) that
among all the parameterizations there is a distinguished one, x = x(s), the parameterization by arc
length which (once a specific point of the curve and the direction in which one moves are given) is
determined by ∥∥∥dx

ds

∥∥∥2 = 1.

This parameterization is intrinsic, in the sense that it does not depend on the coordinate system but
only on the Euclidean norm.

Suppose now that we want to describe the trajectory of a massive point in space-time. I will propose
a parameterization

x(t) = (ct,x(t)). (E.1)

This however has no intrinsic value because this definition is not invariant under Lorentz transfor-
mations.1 To find an intrinsic parameterization, it is the idea of parameterization by arc length which
succeeds, but the “Euclidean norm has to be replaced by the Lorentz norm”. To describe a curve in
space-time, we want to use a parameter τ such that(

dx

dτ
,

dx

dτ

)
= c2. (E.2)

The factor c2 is motivated by the fact that the left-hand side has the dimension of the square of a speed.
It is not always possible to parameterize a curve this way, because the Lorentz “norm” of a non-zero
vector can be zero. For example, whatever the parameterization x(θ ) of the trajectory of a light ray the
vector dx/dθ has Lorentz seminorm zero. When we consider however the curve x(θ ) which describes
the trajectory in space-time of a point of mass m > 0, the condition that this point moves at a speed
less than the speed of light is expressed by

1 More specifically, what I call “time” is for other observers an unremarkable mixture of what they call “time”
and “space”.
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(
dx

dθ
,

dx

dθ

)
> 0,

allowing to make a change of parameter in order to reach (E.2).

Definition E.1.1 The parameter τ is called the proper time along the trajectory, and the vectors

dx

dτ
and m

dx

dτ

are called respectively the four-velocity and the four-momentum of the moving particle.2

It should be clear that the proper time is invariant under Lorentz transformation, and that the four-
momentum is a “four-vector”, i.e. it transforms as expected under a change of coordinates in space-
time given by a Lorentz transformation.3 By construction, the energy–momentum has Lorentz “norm”
mc, i.e. (4.29) holds.

Let us examine the meaning of these concepts in the case where the curve is given by (E.1) in
my coordinate system. Then, using the notation v(t) = dx(t)/dt , we have dx/dt = (c,v(t)) and
(dx/dt,dx/dt) = c2 − v(t)2. Since

dx

dt
= dτ

dt

dx

dτ
,

using (E.2) we obtain c2(dτ/dt)2 = c2 − v(t)2 so that

dτ

dt
=
√

1− v(t)2

c2
:= α. (E.3)

When v(t) is constant an observer moving with the point is an inertial observer, legitimate to compute
the proper time. In his own reference frame he will measure his own position as x(t ′) = (ct ′,0,0,0),
where t ′ is time as he measures it and will find by the previous calculation that τ = t ′.4 the case where
v(t) is constant, the previous example together with Lorentz invariance shows that the proper time is
the time as measured by an observer moving with this point. Then α is the “time contraction factor”.
In one second of my time I feel the relativistic traveler has aged only α seconds. In my coordinates,
the four-momentum is then given by(

cm√
1− v(t)2/c2

,
mv(t)√

1− v(t)2/c2

)
= (cm′,m′v(t)), (E.4)

where m′ = m/α, a formula which in popular books is described by saying that as a result of the
motion the mass has apparently increased from m to m′. Observe also from the previous formula that,
as used just below (12.79), writing (p0,p) the four-momentum of the particle, one has the relation

v = cp

p0
. (E.5)

At non-relativistic velocity |v(t)| ! c, (E.4) shows that the four-momentum is about(
mc + mv(t)2

2c
,mv(t)

)
,

giving as expected the energy E = mc2 +mv(t)2/2.

2 The four-momentum is also called the energy–momentum.
3 That is, if your coordinates y are related to my coordinates x by y = L(x), and if I measure four-momentum p

you will measure four-momentum L(p).
4 Provided of course that we ask that τ = 0 for t = 0.
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E.2 Electromagnetism

This section assumes that the reader is familiar with Section 4.1. It might also benefit the reader to
study Section 10.12 in parallel with the present one. In Special Relativity the electrical field E and
the magnetic field B are components of a single object, the electromagnetic tensor5

(Fμν ) =

⎛⎜⎜⎝
0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0

⎞⎟⎟⎠ .

Here we use physics-type terminology: “Tensor” means “tensor field”, a map which assigns the
tensor Fμν (x) to each point of a certain domain Ω. Contained in the name “electromagnetic tensor”
is the assertion that it “transforms as a tensor” under a Lorentz transformation L, i.e. the tensor field
Fμν (x) becomes

L λ
ν L

α
μ Fλα(L−1(x)). (E.6)

Here we raise and lower indices as explained at the end of Section 4.1 to define the coefficients L λ
ν .

So the tensor Fμν transforms as LμλL
ν
αF

λα(L−1(x)).
The components of the electromagnetic tensor mix together under Lorentz transformations, which

is not surprising when one remembers that a fixed electrical charge produces only an electrical field,
but a moving charge produces a magnetic field too. The electromagnetic tensor obeys the Maxwell
equations, which, in the absence of electrical charge, take the form6

∀κ,μ,ν , ∂κFμν + ∂μFνκ + ∂νFκμ = 0, (E.7)

∀ν , ∂μFμν = 0, (E.8)

where of course there is a summation over the repeated index in (E.8).

Exercise E.2.1 Convince yourself by writing the proof in complete detail that the Maxwell
equations are invariant under Lorentz transformations.

The electromagnetic tensor can in turn (when the domain Ω is sufficiently nice) be described by a
four-vector A called the electromagnetic four-potential via the formula

Fμν = ∂μAν − ∂νAμ. (E.9)

Here A = A(x) is defined at every point of the domain Ω and of course “four-vector” means that
under a Lorentz transformation L it transforms according to the rule Aν (x)→ L λ

ν Aλ(L−1(x)).

Exercise E.2.2 Write all details to convince yourself that if A is a four-vector, then (E.9) is a
tensor.

The existence of the four-potential is actually a consequence of the equation (E.7). The equation
E.7 is then automatically satisfied while the equation (E.8) becomes

∂μFμν = (∂μ∂μ)Aν − ∂ν (∂μAμ) = 0. (E.10)

Let us stress however that it is the components of the electromagnetic tensor which are physically
measurable, not those of the four-potential. The components Fμν do not determine A. Indeed they
are invariant under the change Aμ → Aμ + ∂μχ for any smooth function χ on R1,3. Such a
transformation is called a gauge transformation (an extremely successful idea). All the physically
measurable quantities should be invariant under such a gauge transformation.

5 We are using SI units.
6 Let us recall the tricky fact that ∂μ = ∂/(∂xμ) and ∂μ = ∂/(∂xμ).
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Since the possibility of a gauge transformation leaves us much choice about A, we may like to
restrict this choice by imposing further conditions on A. The Lorenz gauge (named after Ludvig
Lorenz and not after Hendrik Lorentz) imposes the Lorentz invariant condition

∂μA
μ = ∂μAμ = 0. (E.11)

To see that this is possible, starting with any potential A one replaces Aμ by Aμ + ∂μχ where χ
satisfies the equation ∂μ∂μχ = −∂μAμ.7 In the Lorenz gauge, the Maxwell equation (E.10) becomes

(∂μ∂μ)Aν = 0. (E.12)

That is, each component C of the potential satisfies the “wave equation” ∂μ∂μC = 0 but these
components are not independent, as they satisfy (E.11).

The electromagnetic tensor and the four-potential are real-valued. This does not stop physicists
from writing formulas involving complex numbers, but what they mean is the real part of what they
write, and this is how the forthcoming formulas must be understood. Using the Fourier transform, it is
rather easy to solve the equations (E.12) and (E.11) (or at least to find all the well-behaved solutions).
These solutions are mixtures of solutions of the type A(x) = a exp(i(x,p)/h̄) where p2 = 0 (to
satisfy (E.12)) and the four-vector a satisfies (a,p) = 0 (to satisfy (E.11)). In other words, Aμ(x) =
aμ exp(i(x,p)/h̄) with aμpμ = pμp

μ = 0. These solutions are called plane waves. One may think at
first that, besides p, a plane wave depends on three parameters (the degrees of freedom in the choice
of a left by the condition (a,p) = 0), but this is not the case: When two vectors a differ by a multiple
of p the corresponding plane waves are related by a gauge transformation and represent the same
physical process, as is shown by the identity

(aμ + λpμ) exp(i(x,p)/h̄) = aμ exp(i(x,p)/h̄)+ ∂μχ (E.13)

where χ (x) = −iλh̄ exp(i(x,p)/h̄). Thus there are actually only two parameters that determine a
plane wave. It is this fact which physically justifies taking the quotient by Hnull in Proposition 9.13.6.

In (E.13) one may take λ = −a0/p0 to reduce to the caseA0 = 0 andAi (x) = ai exp(i(x,p)/h̄) for
i = 1,2,3.8 Let us write p = (p0,p) (so that p0 = ±|p| since p2 = 0). Then a = (a1,a2,a3) satisfies
a ·p = 0, which is expressed by the fact that electromagnetic waves are transverse to the direction of
motion, and makes it transparent that the plane wave depends only on two parameters. In elementary
textbooks one likes to consider two orthonormal vectors e1(p),e2(p) which are orthogonal to p and
which define so-called directions of polarization, but this cannot be done in an intrinsic manner.

What is more intrinsic is to consider potentials of the type

A±(x) = (e1(p)± ie2(p)) exp(i(x,p)/h̄), (E.14)

which have the property that rotating around the direction of motion by an angle θ multiplies them by
exp(∓iθ ).

Exercise E.2.3 Check the previous claim when p is parallel to the third axis. Prove then that
it holds for any direction of motion by using first a rotation to bring p in the direction of the
third axis.

Plane waves as in (E.14) are said to have circular polarization. A plane wave with a given p is a
mixture of two waves with circular polarization. This is closely connected to the fact that photons are
mixtures of photons of helicity ±2, see Section 9.13.

7 It is not a very difficult fact that under sufficient regularity of f one may solve the equation ∂μ∂μχ = f . In
the related case of the Laplace equation, this is briefly explained in Section N.2.

8 The procedure is general. The Lorenz gauge does not determine the potential since one can still replace Aμ by
Aμ + ∂μχ where ∂μ∂μχ = 0. One may choose a χ such that ∂0χ = −A0, and the new potential satisfies
A0 = 0. It also satisfies the condition

∑
1≤i≤3 ∂

iAi = 0, a condition known as the Coulomb gauge, and
usually written as ∇ · A = 0.



Appendix F

Does a Position Operator Exist?

In this section we go back to the setting of Proposition 4.9.2. We interpret H = L2(Xm,dλm) as the
state space of a particle of massmwith the Hamiltonian and momentum operator as in that proposition.
Is it possible to define a position operator? On general grounds, it is difficult to imagine that one could
locate precisely a particle, because by the Heisenberg uncertainty relations, this particle would have
large momentum and hence large energy, and would therefore create new particles. For this reason, it
seems impossible to construct a consistent relativistic one-particle theory. The considerations of the
present appendix are nonetheless of interest. We show that under very reasonable conditions there is
essentially only one possible candidate for a position operator, but that interpreting this operator as
an exact position operator implies that the particle is permitted faster-than-light travel. It seems better
to reject that possibility even at the microscopic level. (On the other hand there is no doubt that even
relativistic particles display some degree of localization!) Our treatment is a transcription of pages
12–16 of Sydney Coleman’s flamboyant course [13]. It is written in more mathematical language but
does not constitute a mathematical proof. More mathematical arguments can be found in Wightman’s
paper [89] but they are considerably less entertaining.

We work in the Schrödinger picture, where the states evolve but the operators do not. As we will
use space translations and rotations, but never boosts, it is more convenient to work with the state
space H′ = L2(R3,d3p/(2πh̄)3) rather than H. We will need the canonical unitary map J from H′
to H given by J (ϕ)(p) = √

2ωpϕ(p) where as usual p = (ωp,p).
A position operator consists of three commuting self-adjoint operators which would measure the

position of the particle along each coordinate. It is customary to use vector notation X to denote this
triplet of operators. The obvious candidate is the standard position operator X′ from non-relativistic
Quantum Mechanics with components X′1,X

′
2,X
′
3 given by

X′i = ih̄
∂

∂pi
. (F.1)

Can it be interpreted as a position operator? Let us consider the space H′′ = L2(R3,d3x) and the
Fourier transform F : H′′ → H′. Then the operator F−1X′

i
F on H′′ is simply “multiplication by

xi”. Consequently, if we believe that X′ is a position operator, it seems impossible to escape the
conclusion1 that if ϕ ∈ H′ is of norm 1, then its inverse Fourier transform f ∈ H′′ should represent
the probability density of finding the particle at a given point. In particular, if we consider a function
f ∈ S(R3) ⊂ H′′, which is zero outside a region A, its Fourier transform ϕ ∈ H′ should represent
the state of a particle that is localized in A. Consider now another function f ′ ∈ S(R3) ⊂ H′′
which is zero outside a region B, so that its Fourier transform ϕ′ ∈ H′ should represent the state of
a particle which is localized in B. Now if we let the system evolve for a time t , the state ϕ evolves to

1 Remember that in this appendix, we do not prove anything: we argue as physicists!
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exp(−icωpt/h̄)ϕ. As is explained at the end of Section 2.1, the probability of observing ϕ′ after time
t is the square of the amplitude

θ (t) := (ϕ′, exp(−icωpt/h̄)ϕ) =
∫

d3p

(2πh̄)3
ϕ′(p)∗ϕ(p) exp(−ictωp/h̄)

=
∫

d3xd3yf ′(x)∗f (y)It (x − y), (F.2)

where the distribution It (x) is formally given by

It (x) =
∫

d3p

(2πh̄)3
exp

(
i(−ctωp + (x · p)/h̄

)
.

Now if A and B satisfy the condition

x ∈ A , y ∈ B ⇒ (x − y)2 > c2t2

the amplitude must be zero, for otherwise this would mean that the particle has traveled faster than
light. This would require that It (x) = 0 for x2 > c2t2, but this is not true. (In Lemma 5.1.7 we
compute a function whose derivative in t equals It (x) in the domain x2 > c2t2.) Thus X′ cannot
be interpreted as an exact position operator. Given ϕ ∈ H′, calling its inverse Fourier transform
F−1(ϕ) ∈ L2(R3,d3x) “the wave function in position state space” as certain elementary textbooks
do is therefore a risky proposition.

If one writes X′ as an operator on H, i.e. one considers the operator JX′J−1, a straightforward
calculation yields that the ith component of this operator is given by

−ih̄

(
∂

∂pi
+ pi

2ω2
p

)
.

This operator is known as the Newton–Wigner operator, see formula (11) of [59].
Let us go back to the consideration of a general position operator X, the goal being to show that it

basically has to be the operator (F.1). We expect that X behaves well with respect to space translations
and rotations. We will show that these requirements essentially force that X equals X′. For a ∈ R3

and R ∈ SO(3) let us define the action V (a,R) on H′ by

V (a,R)(ϕ)(p) = exp(−ia · p/h̄)ϕ(R−1(p)). (F.3)

We must first show that when dealing with space translations and rotations the previous action is
just another way to write the action U (c,C) of the Poincaré group on H given by (4.61). Using the
canonical unitary map J from H′ to H, this means that U (a,R)J = JV (a,R) if a = (0,a) and R is
seen as an element of SO↑(1,3). It is straightforward to check this.

Next, we argue that the position operator should satisfy the relation

XV (a,R) = V (a,R)(a1+ RX) (F.4)

whenever a ∈ R3 and R ∈ SO(3). Here the notation RX represents a triplet of operators, product
of a matrix and a column vector, that is if Si,j denotes the matrix of S, SX is the triplet of operators
(
∑

j≤3 Si,jXj )i≤3, and (F.4) represents three different equalities between operators. The relation
(F.4) expresses that if we translate the system by a and apply the position operator, the value it returns
has been translated by a, and that if we rotate the system by a rotation R, so does the value given
by our position operator.2 To understand this, consider the ideal case where ϕ is an eigenvalue of X,
Xϕ = bϕ, so that (F.3) expresses as desired that ψ := V (a,R)ϕ satisfies Xψ = XV (a,R)ϕ =
V (a,R)(a1+ RX)ϕ = V (a,R)(a + Rb)ϕ = (a + Rb)V (a,R)ϕ = (a + Rb)ψ , where we have used
linearity in the third equality.

2 The term ϕ(R−1(p)) in (F.3) means that we have rotated the system by a rotation R.
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Next we prove that the standard position operator X′ satisfies (F.4). Let ψ(p) := V (a,R)(ϕ)(p) =
exp(−ia · p/h̄)ϕ(R−1(p)). We compute X′(ψ)(p). The term exp(−ia · p/h̄) on the right creates a
term aψ(p), and the computation of the second term is obtained through the chain rule

∂

∂pi
ϕ(R−1(p)) =

∑
j

R−1
j,i

∂ϕ

∂pj
(R−1(p)) =

∑
j

Ri,j
∂ϕ

∂pj
(R−1(p)),

using also that R is a rotation so that its matrix Ri,j is orthogonal. Therefore, using linearity in the
last line,

X′(ψ)(p) = exp(−ia · p/h̄)
(
aϕ(R−1(p))+ RX′(ϕ)(R−1(p))

)
= V (a,R)(aϕ(p)+ RX′(ϕ)(p)),

proving that X′ satisfies (F.4). The difference X′′ = X −X′ hence satisfies

X′′V (a,R) = V (a,R)RX′′. (F.5)

In full, for any ϕ in the domain of X′′ and any a ∈ R3,

X′′(exp(−ia · p/h̄)ϕ(R−1(p)) = exp(−ia · p/h̄)RX′′(ϕ)(R−1(p)). (F.6)

Then, presumably, taking mixtures in (F.6), for any ψ ∈ S(R3), any R ∈ SO(3), and any ϕ in the
domain of X′′,

X′′(ψ(p)ϕ(R−1(p)) = ψ(p)RX′′(ϕ)(R−1(p)). (F.7)

Here let us take a leap of faith. Let us pretend that X′′ is self-adjoint. (There is no problem to show
that X′′ is symmetric, but claiming that this operator is self-adjoint means that it is defined on a big
domain, while, for all we know it could be defined only on the zero function…). If we knew more about
self-adjoint operators, we could switch back to a more rigorous continuation, but let us proceed with
analogies: In finite dimension an operator which commutes with all functions of a diagonal operator
is itself a function of this diagonal operator, so here, just using (F.7) in the case R the identity, we
may believe that X′′ is of the type “multiplication by a function F (p) of p”. That is, X′′(ϕ)(p) =
F (p)ϕ(p). From (F.7) this function satisfies F (p) = RF (R−1(p)) for any rotation R. Considering
first the case whereR leaves p invariant we obtain that F (p) must be a multiple of p, and this multiple
can depend only on p2, so that F (p) = F1(p2)p for a certain function F1, and F1 is real-valued since
X′′ is self-adjoint. This relation implies that F is the gradient of a real-valued function V , F = ∇V ,
and we have proved that

X = X′ + ∇V,
where the last term means multiplication by ∇V . Consider now the function W = exp(iV/h̄), which
is of modulus 1. Then

X(Wϕ) = X′(Wϕ)+ (∇V )Wϕ

= WX′(ϕ)+ (ih̄∇W + (∇V )W )ϕ

= WX′(ϕ), (F.8)

where on the second line we use the simple computation of X′(Wϕ) from the explicit form of X′
and on the third line that ∇W = (ih̄−1∇V )W . Therefore if J ′ is the unitary operator on H′ given by
J ′(ϕ) = W−1ϕ we have J ′XJ ′−1 = X′. Now, J ′ commutes with the Hamiltonian (multiplication
by the function icωp), so that we can make the “change of basis” in H′ to reduce to the case where
X = X′. Thus, up to this change of basis, the standard position operator (F.1) is the only candidate
as a position operator. As this candidate was unsatisfactory, we have argued that there is no exact
position operator at all.



Appendix G

More on the Representations of the Poincaré Group

G.1 A Fun Formula

In Section 9.3 we start using a specific element Dp which sends p∗ to p, and the reader might want
to see explicit formulas for such an element. In this section we give such a formula for the canonical
choice of Dp in the case m > 0.

Proposition G.1.1 The unique positive Hermitian matrix V ∈ SL(2,C) such that κ(V ) is the
pure boost which sends e0 = (1,0,0,0) to p ∈ X1 (i.e. p2 = 1) is given by the formula

V = 1√
2(1+ p0)

(
p0 + 1+ p3 p1 − ip2

p1 + ip2 p0 + 1− p3

)
= 1√

2(1+ p0)
(I +M(p)). (G.1)

Proof Since V is positive Hermitian it is of the type V = UWU−1 where U is unitary and W is
diagonal. Since V ∈ SL(2,C), the eigenvalues of W are of the type es,e−s , that is, using (8.3) V is
of the type

V =
(

α β

−β∗ α∗
)(

es 0
0 e−s

)(
α∗ −β
β∗ α

)
=
(

cosh s + a sinh s b sinh s
b∗ sinh s cosh s − a sinh s

)
, (G.2)

where the second line is obtained through computation, and where a=αα∗ −ββ∗, b = −2αβ. Since
M(e0) is the identity matrix,

M(κ(V )(e0)) = VV † = UW2U† =
(

α β

−β∗ α∗
)(

e2s 0
0 e−2s

)(
α∗ −β
β∗ α

)
,

whose value is given by the formula (G.2) (for 2s rather than s). Now, to find V with κ(V )(e0) = p

it suffices that the previous matrix is M(p), yielding the relations cosh 2s ± a sinh 2s = p0 ± p3 and
b sinh 2s = p1 − ip2, b∗ sinh 2s = p1 + ip2, i.e.

cosh 2s = p0 ; a sinh 2s = p3 ; b sinh 2s = p1 − ip2. (G.3)

Finally cosh s =
√

(p0 + 1)/2 and sinh s =
√

(p0 − 1)/2, and since sinh 2s = 2 sinh s cosh s, using
this in (G.2) yields (G.1).

Exercise G.1.2 In the case p1 = p2 = 0, p0 = cosh s, p3 = sinh s convince yourself that
(G.1) reduces to

V =
(

es/2 0
0 e−s/2

)
.
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Corollary G.1.3 The unique positive Hermitian matrix Dp such that κ(Dp) sends p∗ =
(mc,0,0,0) to p ∈ Xm is given by

Dp = 1√
2mc(mc + p0)

(mcI +M(p)). (G.4)

In view of (9.36) one has

D2
p = DpD

†
p =

1

mc
M(p),

and some physics textbooks (such as [64, equation (3.50)]) write formulas such asDp =
√
M(p)/mc.

Exercise G.1.4 Check the formula (10.98) i.e. DP (p) = D−1
p from (G.4).

G.2 Higher Spin: Bargmann–Wigner and Rarita–Schwinger

The present section illustrates the methods of Section 9.5. Even though up to unitary equivalence there
is only one representation of P∗ describing a particle of massm > 0 and given spin j , we may present
this representation in many different ways, and we explain in this section two ingenious ways this has
been done, trying to present these results in a less mysterious way than is usually done.

Let us first review the basic construction, a version of Theorem 9.5.3 including parity. We start
with a representation V of SL+(2,C) on a finite-dimensional space H0, and a subspace G of H0
such that the restriction of V to G and SU (2)+ is unitary and irreducible. Considering the space
Gp = V (Dp)(G), the desired representation of P∗+ lives on the space H of functions ϕ : Xm → H0
such that ϕ(p) ∈ Gp , provided with the norm

‖ϕ‖2 =
∫
‖V (Dp)−1(ϕ(p))‖2dλm(p). (G.5)

It is given by the formula

U (a,A)(ϕ)(p) = exp(i(a,p))V (A)[ϕ(A−1(p)]. (9.24)

There are two objectives in such a construction.1

• Get a nice description of H as a set of functions satisfying certain equations.
• Get a pleasant formula for the norm (G.5).

Both constructions we present will use the representation S of SL+(2,C) on C4 considered in
Section 8.10 and the γ matrices (8.49) which the reader should review now. In both constructions
V (P ′) will be the identity onG, so the restriction ofV toG and SU (2)+ is determined by the restriction
of V to G and SU (2), and this restriction will be unitarily equivalent to the representation πj , as
expected for a particle of spin j/2.

G.2.1 Bargmann–Wigner

Our first construction is a generalization of Theorem 9.10.4 so that the reader should review Section
9.10 now. We consider for H0 the space of symmetric tensors x= (xn1,n2,...,nj )n1,n2,...,nj∈{1,2,3,4},
and the representation V = S⊗j of SL+(2,C) in H0 given by

V (A)(x)n1,...,nj =
∑

k1,...,kj∈{1,2,3,4}
S(A)n1,k1 · · · S(A)nj,kj xk1,...,kj .

1 One may argue that these objectives are somewhat illusory. A simpler-looking formula need not necessarily
provide deeper understanding.
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Consider the two-dimensional subspace W of C4 consisting of vectors u such that γ0(u) = u, or,
equivalently, γ (p∗)(u) = mcu. This space is invariant by all the operators S(A) for A ∈ SU (2)+.
This is because if A ∈ SU (2)+ then S(A) commutes with γ0 (as is straightforward to check). In
fact the action of S(P ′) on W is trivial (as is also straightforward to check). Consider the space

G = W
⊗j
s ⊂ H0 consisting of symmetric tensors in W⊗j . Then the restriction of V to SU (2)+ and

G is unitary. According to Proposition 8.3.1, the restriction of V to SU (2) and G is πj . To understand
how to describe Gp it is useful to first prove the following simple fact about tensor products.

Lemma G.2.1 Consider a finite-dimensional space X and a linear operator U on X. Then for
another finite-dimensional space Y we have

ker(U ⊗ 1) = kerU ⊗ Y .

Proof Since (U ⊗1)(x⊗y) = U (x)⊗y is zero whenever U (x) = 0, it is obvious that kerU ⊗Y ⊂
ker(U ⊗ 1). Equality follows as these spaces have the same dimension, since

dim(kerU ⊗ 1) = dimX dim Y − rank(U ⊗ 1)

= (dimX − rankU ) dimY

= dim(kerU ) dimY

= dim kerU ⊗ Y .

Lemma G.2.2 Consider a finite-dimensional space X, a linear operator U on X and Z =
kerU . For k ≤ j consider the operator Uk =

⊗
�≤j U�,k where Uk,k = U and U�,k = 1 if

� �= k. Then for x ∈ X⊗j we have x ∈ Z⊗j if and only if for all k ≤ j it holds that Uk(x) = 0.

In particular if x is a symmetric tensor then x ∈ Z⊗j (or, equivalently, x ∈ Z⊗js ) if and only
if U1(x) = 0.

Proof The non-trivial statement is that if x ∈ X⊗j is such that Uk(x) = 0 for each k ≤ j then
x ∈ Z⊗j . It is proved by induction over j as a consequence of the preceding lemma. SinceU1(x) = 0
one has x = z⊗ y with z ∈ kerU and one uses to induction hypothesis on y.

We are now ready to identify Gp . Since G=W⊗js , then Gp =V (Dp)(G)= (S(Dp)(W ))⊗js , the
space of symmetric tensors in (S(Dp)(W ))⊗j . As explained just after (9.69) the space S(Dp)(W ) is
described by the equation γ (p)(u) = mcu, i.e. S(Dp)(W ) = kerU where U (u) = γ (p)(u) − mcu.
According to Lemma G.2.2 the space Gp is described by the equation γ (p)⊗ 1⊗ · · ·⊗ 1(x) = mcx.

On the space of functions ϕ : Xm → H0, for k ≤ j let us define the operator D̂k(ϕ) by

D̂k(ϕ)(p) =
(⊗
�≤j

U�,k

)
(ϕ(p)),

where Uk,k = γ (p) and U�,k = 1 for � �= k. Then the space H of functions ϕ such that ϕ(p) ∈ Gp
is described by the equations

∀k ≤ j , D̂k(ϕ) = mcϕ, (G.6)

which are equivalent to the first one of them, D̂1(ϕ) = mcϕ. These are called the Bargmann–Wigner
equations, see [5]. The norm ‖ · ‖p on G can be calculated just as in the case j = 1 of Section 9.10.
For this we consider the sesqui-linear form B on (C4)⊗j ⊗ (C4)⊗j such that

B(y1 ⊗ · · · ⊗ yj,z1 ⊗ · · · ⊗ zj ) =
∏
k≤j

y
†
k
zk,
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where y†
k

is the row vector which is the conjugate-transpose of yk . Using an orthonormal basis one
checks that

B(x,x) = ‖x‖2. (G.7)

We then prove that C(x,y) := B(x,γ⊗j0 y) satisfies C(V (A)x,V (A)y) = C(x,y), so that for x ∈ Gp
we have ‖x‖2p = C(x,x) because this holds for p = p∗ by (G.7). No new ideas are required compared
to the case j = 1, so we simply state the result.

Theorem G.2.3 The space of functions ϕ which associate to each point a symmetric tensor
in (C4)⊗j and which satisfy the Bargmann–Wigner equation D̂1(ϕ) = mcϕ defines a unitary
representation of P∗+ when the action of the group is given by (9.24) and the norm is given by

‖ϕ‖2 =
∫
C(ϕ(p),ϕ(p))dλm(p).

This representation corresponds to a particle of mass m and spin j/2.

G.2.2 Rarita–Schwinger

Our second construction can be used to describe particles of spin n+ 1/2, although we consider only
the case n = 1.2 Here the space H0 is C4 ⊗ C4 and for A ∈ SL+(2,C) we set

V (A) = S(A)⊗ κ(A), (G.8)

where κ(A) is considered as an operator on C4. The coordinates in this copy of C4 are numbered
from 0 to 3. We will denote a point x of H0 by x = (xμn ) where the spinor index n ranges from 1 to
4 and the Lorentz index μ ranges from 0 to 3. When there are both spinor and Lorentz indices, it is
customary not to write the spinor indices. Thus xμ denotes a four-dimensional column vector (i.e. a
4× 1 matrix, which we will call a spinor), and x ∈ H0 consists of four spinors x0, x1, x2, x3. Thus
γνx

μ, the product of a 4 × 4 matrix and 4 × 1 matrix is also a 4 × 1 matrix, i.e. a spinor. In this
manner, given x ∈ H0 we define the spinor T (x) = γμx

μ where as usual repeated Lorentz indices
are summed. The following lemma contains much of the magic of this construction.

Lemma G.2.4 For each A ∈ SL+(2,C) we have

T V (A) = S(A)T . (G.9)

Proof Writing for once both spinor and Lorentz indices, V (A)(x) is given by its components
V (A)(x)μn :

V (A)(x)μn =
∑
k≤4

∑
0≤ν≤3

S(A)n,kκ(A)μνx
ν
k ,

or, writing only Lorentz indices,

V (A)(x)μ = κ(A)μνS(A)xν, (G.10)

so that, using γμκ(A)μν = S(A)γνS(A)−1 by (8.51),

T V (A)(x) = γμκ(A)μνS(A)xν = S(A)γνx
ν = S(A)T (x).

2 No elementary particle of spin ≥ 3/2 has yet been observed, but the consideration of such particles is of
theoretical interest. In particular in certain theories there exists a particle of spin 3/2, the gravitino.
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Our next goal is to identify a subspace G′ of H0 of dimension 6 on which the restriction of
V to SU (2) is equivalent to π1 ⊗ π2. Then, as shown by Proposition D.7.6, this representation of
dimension 6 decomposes in two irreducible spaces, respectively of dimension 2 and 4, corresponding
to representations of spin 1/2 and 3/2 respectively. We will then identify the space G of dimension 4
such that the restriction of V to SU (2) and G is equivalent to π3.

Lemma G.2.5 The following subspaces of H0 are invariant under the restriction of V to
SU (2)+:

G1 = {x ; ∀μ ≤ 3,γ0x
μ = xμ},

G2 = {x ; x0 = 0},
G3 = {x ; T (x) = 0}.

Proof The fact that G3 is invariant is an obvious consequence of Lemma G.2.4.
To prove that G1 is invariant we recall that the subspace W = {y;γ0y = y} of C4 is invariant

under S(A) for A ∈ SU (2)+ so that G1 = W ⊗C4 is invariant under V (A) = S(A)⊗ κ(A). Another
way to see this is to write the definition of G1 as

G1 = {x ; (γ0 ⊗ 1)x = x},
and to observe that γ0 ⊗ 1 commutes with V (A) for A ∈ SU (2).

To prove that G2 is invariant we observe that W ′ = {y ∈ C4;y0 = 0} is invariant under κ(A) for
A ∈ SU (2)+ so that G2 = C4 ⊗W ′ is invariant under V (A) = S(A)⊗ κ(A).

To get a more concrete description of these subspaces, we decompose each spinor xμ in two parts
yμ and zμ composed respectively of the first two and the last two components. The space G1 consists
simply of the tensors x which satisfy

∀μ ; yμ = zμ. (G.11)

Using the explicit definition (8.49) of the matrices γμ, the condition T (x) = 0 is equivalent to

y0 − σ1y
1 − σ2y

2 − σ3y
3 = 0 ; z0 + σ1z

1 + σ2z
2 + σ3z

3 = 0.

For x ∈ G1 this means

y0 = 0 ; σ1y
1 + σ2y

2 + σ3y
3 = 0. (G.12)

This shows that G := G1 ∩ G3 is of dimension 4, as the second part of (G.12) gives two relations
between the six components of y1,y2,y3. Moreover G ⊂ G′ := G1 ∩ G2.

Lemma G.2.6 The space G′ = G1 ∩ G2 is of dimension 6 and the restriction of V to SU (2)
and G′ is unitarily equivalent to π1 ⊗ π2.

Proof A point x of G′ is determined by the components xμ
k

for k = 1,2 and 1 ≤ μ ≤ 3, so that

G′ = C2 ⊗ C3. To prove the last claim one has to go back to the definition of V and convince
oneself that for A ∈ SU (2) the restriction of V (A) to G′ identifies with S(A)′ ⊗ κ(A)′ where S(A)′
is the restriction of S(A) to the space {x ∈ C4;γ0x = x} and κ(A)′ is the restriction of κ(A) to
{x ∈ C4;x0 = 0}, and to use Exercise 8.4.5.

Since the subspace G of G′, of dimension 4, is invariant under the restriction of V to SU (2) and G′,
the restriction of V to SU (2) and this subspace has to be equivalent to π3. This can also be checked
directly but it is not necessary to do so.

The reader may check using previous arguments that the space Gp := V (Dp)(G) is described by
the equations

∀μ , γ (p)xμ = mcxμ ; γμxμ = 0. (G.13)
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The space H of functions ϕ : Xm → H0 which satisfy ϕ(p) ∈ Gp for each p is therefore described
by the equations

∀μ , D̂(ϕμ) = mcϕμ ; γμϕμ = 0, (G.14)

which are called the Rarita–Schwinger equations (here in momentum form). Furthermore as we show
now there is a simple formula to compute the norm ‖ · ‖p .

Lemma G.2.7 For x ∈ H0 the quantity

B(x) = −ημ,ν (xμ)†γ0x
ν = −x†

μγ0x
μ = −(x0)†γ0x

0 +
∑

1≤μ≤3

(xμ)†γ0x
μ (G.15)

satisfies B(V (A)(x)) = B(x) and

x ∈ G ⇒ B(x) = ‖x‖2
(
=
∑
k,μ

|xμ
k
|2
)

. (G.16)

Proof Using (G.15), we obtain, using that κ(A)μλ is a real number

B(V (A)(x)) = −ημ,ν (κ(A)μλS(A)xλ)†γ0κ(A)νηS(A)xη

= −ημ,νκ(A)μλκ(A)νη(S(A)xλ)†γ0S(A)xη. (G.17)

Now, ημ,νκ(A)μλκ(A)νη = ηλ,η because κ(A) ∈ SO↑(1,3) while

(S(A)xλ)†γ0S(A)xη = (xλ)†γ0x
η

by (9.72). This proves that B(V (A)(x)) = B(x). Next, for x ∈ G we have x0 = 0 and γ0x
μ = xμ, so

that (xμ)†γ0x
μ = (xμ)†xμ =∑

k≤4 |xμk |2 and this proves (G.16).

We may then state the following:

Theorem G.2.8 The space of functions ϕ fromXm to C4⊗C4 satisfying the Rarita–Schwinger
equations (G.14), provided with the norm

‖ϕ‖2 = −
∫

(ϕμ(p))†γ0ϕ(p)μdλm(p)

gives a unitary representation of P∗+ when the action of the group is given by the formula
(9.24). This representation models a particle of mass m and spin 3/2.



Appendix H

Hamiltonian Formalism for Classical Fields

We first investigate how one might construct a Hamiltonian for the Lagrangian with Lagrangian
density (10.57). We then present complements to Sections 6.4 and 6.5, and we try to explain in
mathematical terms some potentially confusing considerations which are ubiquitous in elementary
physics textbooks, see e.g. [35, page 532]. The reader needs to be fluent with Section 10.12.

H.1 Hamiltonian for the Massive Vector Field

Let us recall that the massive vector field has a Lagrangian density given by (10.57),

L = − h̄
2c2

4
FνμF

νμ + m2c4

2
AνA

ν, (10.57)

where Fνμ = ∂νAμ − ∂μAν . In this formula, the variables are the Aν and we are trying to write
equations of motion for (Aν )0≤ν≤3. As we pointed out, the variables Aν are not independent, and we
proceed to show that A1,A2,A3 can be identified as “a proper set of independent variables”. More
precisely, assuming that A1,A2,A3 are independent variables, we will guess from the general method
(6.36) (or more exactly its extension to the case of classical fields) what the Hamiltonian should be,
and we will check that this Hamiltonian gives the correct equations of motion. We recall the notation
∂t = ∂/∂t = c∂0. We think of the Lagrangian density as a function of the “independent variables”
A1,A2,A3 and their derivatives ∂νAk . For each variable Ak , k = 1,2,3 we compute its “conjugate
momentum”

πk =
∂L

∂(∂tAk)
= −ch̄2F 0k = ch̄2F0k . (H.1)

and the tentative Hamiltonian density is given as1

H =
∑
k≤3

πk∂tAk − L = c
∑
k≤3

πk∂0Ak − L. (H.2)

This is exactly the procedure we used to obtain (6.50), but in (6.50) there was a single independent
variable, while here there are three of them. For things to make sense (H.2) has to be expressed as a
function of the πk , theAk and their derivatives ∂νAk , and ∂νπk for ν ≥ 1. The goal is then to eliminate
the quantities ∂0Ak and A0 from the expression (H.2) (using somewhat ad hoc manipulations) as
follows. First we rewrite the Lagrangian density (10.57) as

L = 1

2h̄2

∑
k≤3

π2
k −

h̄2c2

4

∑
k,�≤3

F 2
k� +

m2c4

2
(A2

0 −
∑
k≤3

A2
k), (H.3)

1 Let us recall the convention that the Latin indexes range from 1 to 3, so that below
∑

k≤3 means
∑

1≤k≤3.
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Next, using the definition of F0k and then (H.1),

c∂0Ak = cF0k + c∂kA0 =
1

h̄2
πk + c∂kA0,

so that

cπk∂0Ak =
1

h̄2
π2
k + cπk∂kA0 =

1

h̄2
π2
k + c∂k(πkA0)− cA0∂kπk . (H.4)

Furthermore, by (10.62) we have m2c2A0 + h̄2∂νFν0 = 0 i.e., using (H.1),

m2c2A0 = −h̄2
∑
k≤3

∂kF0k = −
1

c

∑
k≤3

∂kπk, (H.5)

so that −c∑k≤3 A0∂kπk = m2c4A2
0. Consequently, by summation of the relations (H.4),∑

k≤3

cπk∂0Ak =
1

h̄2

∑
k≤3

π2
k +m2c4A2

0 + c
∑
k≤3

∂k(πkA0),

and, using algebra in the first line and again (H.5) in the form A0 = −1/(m2c3)
∑

k≤3 ∂kπk in the
second line,

H = 1

2h̄2

∑
k≤3

π2
k +

h̄2c2

4

∑
k,�≤3

F 2
k� +

m2c4

2
(A2

0 +
∑
k≤3

A2
k)+R (H.6)

= 1

2h̄2

∑
k≤3

π2
k +

h̄2c2

4

∑
k,�≤3

F 2
k� +

m2c4

2

∑
k≤3

A2
k +

1

2m2c2

(∑
k≤3

∂kπk
)2 +R,

where R is a sum of partial derivatives. Now we recall that the Hamiltonian is the integral of the
Hamiltonian density. Since R is of integral zero because it is a sum of derivatives (and assuming of
course that everything goes to zero fast enough at infinity) it does not contribute to the Hamiltonian.
In Section H.4 we prove that this Hamiltonian density does provide the correct equations of motion.

H.2 From Hamiltonians to Lagrangians

In Section 6.5 we have explained how in favorable circumstances one may go from Lagrangian
formalism to Hamiltonian formalism. Here we first briefly explain that conversely we may also go in
the reverse direction. To describe a mechanical system with n degrees of freedom, say a massive point
in dimension n, it is possible to start directly from a Hamiltonian, a function H (x,p) on phase space
Rn × Rn. The equations of motion are Hamilton’s equations of motion (6.39) and (6.40)

ṗk = −
∂H

∂xk
; ẋk =

∂H

∂pk
. (H.7)

Let us set

vk =
∂H

∂pk
, (H.8)

and v = (vk)k≤n. In good situations, we can compute p as a function p(x,v) of x and v and then H
as a function H (x,p(x,v)) of x and v where now x and v are viewed as independent variables. We
may then define the Lagrangian

L(x,v) = v · p(x,v)−H (x,p(x,v)).
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Then a solution x(t),p(t) of the equations of motion (H.7) is also a solution of the Euler-Lagrange
equations. Indeed,

∂L
∂xk
= − ∂H

∂xk
; ∂L
∂vk
= pk

because the other terms eliminate thanks to (H.8), so that

d

dt

∂L
∂vk
= ṗk = −

∂H

∂xk
= ∂L

∂xk
.

The method to go from the function L(x,v) to the function H (x,p) and back is called the Legendre
transform.

Let us examine our favorite example

H (x,p) = 1

2m
p · p + V (x).

Then vk = pk/m and p(x,v) = mv so that

L(x,v) = p · v −H (v,p(x,v)) = m

2
v · v − V (x).

H.3 Functional Derivatives

At the end of Section 6.4 we met no particular difficulties in extending the Lagrangian approach
from the case of n degrees of freedom to the case of a continuous number of degrees of freedom. We
now start the same program in the case of the Hamiltonian formalism: how to extend the equations of
motion (H.7) to the continuous case. For simplicity we will discuss a specific case, the generalizations
of which are obvious. The main issue is that the equations (H.7) are defined in terms of the partial
derivatives of a function H (x,p), when x, p ∈Rn. In the continuous case H (x,p) is replaced by
H (u,π ), a functional of two functions u,π on Rk . We follow here the usual terminology to call a
function a functional if its arguments are themselves functions. Then, as we already explained, u is a
family of numbers (u(x))x∈Rk which is the continuous version of the family (xk)k≤n. As the contents
of the rest of this appendix are very formal, it is better not to specify what is meant by “function”
although probably it would be a good idea to consider only elements of S4. We want to define “the
partial derivative of H with respect to u(x)”. This is the fearsome functional derivative of physicists,
who rarely formulate it in a mathematician-friendly language. Functional derivative is an extension of
the idea of partial derivative when a finite number of variables is replaced by a continuous family of
variables. To understand the idea of the forthcoming definition, let us observe the following formula,
in the case of n degrees of freedom:

lim
ε→0

ε−1(H (x + εy,p)−H (x,p)) =
∑
k≤n

yk
∂H

∂xk
,

which determines the numbers ∂H/∂xk . In the continuous case one simply replaces the discrete sum
by an integral.

Definition H.3.1 Given a functionalH (u,π ) and two specific choices u andπ of the arguments,
a distribution ξ in the variable x is called a functional derivative and is denoted2

δH

δu(x)

2 I find this traditional notation horrendous. I think δH/δu would be much better.
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at these arguments u,π if for each test function ϕ ∈ Sk we have∫
ϕ(x)dξ (x) := ξ (ϕ) = lim

ε→0
ε−1(H (u+ εϕ,π )−H (u,π )). (H.9)

We are going to give many concrete examples below. The horrendous notation does not help. Again,
given u and π the functional derivative δH/δu(x) is a distribution in the variable x. In good cases,
δH/δu(x) will be a concrete expression depending on x,u,π . Then, given x, δH/δu(x) is a new
functional of u and π , and this is what motivates the notation. One difficulty here is that one should
resist attempting to directly define in a general setting the value of δH/δu(x) for a given x, because
as the first example below shows this does not make much sense. (On the other hand as soon as one
moves to the specific situations we will consider below what δH/δu(x) means becomes clear.) We
define δH/δπ(x) in a similar manner. As a functional derivative itself depends on the two functions
u and π , the procedure can be iterated.

There is little doubt that the functional derivative, as well as certain other tricky notions that will
be explained below, can be rigorously defined in a suitable space of distributions. The purpose of this
appendix is however not to build a rigorous theory but to explain the meaning of what you may read
in a physics textbook.

Example H.3.2 Consider a given point y of Rk and the case where H (u,π ) = u(y). Then it is
pretty obvious from (H.9) that

δH

δu(x)
= δy (x).

Example H.3.3 Consider the case where H (u,π ) = ∫
u(x)ϕ(x)dkx for a certain test function

ϕ. Then

δH

δu(x)
= ϕ(x).

Example H.3.4 Consider the case where

H (u,π ) =
∫
u(x)2ndkx. (H.10)

It is assumed that the integral exists so that the formula makes sense. It should then be pretty
obvious that

δH

δu(x)
= 2nu(x)2n−1.

Example H.3.5 Consider the case where

H (u,π ) =
∫ ( ∂u

∂xj

)2
(x)dkx (H.11)

Then

lim
ε→0

ε−1(H (u+ εϕ,π )−H (u,π )) = 2
∫

∂u

∂xj
(x)

∂ϕ

∂xj
(x)dkx

and integration by part shows that

δH

δu(x)
= −2

∂2u

∂x2
j

(x). (H.12)

This means exactly that, in the sense of distributions, δH/δu(x) is the partial derivative with
respect to xj of the function −2∂u/∂xj . If we are lucky (H.12) might be an equality of
functions.
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Example H.3.6 More generally, we may consider expressions of the type

H (u,π ) =
∫
ψ(x,u(x),π (x),∂1u(x), . . . ,∂ku(x))dkx, (H.13)

or even more complicated ones. In this case, if all goes well, and pretending in our notation that
all the arguments of ψ are independent variables,

δH

δu(x)
= ∂ψ

∂u
−
∑
i≤k

∂i
∂ψ

∂iu
, (H.14)

where on the right-hand side the arguments are the same as in (H.13).

Definition H.3.7 For a Hamiltonian H (u,π ) the equations

π̇ = − δH

δu(x)
; u̇ = δH

δπ (x)
(H.15)

are called Hamilton’s equations of motion.

In this compact notation we assume that u (and π ) is a time-dependent function u(x,t) of x, and
we write u̇(x,t) = ∂u(x,t)/∂t . That is, u̇ is the time-derivative of u seen as a point in a function space.
Then the first equation above means

π̇ (x,t) = − δH

δu(x)
(u,π ),

where the right-hand side is the value of δH/δu(x) computed at the functions u,π on Rk given by
u : y �→ u(y,t) and π : y �→ π (y,t). If we are lucky, just as in the discrete case, given a Hamiltonian
H the equation of motion determines the functions u(x,t) and π (x,t) given the “initial conditions”
u(x,0) and π (x,0).

H.4 Two Examples

In this section we compute the equations of motion for two specific Hamiltonians. As a first illustration
we consider the case where

H (u,π ) =
∫

H(u,π )(x)d3x, (H.16)

where the Hamiltonian density H(u,π ) is given by the formula (6.50):

H(u,π ) = 1

2h̄2
π2 + 1

2
h̄2c2

∑
1≤ν≤3

(∂νu)2 + 1

2
m2c4u2. (H.17)

Then
δH

δπ (x)
= 1

h̄2
π (x) ; δH

δu(x)
= −h̄2c2

∑
1≤ν≤3

∂2
ν u(x)+m2c4u(x), (H.18)

so that the equations of motion are

π = h̄2u̇ ; π̇ = h̄2c2
∑

1≤ν≤3

∂2
ν u−m2c4u,

and we recover the Klein-Gordon equation in the form

h̄2ü− h̄2c2
∑

1≤ν≤3

∂2
ν u+m2c4u = 0.
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We turn to our second and more challenging example: the Hamiltonian (H.16) whose density H is
given by (H.6), i.e.

H = 1

2h̄2

∑
k≤3

π2
k +

h̄2c2

4

∑
k,�≤3

F 2
k� +

m2c4

2

∑
k≤3

A2
k +

1

2m2c2

(∑
k≤3

∂kπk

)2
(H .6),

where Fk� = ∂kA� − ∂�Ak . That is, here we have three variables A1,A2,A3 and three “conjugate
variables” πk , each of which is a function on R3. Our goal is to show that Hamilton’s equations of
motion, which here become

π̇k = −
δH

δAk(x)
; Ȧk =

δH

δπk(x)

allow us to recover the equations of motion (10.62). To lighten notation we define A0 as in (H.5) i.e.∑
k≤3

∂kπk = −m2c3A0. (H.19)

Then the reader will prove the following formulas (whose proof follows from the various situations
we have already explained):

δH

δπk(x)
= 1

h̄2
πk + c∂kA0 ;

δH

δAk(x)
= m2c4Ak − h̄2c2

∑
�≤3

∂�F�k .

For example to prove the first equality one uses that H depends on πk through both the first and the
last term of (H.6) and one uses (H.19). This gives the equations of motion

Ȧk =
1

h̄2
πk + c∂kA0 ; π̇k = −m2c4Ak + h̄2c2

∑
�≤3

∂�F�k . (H.20)

Let us now recall that F0k = ∂0Ak − ∂kA0 = c−1Ȧk − ∂kA0, so that the first equation of motion
above means

πk = h̄2cF0k

and the second equation of motion becomes

h̄2cḞ0k = −m2c4Ak + h̄2c2
∑
�≤3

∂�F�k (H.21)

i.e.

m2c4Ak + h̄2c2
(
∂0F0k −

∑
�≤3

∂�F�k

)
= 0, (H.22)

while (H.19) becomes

m2c4A0 − h̄2c2
∑
k≤3

∂kFk0 = 0. (H.23)

Thus (H.22) and (H.23) recover the equations of motion (10.62).

H.5 Poisson Brackets

Let us go back to the space Rn × Rn, a point of which is denoted by (x,p). We recall that this space
is called the phase space. Given two (smooth) functions f,g on phase space we define a new function
{f,g} on phase space called their Poisson bracket by the formula
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{f,g} =
∑
k≤n

∂f

∂xk

∂g

∂pk
− ∂g

∂xk

∂f

∂pk
. (H.24)

This operation satisfies remarkable properties. First it is anti-symmetric

{f,g} = −{g,f }. (H.25)

Second, it satisfies the Leibniz’s rule

{f,gg′} = g{f,g′} + g′{f,g}. (H.26)

Finally, it satisfies the Jacobi identity

{f,{g,h}} + {g,{h,f }} + {h,{f,g}} = 0. (H.27)

The verification of these is straightforward, but a bit tedious in the case of the Jacobi identity. From
the definition we have the following

{xk,xj } = {pk,pj } = 0 ; {xk,pj } = δ
j
k

. (H.28)

Here of course xk is seen as a function on phase space, the function (x,p) �→ xk , etc. Moreover,
Hamilton’s equation of motion (H.7) can be written in the form

ṗk = {pk,H } ; ẋk = {xk,H }. (H.29)

More generally, consider a function f on phase space, and think of f = f (x(t),p(t)) as a function of
time, where x(t) and p(t) describe the motion of the system. Then

ḟ =
∑
k≤n

ẋk
∂f

∂xk
+ ṗk

∂f

∂pk
.

Substitution of the values of ẋk and ṗk given by the equations of motion (H.7) yields the following
generalization of (H.29):

ḟ = {f,H }. (H.30)

What precedes is not only a nice set of notations. It brings forward the Poisson bracket as the fun-
damental structure, paving the way to the use of transformations of phase space which preserve this
bracket, the canonical transformations which we already mentioned very briefly, and for which we
refer to Arnol’d’s textbook [3], a really enjoyable book.

Poisson brackets being such an important and fruitful idea, it is rather natural to try to extend it to
the setting of classical fields. In the rest of this appendix we explain how this is done in elementary
physics texts.3 It is now the set of pairs of functions (u,π) on Rn which play the role of the phase
space. Given two functionals F,G on the phase space we would like to define a third functional, their
Poisson bracket. A look at (H.24) suggests the formula

{F,G} =
∫ ( δF

δu(x)

δG

δπ (x)
− δG

δu(x)

δF

δπ (x)

)
dkx. (H.31)

If we are lucky, all the functional derivatives occurring in this expression will be functions of x
depending upon the variables u, π , the integral will make sense, and will define a new functional.
When F,G are given by formulas such as in (H.13), (H.31) will often make sense. Using now (H.31)
in the case where F (u,π ) = u(x), we find

{u,H } = δH

δπ (x)
,

3 Thus do not be surprised that our considerations sound like fairy tales: it is because they are!
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and this means that the second equation of motion (H.15) takes the same form

u̇ = {u,H } (H.32)

as in the classical case, and this is also the case of the first equation. Let us now look at (H.31) in the
case where

F (u,π ) =
∫
ϕ(x)u(x)dkx ; G(u,π ) =

∫
ψ(x)π (x)dkx,

where ϕ,ψ are two given test functions. Then

{F,G} =
∫
ϕ(x)ψ(x)dkx. (H.33)

The meaning of this formula is that the functional of u,π on the left-hand side (which we think of as
a function rather than a distribution) equals the constant number on the right-hand side. On the other
hand, we would like our Poisson bracket to behave well with respect to integrals,{ ∫

ϕ(x)u(x)dkx,
∫
ψ(y)π (y)dky

}
=
∫∫

ϕ(x)ψ(y){u(x),π (y)}dkxdky, (H.34)

and comparing with (H.33) one reaches the formula

{u(x),π (y)} = δ(x − y), (H.35)

which would have been hard to reach directly from (H.31), as the functional derivatives in the integrand
are both distributions and cannot be easily multiplied. The same approach yields

{u(x),u(y)} = {π (x),π (y)} = 0. (H.36)

Another approach is to declare from the very start that the continuous version of (H.28) must be
(H.36) and (H.35). Combining several layers of formal manipulations as in (H.34), or by differenti-
ation of the relations (H.35) one may “compute” {F,G} at least when F , G are of the type (H.13).
In particular, one may “compute” the right-hand side of (H.32) and “derive” the equations of motion
(H.15) for the classical field given the Hamiltonian. This approach is found in many textbooks.4

4 I probably simply lack the imagination to understand what this formalism brings more than declaring from the
onset that (H.15) are the correct equations of motion.



Appendix I

Quantization of the Electromagnetic Field through
the Gupta–Bleuler Approach

This appendix assumes that the reader is familiar with Sections 4.1 and E.2, and to follow the details
of the construction she should master the material between (9.93) and Proposition 9.13.6. We cover
quite fascinating material, but this material is exotic and will not be used elsewhere. The overall goal
is to construct for ν = 0,1,2,3 operators Aν (x) (which are actually some kinds of operator-valued
distributions) which represent the quantization of the electromagnetic four-potential.

To preserve Lorentz invariance we would like to quantize the electromagnetic field in the Lorenz
gauge (which is recalled in (I.1)). The “standard pattern” one should try first follows a road we
have traveled several times: finding a Lagrangian that describes the correct equations of motion, and
imposing the canonical commutation relations between the “dynamic variables” and their conjugates.
One can look e.g. in Schweber’s book [75, Chapter 9, section b], for an account of such a trial and
why it fails.

Physicists have developed an intriguing method to deal with these problems, the so-called
Gupta–Bleuler formalism. It is not so obvious what they mean by statements such as “the Hilbert
space of the photon is endowed with an indefinite metric”. In the rest of this section we describe the
formalism in more mathematical terms. Our treatment is an expansion of the rather concise treatment
of Dimock [23].

The spectacular part of the Gupta–Bleuler formalism involves using a “state space” B provided
with a sesqui-linear form (·,·)η which is not definite positive. The expected value of an operator
B in the state |ϕ〉 is then computed as 〈ϕ|B|ϕ〉η, which is to be understood as (|ϕ〉,B|ϕ〉)η. The
whole interpretation of Quantum Mechanics is in danger with the approach, because one may run
into meaningless “negative probabilities”. This is avoided by declaring that the only meaningful
computations will be those done using states in a certain subspace of the “state space” B, the state
Bphys of “physical states”.1

In Proposition 9.13.6 we met exactly the same situation at the level of a single particle. Forgetting
about the operation of taking quotients, we constructed there a representation of the Poincaré group
P which takes place in a Hilbert subspace of a space “with an indefinite metric”. Starting with this
representation, the approach will then follow the standard path: We construct the “boson Fock space”
and define the quantum field using appropriate creation and annihilation operators, with each of these
constructions modified in the appropriate manner. What is certainly not obvious at the beginning
however is that in this manner we will obtain a useful result.

Let us start with some general considerations which will later tie nicely with the specific properties
of the construction. We expect that the “operators” Aν (x) will in some sense satisfy both the wave
equations (∂μ∂μ)Aν = 0 and the Lorenz gauge condition

∂μAμ = 0, (I.1)

1 This appendix is for entertainment, and is an homage to the physicists’ inventiveness, but it might be
confusing. Read at your own risk.
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because in the Lorenz gauge the classical four-potential satisfies these relations. We further expect that
as usual we will get non-trivial equal-time commutation relations. That is, if the time components of x
and x′ coincide, the commutators [Aμ(x),Aν (x′)] will be zero forμ �= ν but not be identically zero for
μ = ν. On the other hand the relation (I.1) implies, using in the last equality that [Aμ(x),Aν (x′)] = 0
for μ �= ν:

0 = [∂μAμ(x),Aν (x′)] = ∂

∂xμ
[Aμ(x),Aν (x′)] = ∂

∂xν
[Aν (x),Aν (x′)]. (I.2)

The derivative with respect to xν of the complicated quantity [Aν (x),Aν (x′)] is unlikely to be iden-
tically zero. Therefore the identity (I.1) cannot hold as an equality between operators and has to be
weakened. To explain the correct condition, we note first that we expect that Aμ will consist of an
annihilation part A+μ and a creation part A−μ . Gupta and Bleuler then impose the condition

∀ |ϕ〉 ∈ Bphys , ∂
μA+μ (x)|ϕ〉 = 0. (I.3)

Let us then assume (as will be the case in the explicit construction below) that the creation part A−ν of
Aν is the adjoint of the annihilation part A+ν with respect to the sesqui-linear form (·,·)η (as expressed
precisely in (I.6)). Then assuming (I.3), for ϕ,ϕ′ ∈ Bphys we then have 〈ϕ′|∂μA+μ |ϕ〉 = 0 (obviously)
and 〈ϕ′|∂μA−μ |ϕ〉 = 0 (by (I.6)) so that 〈ϕ′|∂μAμ|ϕ〉η = 0. This says that as long as we consider
only physical states, the operator ∂μAμ appears to vanish. This is the proper way to understand (I.1).

We now start the detailed mathematical construction. We consider the space H = L2(X0,dλ0,C
4).

We recall the space B0, the algebraic sum of the spaces Hn,s and its completion, the boson Fock space
B. On H we consider the isometry η given by

ϕ = (ϕμ) = (ϕ0,ϕ1,ϕ2,ϕ3) �→ ηϕ := (−ϕ0,ϕ1,ϕ2,ϕ3) = (−ϕμ).

Thus, for ϕ,ψ ∈ H we have

(ϕ,ηψ) =
∫

(ϕ(p),ψ(p))ηdλ0(p),

where (·,·)η denotes the sesqui-linear form on C4 as in (9.93) i.e.

(x,y)η := −ημν (xμ)∗yν = −x0∗y0 +
∑
i≤3

xi∗yi . (9.93)

The unitary operator η has a canonical extension ηB toB, and onB×B we may define the sesqui-linear
form (x,y)η := (x,ηBy). Let us note that

|(x,x)η| = |(x,ηBx)| ≤ ‖x‖2. (I.4)

Theorem I.1 For ξ in H we can define operators B(ξ ) and B†(ξ ) with the properties of
Theorem 3.4.2, except that everywhere the inner product (·,·) is replaced by the sesqui-linear
form (·,·)η.

These operators are not defined everywhere, but they are defined on B0 and they send B0 into
itself. So relations such as

∀ξ,ζ ∈ H , [B(ξ ),B†(ζ )] = (ξ,ζ )η1 (I.5)

make perfectly good sense as operators on B0. The previous relation is what replaces (3.33), and
(3.32) is replaced by

∀ξ ∈ H , ∀x,y ∈ B0 , (B†(ξ )(x),y)η = (x,B(ξ )(y))η, (I.6)

which is what is meant when one says thatB†(ξ ) is the adjoint ofB(ξ ) with respect to the sesqui-linear
form (·,·)η.
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In essence the proof of Theorem I.1 is very similar to that of Theorem 3.4.2. One has however to
write the proof using abstract tensor products. For this we need to find proper substitutes for (3.24)
and (3.25) as follows. Given an element ξ ∈ H, there exists an operator Cn(ξ ) from Hn to Hn−1
such that

Cn(ξ )(ζ1 ⊗ ζ2 ⊗ · · · ⊗ ζn) = √n(ξ,ζn)η(ζ1 ⊗ · · · ⊗ ζn−1) (I.7)

and we define B(ξ ) by the property that for each n its restriction to Hn,s coincides with the restriction
of Cn(ξ ) to Hn,s . This provides the desired substitute for (3.24). We then replace (3.25) by the
condition

B†(ζ )(ζ1 ⊗ ζ2 ⊗ · · · ⊗ ζn) = √n+ 1Sn+1(ζ ⊗ ζ1 ⊗ · · · ⊗ ζn),

where ζk ∈ H, and where Sn denotes the canonical projection (symmetrization) from Hn to Hn,s .
We leave checking the straightforward details to the interested reader.

We now define the operators Aν . We denote by eν the canonical basis vectors of C4. For a func-
tion f ∈ S4

R
the function f̂ eν is an element of H. We then define the operator-valued distribution

A+ν , A−ν by

A−μ (f ) = B†(f̂ eν ) ; A+μ (f ) = B(f̂ eν ). (I.8)

and we set

Aν (f ) = A−μ (f )+ A+μ (f ) = B†(f̂ eν )+ B(f̂ eν ). (I.9)

Next we study the properties of this construction with respect to the action of the Poincaré
group P , as there is no need to use P∗ here. We observe first that C ∈ SO↑(1,3) defines an operator
on C4 (the one with the same matrix). For (c,C) ∈ P we consider first the action U (c,C) on
H = L2(X0,dλ0,C

4) given for p ∈ X0 and ϕ ∈ H by

U (c,C)(ϕ)(p) = exp(i(c,p)/h̄)C(ϕ(C−1(p))). (I.10)

This representation satisfies

(U (c,C)(ϕ),U (c,C)(ψ))η = (ϕ,ψ)η, (I.11)

as follows from (9.94). We note that U (c,C) is a bounded operator on H, so that it extends to B0.2 We
abuse notation by denoting this extension UB(c,C). Let us also denote by V (c,C) the usual action on
the functions of f ∈ S4

R
,

V (c,C)(f )(x) = f (C−1(x − c)).

The invariance properties of the fields Aν are described as follows.

Proposition I.2 As operators on B0 we have

UB(c,C) ◦ Aν (f ) ◦ UB(c,C)−1 = C
μ
νAμ(V (c,C)f ). (I.12)

If we remember that, as proved at the end of Section 4.1, it holds that Cμν = (C−1) μν , we may
rewrite (I.12) as

UB(c,C) ◦ Aν (f ) ◦ UB(c,C)−1 = (C−1)νμA
μ(V (c,C)f ).

This is exactly the covariance condition (10.6) for the representation S of SO↑(1,3) where each
element acts on C4 by the operator associated with the matrix of this element.

2 However this operator is not unitary, and it does NOT extend to the boson Fock space B; but all our operators
are considered as operators from B0 to itself.
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Proof As in Proposition 3.5.2 we obtain

UB(c,C) ◦ Aν (f ) ◦ UB(c,C)−1 = B(U (c,C)f̂ eν )+ B†(U (c,C)f̂ eν ). (I.13)

Now, using (5.4) in the last equality, and since C(eν ) = C
μ
νeν ,

U (c,C)(f̂ eν )(p) = exp(i(c,p)/h̄)C(eν )f̂ (C−1(p)) = C
μ
νeμ ̂V (c,C)(f )(p).

Combining with (I.9) and (I.13), and using that the numbers Cμν are real implies (I.12).

The following expresses the commutation relations satisfied by the fields Aμ. It is a consequence
of (I.5) as in the case of the scalar free field. The distribution �0 is given by (5.11) for m = 0.

Proposition I.3 We have

[Aμ(x),Aν (y)] = −ημν (�0(y − x)−�0(x − y))1. (I.14)

In particular −η0,0 = −1, the opposite of what one might expect.
Now comes the key step: Let us try to discover a natural way to satisfy the condition (I.3). From

(I.9) the annihilation part A+ν of Aν is such that A+ν (f ) = B(f̂ eν ). Thus ∂νA+ν (f ) = A+ν (−∂νf ) =
B(−∂̂νf eν ) = −B(ipνf̂ eν ) and (I.3) means that for f ∈ S4

R
and each physical state |ϕ〉 we should

have

B(f̂ pνeν )|ϕ〉 = 0. (I.15)

Since the restriction of B(ξ ) to Hn,s satisfies (I.7), when |ϕ〉 is a one-particle state, i.e. is given by an
element of ζ ∈ H, (I.15) means that (f̂ pνeν,ζ )η = 0, i.e.∫

dλ0(p)f̂ ∗(p)(p,ζ (p))η = (f̂ pνeν,ζ )η = 0.

Since f is arbitrary this implies (p,ζ (p))η = 0 a.e. so that |ϕ〉 = ζ ∈ H′ where

H′ = {ζ ∈ H ; ∀p ∈ X0 ; (p,ζ (p))η = 0}. (I.16)

Thus, when |ϕ〉 = ζ is a one-particle state, the natural condition (I.3) is equivalent to the equally
natural condition that ζ (p) belongs to the space Vp = {x ∈ C4;(x,p) = 0}.

Having described “the one-particle spaces H′, we construct now the corresponding “boson Fock
space” B′: we define B′ as the closure (for the usual topology of B) of the algebraic sum B′0 of the
spacesH′n,s . Thus “B′ is the boson Fock space ofH′”, with the small proviso that the norm is not really

positive definite on H′.3 It is not hard to show using (I.7) that (I.15) holds for |ϕ〉 ∈ B′. Furthermore,
as follows from Lemma 9.13.4 we have (x,x)η ≥ 0 for x ∈ B′. For x ∈ B′ we may then define

‖x‖η =
√

(x,x)η,

and we have now avoided the dreadful “negative probabilities” since ‖x‖η ≥ 0.
On B′ the “norm” ‖ · ‖η is positive but it is not positive definite. We would like our state space to

be a true Hilbert space, and for this it suffices to take a suitable quotient. We define

Bnull := {u ∈ B′ ; ‖u‖η = 0},
and

Bphys = B′/Bnull.

The image in Bphys of x ∈ B′ is denoted by [x]. We provide Bphys with the sesqui-linear form defined
by ([x],[y])η = (x,y)η. It is positive definite. We will show later that Bphys is complete for this norm.

3 This will be solved by taking a quotient.
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We denote by Bphys,0 the image of B′0 in Bphys. It is a dense subspace of Bphys. The point of the
construction is as follows:

Proposition I.4 (a) The representationUB(c,C) of the Poincaré group induces a representation
on Bphys (denoted also UB(c,C)).
(b) If we consider functions fμ with ∂μfμ = 0 then Aμ(f μ) acts on Bphys,0.
(c) Furthermore if the functions fμ are as in (b) we have

UB(c,C) ◦ Aμ(f μ) ◦ UB(c,C)−1 = C
μ
νAμ(U (c,C)f ν ). (I.17)

This result does not quantize the four-potentialA,4 This is not a real problem because this potential
is not an observable. The observables are the electrical and magnetic fields. Quantized versions of the
components of these are given by the quantities Fμν (x) = ∂μAν (x) − ∂νAμ(x). As an important
consequence of (b), these operators (or more precisely a smeared version of them) act on Bphys,0. To

see this, we may assume that μ �= ν. Then for f ∈ S4
R

we have

Fμν (f ) = ∂μAν (f )− ∂νAμ(f ) = Aν (−∂μf )− Aμ(−∂νf ).

The right-hand side is Aρ (gρ ) where gρ ∈ S4
R

is given by gν = −∂μf , gμ = ∂νf , and gρ = 0 if
ρ �∈ {μ,ν}. Consequently, ∂ρgρ = ∂ρg

ρ = −∂ν∂μf + ∂μ∂νf = 0. Thus Fμν (f ) = Aρ (gρ ) where
∂ρgρ = 0. Therefore by (b) of the proposition Fμν (f ) acts on Bphys,0.

That the operators Fμν (f ) act on Bphys,0 means it makes sense to consider the quantities
Fμν (f )|ϕ〉 for |ϕ〉 ∈ Bphys,0, so that we can compute quantities related to the electrical and magnetic
fields, such as their average value in a physical state.

We prepare for the proof of Proposition I.4 with the following.

Lemma I.5 For g ∈ H′ the operators B(g) and B†(g) naturally induce operators on Bphys,0.

Proof First we prove that B(g) and B†(g) define operators on B′0. It suffices for this to show that
if x is a tensor ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn with ξ1, . . . ,ξn ∈ H′ when g ∈ H′then B(g)(x) ∈ H′

n−1,s and

B†(g)(x) ∈ H′
n+1,s , but this should be obvious.

Next we have to show that we can go to quotients by Bnull, that is for g ∈ H′ we must prove that

u ∈ Bnull ∩ B0 ⇒ B(g)(u),B†(g)(u) ∈ Bnull.

In other words, we have to prove that ‖u‖η = 0 ⇒ ‖B(g)(u)‖η = 0 and similarly for B†(g). We
observe that on B′0 the sesqui-linear form (x,y)η is positive, so that it satisfies Cauchy’s inequality
|(x,y)η| ≤ ‖x‖η‖y‖η, and thus (x,u)η = 0 when ‖u‖η = 0. Thus by (I.6), if ‖u‖η = 0 then
(x,B(g)(u))η = (B†(g)(x),u)η = 0, and taking x = B(g)(u) we obtain ‖B(g)(u)‖η = 0. The same
argument works for B†(g)(u).

Proof of Proposition I.4 (a) This simply follows from the fact that (with obvious notation) B′0 and
Bnull,0 are stable under each map U (c,C) as is straightforward to check.
(b) By definition of Aμ(f ) = B(f̂ eμ)+B†(f̂ eμ) we have Aμ(f μ) = B(g)+B†(g) where g ∈ H is

given by g(p) = (f̂ 0(p),f̂ 1(p),f̂ 2(p),f̂ 3(p)). Now, the condition ∂μfμ = 0 implies pμf̂μ = 0 =
pνf̂ ν . This means that (g(p),p)η = 0 for each p and thus g ∈ H′. The conclusion then follows from
Lemma I.5.
(c) Straightforward from (I.12).

4 For this we would need to have the individual operators Aμ(f ) acting on Bphys,0, whereas we know only that
the combinations Aμ(fμ) act on this space.
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Let us now consider the space Hnull := {u ∈ H′ ; ‖u‖η = 0} and the space Hphys = H′/Hnull.
The canonical map H′ → Hphys is denoted by ϕ → [ϕ]. The nature of the space Bphys is clarified
by the following.

Proposition I.6 The space Bphys naturally identifies with the boson Fock space of Hphys.

Proof This proof is mathematical and contains no physical idea. Throughout, we denote by (x,y)
the standard Hermitian product on C4.

The first part of the proof consists in showing that the boson Fock space of Hphys identifies with
the boson Fock space of a concrete space M which we construct now. Consider for each p ∈ X0 the
subspaces Mp ⊂ Vp ⊂ C4 defined by

Vp = {(x) ∈ C4 ; (p,x)η = 0} ;Mp = {(x) ∈ C4 ; (p,x)η = 0,x0 = 0}.
Since (p,p)η = 0 for all p ∈ X0 we have Cp ⊂ Vp . Moreover, for x ∈Mp we have (p,x)η = 0,
and also (x,p) = 0. That is, Vp is the direct sum of Mp and Cp and these two spaces are orthogonal,
both for the product (·,·)η and the standard inner product. Furthermore for x,y ∈ Mp we have
(x,y) = (x,y)η. The definition (I.16) of H′ now becomes

H′ = {ξ ∈ H ; ∀p , ξ (p) ∈ Vp},
so that

M := {ξ ∈ H ; ∀p , ξ (p) ∈Mp} ⊂ H′.

Also, it follows from Lemma 9.13.4 that

Hnull = {ξ ∈ H ; ∀p , ξ (p) ∈ Cp}.
Since Vp is the direct sum of Mp and Cp, H′ is the direct sum of M and H. On M we have
(ξ,ξ ) = (ξ,ξ )η and the map ϕ → [ϕ] from M to Hphys is an isomorphism. Therefore the boson
Fock space BM of M identifies canonically with the boson Fock space of Hphys.

The second part of the proof is to show that we can canonically identify BM and Bphys. This will
be done by finding an isometry between these spaces.

Let us consider the orthogonal projection P from H′ onto M (for the standard Hilbert structure).
It has a natural extension PB from B′ to the boson Fock space BM of M. We will show that this is
the isometry we are looking for. The crucial property is that

∀x ∈ B′ , ‖x − PB(x)‖η = 0. (I.18)

We first prove this when x ∈ H′n,s is of the type ξ1 ⊗ · · · ⊗ ξn where ξk ∈ H′. We decompose each
element ξk as a sum of an element of M and an element of Hnull. Then x−PB(x) is a sum of elements
of the type ζ1 ⊗ · · · ⊗ ζn where at least one of the elements belongs to Hnull. Then

‖ζ1 ⊗ · · · ⊗ ζn‖η =
∏
k≤n
‖ζk‖η

is zero as soon as one of the ζk belongs to Hnull. It then follows that (I.18) holds when x is of the
type ξ1 ⊗ · · · ⊗ ξn where ξk ∈ H′, and then also when x is a linear combination of such elements.
This set of linear combinations is dense in B′, and we will finish the proof of (I.18) using a continuity
argument. For x ∈ B′0 by (I.4) we have ‖x‖η ≤ ‖x‖. The map x �→ a(x) := ‖x − PB(x)‖η satisfies

|a(x)− a(y)| ≤ ‖x − y‖η + ‖PB(x)− PB(y)‖η ≤ ‖x − y‖ + ‖PB(x)− PB(y)‖ ≤ 2‖x − y‖,
so that it is continuous. Since a(x) = 0 on a dense set it is zero everywhere and we have proved (I.18).
(The same continuity argument is actually needed to see that the norm ‖ · ‖η is defined on all of B′.)



Quantization of the Electromagnetic Field through the Gupta–Bleuler Approach 691

It follows from (I.18) that for x ∈ B′ it holds that

‖x‖η = ‖PBx‖η = ‖PBx‖
because ‖·‖η and ‖·‖ coincide on M. Consequently PB induces an isometry from Bphys = B′/Bnull
to BM.

To describe the situation using a physicist’s words we recall from Section E.2 that a plane wave
satisfying the Maxwell equations is described by a pair a,p of four-vectors with p2 = 0 and (a,p) =
0. This description uses redundant parameters. Using the Coulomb gauge removes these redundant
parameters. Then a is of the form a = (a,0) where “a is transversal” i.e. a · p = 0. When not using
the Coulomb gauge but using a general point a ∈ R1,3 to describe a plane wave, the contribution of
a0 might be called “a time-like photon”, and the contribution of the part of a which is parallel to p

a “longitudinal photon”. Both time-like photons and longitudinal photons are unphysical, but in any
calculation involving only physical states their contributions exactly cancel, leaving only the physical
contribution of the “transverse photons”. The simplest level at which this mechanism can be explained
is when computing (a,a)η for a ∈ R1,3 ⊂ C4. Given p ∈ X0 we may write

a = atime + along + atrans

where atime has no space component, the other two have no time components, and their space com-
ponents are respectively perpendicular and parallel to that of p. Then we have

(a,p)η = 0⇒ (a,a)η = ‖atrans‖2.

So, in the computation of (a,a)η, only the transversal part of a matters.
Computing the norm (ζ,ζ )η =

∫
dλ0(p)(ζ (p),ζ (p))η of the single-particle state ζ ∈ H and using

the previous method to compute each quantity (ζ (p),ζ (p))η shows that only “the transversal part” of
ζ contributes to this norm, as the contribution of the “time-like photon” part is negative and exactly
cancels the contribution of the “longitudinal photon”. The same phenomenon occurs when computing
physical quantities of the type 〈ϕ|H |ϕ〉η for |ϕ〉 ∈ Bphys.



Appendix J

Lippmann–Schwinger Equations and Scattering States

This appendix complements Section 12.2. It is not needed to follow the main story. Its purpose is to
explain to a non-physicist some related material found in many textbooks that students of the topic
are bound to read.

Our first result is the actual starting point of the rigorous study of self-adjoint operators. The reader
should review Section 2.5 now.

Theorem J.1 Consider a self-adjoint operatorH and a complex number z with Im z �= 0. Then
there exists a bounded operator (H+z1)−1 fromH toD(H ) such that (H+z1)(H+z1)−1 = 1
and (H+z1)−1(H+z1)(x) = x for x ∈ D(H ). The operator norm of (H+z1)−1 is≤ |Im z|−1.

For simplicity we will simply say that “(H + z1)−1 is the inverse of H + z1”.
To get an intuitive meaning of this theorem, think of the case where H is the “multiplication by

x” operator on L2. Then H + z1 is the “multiplication by x + z” operator, the inverse of which is the
“multiplication by (x + z)−1 operator”. The point of course is that |x + z|−1 ≤ |Im z|−1 for x real.

We start with a few very simple facts.

Lemma J.2 Consider an operator A on a Hilbert space H. Then

(range A)⊥ = kerA†.

Proof If x ∈ (range A)⊥ then (x,A(y)) = 0 = (0,y) for each y ∈ D(A) and by definition of A† this
implies that x ∈ D(A†) and A†(x) = 0. Thus (range A)⊥ ⊂ kerA†, and the converse is similar.

Lemma J.3 Consider a symmetric operator A on a Hilbert space. Then for x ∈ D(A) and
z ∈ C we have

‖(A+ z1)(x)‖ ≥ |Im z|‖x‖. (J.1)

Proof Since a1 is symmetric for a ∈ R we may absorb Re z1 into A and assume that z = ib for
b ∈ R. Then, using that (A(x),x) = (x,A(x)) in the second line

(A(x)+ ibx,A(x)+ ibx) = (A(x),A(x))− ib(x,A(x))+ ib(A(x),x)+ b2(x,x)

= (A(x),A(x))+ b2(x,x)

≥ b2(x,x),

which is the desired result.

Proof of Theorem J.1 The operator B = H + z1 satisfies

‖B(x)‖ ≥ |Im z|‖x‖ (J.2)

by (J.1). Next we prove that B : D(H ) → H is onto. First, using again (J.1) but for B† rather than
B we obtain that kerB† = {0} so that by Lemma J.2 the range of B is dense. Consider then y ∈ H,

692
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so that y is the limit of a sequence yn = B(xn). In particular (yn) is a Cauchy sequence and thus
by (J.2) this is also the case for (xn) which therefore converges to a certain x ∈ H. Moreover the
relation yn = B(xn) implies yn = zxn+H (xn), and using Lemma 2.5.14 for H = (H †)† proves that
y = zx +H (x) i.e. y = B(x). Thus B is onto.

Consequently, given y ∈H there is a unique x ∈D(B) withB(x)= y. We define (H+z1)−1(y)= x.
It is straightforward to check that this operator has the required properties.

Definition J.1 For Im z �= 0 the operator

G(z) = (z1−H )−1

is called the Green operator associated to H .

For further use let us prove the following.

Lemma J.4 For u ∈ D(H ) we have

G(z)H (u) = HG(z)(u). (J.3)

Moreover for any z,z′ with Im z,Im z′ �= 0 it holds that

G(z)G(z′) = G(z′)G(z). (J.4)

Proof Let G(z)(u) = v so that u = zv − H (v). Since u ∈ D(H ) by hypothesis and v ∈ D(H )
because v = G(z)(u) and G(z) is valued in D(H ), it holds that w := H (v) ∈ D(H ). Applying H to
the relation u = zv − w gives H (u) = zw −H (w) i.e. G(z)H (u) = w = H (v) = HG(z)(u).

To prove the second statement consider u and v′ = G(z′)(u) so that z′v′ − H (v′) = u. Applying
G(z) to both sides and using (J.3) gives z′G(z)(v′) − H (G(z)(v′)) = G(z)(u) i.e. G(z′)G(z)(u) =
G(z)(v′) = G(z)G(z′)(u).

Lemma J.5 If Im z > 0 it holds that

G(z) = −i
∫ 0

−∞
exp(−it(z1−H ))dt . (J.5)

In this expression and in the rest of this section the operator exp(−it(z1 − H )) is defined as
exp(−itz) exp(itH ) where the existence of the second term follows from the converse of Stone’s
theorem as proved in Appendix B.

Proof For a < b we have∫ b

a
(−i(z1−H )) exp(−it(z1−H ))dt = exp(−ib(z1−H ))− exp(−ia(z1−H )), (J.6)

where the equality is in the sense of operators on D(H ), i.e. when both sides of (J.6) are applied to
an element of the domain of H . Using that ‖ exp(−it(z1−H ))‖= | exp(−itz)| = exp(tIm z), taking
b = 0 and letting a→−∞ we get

(z1−H )(−i)
∫ 0

−∞
exp(it(z1−H ))dt = 1.

We multiply this equality by G(z) and we obtain that the two bounded operators of (J.5) coincide on
each element of D(H ) and hence everywhere.

Let us now go back to the setting of Section 12.2, where we considered the Hamiltonians H0 and
H = H0 + V where

H0 =
P 2

2m
:= − 1

2m

∑
i≤3

∂2

∂x2
i

, (12.2).
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We denote by G0 = G0(z) and G = G(z) the corresponding Green operators. We expect that G
will be very difficult to study, while it will be possible to evaluateG0 (as we will do later). Thus it will
be useful to relate G and G0, with the intention of expressing as far as possible all results in terms of
G0 rather than G.

Lemma J.6 We have

G = G0 +G0VG ; G0 = G+GVG0. (J.7)

Proof We note that V = H − H0 = B0 − B where B = z1 − H , B0 = z1 − H0. Then, since
BG = 1, and since G0B0 is the identity on the domain of H and hence on the range of G we have

G0VG = G0(B0 − B)G = G0B0G−G0BG = G−G0,

proving the first part of J.7. The second part is similar.

Let us recall from Section 12.2 the unitary operators U0(t) = exp(−itH0) and U (t) = exp(−itH )
and

Ω+(ϕ) = lim
t→−∞U (t)−1U0(t)(ϕ) (12.9).

Lemma J.7 Let us assume that the potentialV satisfies the condition (12.8), i.e.
∫
V (x)2d3x <

∞. Then for each α > 0 and a ∈ R3 it holds that

Ω+(ϕα,a) = ϕα,a − i
∫ 0

−∞
U (t)−1VU0(t)(ϕα,a)

= ϕα,a − i lim
ε→0+

∫ 0

−∞
exp(tε)U (t)−1VU0(t)(ϕα,a)dt . (J.8)

where ϕα,a = exp(−(x − a)2/2α) as in (12.3).

Proof In the proof of Proposition 12.2.6 we have shown the convergence of the integral∫∞
0 ‖U (t)−1VU0(t)(ϕα,a)‖dt . Together with (12.13) this proves the first equality in (J.8) and

the second one is a consequence of Lebesgue’s convergence theorem.

From this point on our arguments become heuristic. The reader may like to review Section 2.8 as
we now return to Dirac’s notation: we write |α,a〉 instead of ϕα,a . Then

U (t)−1VU0(t)|α,a〉 =
∫
U (t)−1VU0(t)|p〉〈p|α,a〉 d3p

(2π )3
. (J.9)

Now, setting Ep = p2/2m, we have H0|p〉 = Ep|p〉 and therefore

U0(t)|p〉 = exp(−itEp)|p〉.
Consequently, U (t)−1VU0(t)|p〉 = exp(−itEp) exp(itH )V |p〉 and (J.9) yields

exp(εt)U (t)−1VU0(t)(ϕα,a) =
∫

exp(−it(Ep + iε −H ))V |p〉〈p|α,a〉 d3p

(2π )3
. (J.10)

From (J.5) we have the perfectly rigorous formula

G(Ep + iε) = −i
∫ 0

−∞
exp(−it(Ep + iε −H ))dt .

This is an equality between operators on H. Let us pretend that it still makes sense when applied to
the improper vector V |p〉, and that we can integrate in t inside the integral in (J.10), so that

−i
∫ 0

−∞
exp(εt)U (t)−1VU0(t)|α,a〉dt =

∫
G(Ep + iε)V |p〉〈p|α,a〉 d3p

(2π )3
.
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Then, combining with (J.8),

Ω+(ϕα,a) = |α,a〉 + lim
ε→0+

∫
G(Ep + iε)V |p〉〈p|α,a〉 d3p

(2π )3

= lim
ε→0+

∫
(|p〉 +G(Ep + iε)V |p〉)〈p|α,a〉 d3p

(2π )3
. (J.11)

Since

Ω+|α,a〉 =
∫

Ω+|p〉〈p|α,a〉 d3p

(2π )3
,

and since there are sufficiently many elements |α,a〉 we may expect that in some sense

|p〉+ := Ω+|p〉 = |p〉 + lim
ε→0+

G(Ep + iε)V |p〉,

a formula which it is customary to abbreviate as

|p〉+ = |p〉 +G(Ep + i0+)V |p〉. (J.12)

The notation Ω+ was designed to make the plus signs match in this formula. To make the formula
useful, it remains to replace G by G0. For this we use the first part of (J.7):

GV = G0V (1+GV )

so that using (J.12) again,

G(Ep + i0+)V |p〉 = G0(Ep + i0+)V
(|p〉 +G(Ep + i0+)V |p〉)

= G0(Ep + i0+)V |p〉+, (J.13)

and therefore we obtain the Lippmann–Schwinger equations

|p〉+ = |p〉 +G0(Ep + i0+)V |p〉+. (J.14)

The states |p〉+ are called the scattering states. As we already mentioned, in some sense they are
eigenvalues of H , so that decomposition of an element along this continuous basis allows easily to
determine its time-evolution.

All of this is pretty formal, and to make it really useful one has to find conditions on V such that
these equations have solutions given by true functions ψp(x) := 〈x|p〉+, so we end this topic by
computing G0(Ep + i0+) and writing (J.14) as a true integral equation. Applying 〈x| to the left of
(J.14) we obtain

ψp(x) = exp(ix · p)+ 〈x|G0(Ep + i0+)V |p〉+
= exp(ix · p)+

∫
〈x|G0(Ep + i0+)V |y〉〈y|p〉+d3y

= exp(ix · p)+ lim
ε→0+

∫
〈x|G0(Ep + iε)|y〉V (y)ψp(y)d3y, (J.15)

where we have used that V |y〉 = V (y)|y〉 since in position state space V is “multiplication by the
function V (y)”. Let us now compute the Green operator G0(z). By definition it satisfies

(z1−H0)G0(z) = 1, (J.16)

which means that for any function f in L2(R3) the differential operator z1−H0 applied to G0(z)(f )
gives f . In Dirac formalism one simply writes

G0(z)(f )(x) = 〈x|G0(z)(f )〉 =
∫
〈x|G0(z)|y〉〈y|f 〉d3y,
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and, recalling the value of H0, (J.16) becomes(
z+ 1

2m

∑
i≤3

∂2

∂x2
i

)
〈x|G0(z)|y〉 = δ

(3)
y ,

so that the kernel 〈x|G0(z)|y〉 is the fundamental solution of a certain differential equation (see Section
N.2 if needed for a very brief review). These are traditionally called Green functions, and this motivates
the name “Green operator”. A mathematician computes these objects using the Fourier transform, but
the Fourier transform is part of Dirac formalism, by writing

〈x|G0(z)|y〉 =
∫
〈x|p′〉〈p′|G0(z)|p〉〈p|y〉 d3p

(2π )3

d3p′
(2π )3

.

In momentum state space, z1−H0 is simply multiplication by z−Ep , so that G0(z) is multiplication
by (z−Ep)−1 i.e.G0(z)|p〉 = (z−Ep)−1|p〉 and thus 〈p′|G0(z)|p〉 = (2π )3δ(3)(p′−p)(z−Ep)−1.
Hence

〈x|G0(z)|y〉 =
∫

exp(ip · (x − y))

z− Ep

d3p

(2π )3
.

By rotational invariance, this quantity depends only on s := |x − y|, and to compute it one may
assume that x − y = se3, where e3 is the third coordinate unit vector. Going to spherical coordinates
one can perform two integrations to get

〈x|G0(z)|y〉 = −i
4π2s

∫ ∞
0

r
exp(irs)− exp(−irs)

z− r2/2m
dr = im

2π2s

∫ ∞
−∞

r exp irs

r2 − 2mz
dr .

The integral can be evaluated using a contour integral (a topic that is reviewed in Section N.1). The
appropriate contour consists of the line segment (−R,0),(R,0) together with a half-circle of radius
R in the upper half-plane. The only pole of the integrand (seen as a function of the complex variable
r) inside of the contour is the unique number rz with r2

z = 2mz and Im rz > 0, so that by Cauchy’s
Theorem

〈x|G0(z)|y〉 = − m

2πs
exp(irzs).

Now, for z = Ep + iε, as ε → 0+ we have rz → |p|. Substitution of this result in (J.15) yields the
Lippmann–Schwinger equations in concrete form:

ψp(x) = exp(ix · p)− m

2π

∫
exp(i|p||x − y|)
|x − y| V (y)ψp(y)d3y.

The interest of the abstract formulation (J.14) is of course that it remains the same in far more general
cases.



Appendix K

Functions on Surfaces and Distributions

The technical study of distributions starts in the next appendix. Our goal in the present appendix is to
make some remarks at the purely heuristic level.

The power of the theory of distributions is that it can describe a wide variety of objects in a single
unified setting. This at times can be overwhelming. In particular certain objects we use throughout
the book are described through distributions, which might make them appear more mysterious than
what they actually are. Describing a function as a distribution (as in (1.8)) is certainly not the simplest
way to think about a function. Many of the objects we consider are hardly more complicated than
functions, they are functions defined on a specific surface. Then in the expression of these objects as
distributions there is a factor which is a delta function (or a product of delta functions), and expresses
that we are not concerned about what happens outside the specific surface, and another factor which
describes what happens on the surface. Among the simplest possible examples, if I want to describe
a function on the diagonal x = y of R2, I will describe it by a distribution of the type δ(x − y)f (x),
of δ(x − y)g(x,y). In the second formula only the values of g on the diagonal matter.

A more elaborate example of the same situation occurs in (12.32), where we consider the distri-
bution δ(p2

1 −p2
2)�(p1,p2). Here we are just studying, in the language of distributions, the function

�(p1,p2) on the manifold p2
1 = p2

2. The delta function term δ(p2
1 −p2

2) carries the information that

we are only interested in the case p2
1 = p2

2. The reason for this is conservation of momentum, the

outgoing particle has the same momentum as the incoming particle. One may think of δ(p2
1 − p2

2) as

describing a certain surface measure dμ on the manifold p2
1 = p2

2, and the distribution can be thought
of as integration of the test function against the measure �dμ.

Another ubiquitous use of distributions is to express the value of Feynman diagrams. If, say, there
are three particles involved, this value will often be of the type (2π )4δ(4)(p1+p2+p3)f (p1,p2,p3)
for a nice function f . This expression contains two pieces of information: One, the delta function
asserts that we must have p1+p2+p3 = 0. Second, given thatp1+p2+p3 = 0, say p3 = −p1−p2,
it is the function (p1,p2) �→ f (p1,p2, − p2 − p3) which describes the process of interest.
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Appendix L

What Is a Tempered Distribution Really?

“Informal distribution theory” as we practiced liberally has its limits when one tries to actually prove
results, as we will do in Appendix M. In the present appendix we give the rigorous definition of
tempered distributions, and we prove a few sample results. This appendix is a required prerequisite to
Appendix M.

L.1 Test Functions

Given an infinitely differentiable complex-valued function f onRn and a multiindexα = (α1, . . . ,αn)
with αj ∈ N we define |α| :=∑

j≤n αj and

Dαf = ∂ |α|

∂x
α1
1 · · · ∂x

αn
n

f .

For x ∈ Rn we denote |x| =∑
j≤n |xj | and for each integer k we denote

‖f ‖k = sup
x∈Rn

(1+ |x|)k
∑
|α|≤k

|Dαf (x)|.

The Schwartz space Sn = S(Rn) consists of all the functions f for which the seminorms ‖f ‖k
are finite for each k. In words a function belongs to Sn if and only if all its derivatives decrease faster

at infinity than the reciprocal of any polynomial. Given a multiindex β we write xβ = x
β1
1 . . . x

βn
n .

To avoid confusion of notation we denote by N (f ) the L2 norm of f ∈ L2(Rn).

Lemma L.1.1 (a) For a test function f ∈Sn and two multiindices α and β we have
xβDαf ∈Sn.
(b) For each n there exists a constant C such that for each f ∈ Sn it holds that

N (f ) ≤ C‖f ‖n. (L.1)

(c) If f ∈ L2(Rn) is infinitely differentiable, for some integer k and a constant L it holds that

sup
x
|f (x)| ≤ L max

|α|+|β|≤k
N (xβDα(f )). (L.2)

Proof The claim (a) is obvious. To prove (b) we observe that for each k and each x ∈ Rn it holds
that |f (x)|(1+ |x|)k ≤ ‖f ‖k so that |N (f )| ≤ C‖f ‖k as soon at the function (1+ |x|)−k is square-
integrable, which occurs in particular for k = n (with room to spare).1

1 In dimension n the function (1+ |x|)−k is integrable whenever k > n. This is because its integral on the set
where 2p ≤ |x| ≤ 2p+1 is of order 2p(n−k).
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Since the proof of (c) is a bit messy we give the details only for n = 1. Since

f (x)− f (0) =
∫ x

0
f ′(y)dy =

∫ x

0

1

1+ |y| (1+ |y|)f
′(y)dy

and since the function 1/(1 + |y|) is square-integrable, the Cauchy-Schwarz inequality implies that
for some constant C independent of x it holds that

|f (x)− f (0)| ≤ CN((1+ |y|)f ′) ≤ C max
|α|+|β|≤2

N (yβDαf ).

Since f ∈L2 there are values of x for which f (x) is arbitrarily small. Using the inequality |f (0)| ≤
|f (x)| + |f (x)− f (0)| for these values of x we obtain |f (0)| ≤ C max|α|+|β|≤2 N (xβDαf ) and the
result follows since |f (x)| ≤ |f (x)− f (0)| + |f (0)|.

Given a test function f ∈ Sn, we denote by Fm(f ) its mathematician’s Fourier transform as in
(1.22).

Proposition L.1.2 If f ∈ Sn then Fm(f ) ∈ Sn. Moreover the map f → Fm(f ) is continuous
in the sense that for each k there exists a k′ and a constant C such that ‖Fm(f )‖k ≤ C‖f ‖k′ .

Proof It suffices to prove that given multiindices α and β there is a constant C and an integer k such
that for any f ∈ Sn we get

sup
x
|xβDα(Fm(f ))(x)| ≤ C‖f ‖k . (L.3)

According to (L.2) it suffices to obtain an estimate

N (xβDα(Fm(f ))(x)) ≤ C‖f ‖k . (L.4)

But it follows from Plancherel’s theorem and the suitable n-dimensional version of (1.23) that

N (xβDα(Fm(f ))(x)) = N (Fm(Dβ (xαf ))) = N (Dβ (xαf )),

and the conclusion follows from (L.1).

L.2 Tempered Distributions

Definition L.2.1 A tempered distribution � on Rn is a linear functional on Sn which is
continuous for one of the seminorms ‖ · ‖k i.e. for some constant C and all f ∈ Sn,

|�(f )| ≤ C‖f ‖k . (L.5)

Tempered distributions are sometimes called generalized functions.

Exercise L.2.2 Consider a (measurable) function h on Rn and assume that for some k we
have |h(x)| ≤ 1 + |x|k . Prove that the formula �(f ) = ∫

f (x)h(x)dnx defines a tempered
distribution.

We recall that the support of a function is the closure of the set of points where it is different
from zero.

Definition L.2.3 We say that a tempered distribution � is supported by a closed subset F of
Rn if �(f )= 0 whenever f ∈Sn has a compact support which does not intersect F .

Lemma L.2.4 When a tempered distribution is supported by two closed sets, it is supported by
their intersection.
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Proof Consider two closed subsets F1, F2 each supporting a tempered distribution �. Consider
f ∈Sn whose support K does not meet F1 ∩ F2. The argument relies on the existence of “partitions
of unity” of the following form: There exist h1,h2 ∈ Sn such that the support of hj does not meet Fj
while h1+ h2 = 1 on K . Then f = f h1+ f h2 while �(f hj ) = 0 because the support of f hj does
not meet Fj .

Exercise L.2.5 Prove that the intersection of all the closed sets which support a tempered
distribution also supports this distribution. This set is called the support of the distribution.

Exercise L.2.6 Prove that the support of the delta function given by δ(f ) = f (0) is the set {0}.

Exercise L.2.7 Prove that �(f ) need not be zero when f is zero on the support of �. Hint:
Take n = 1 and � = δ′, the derivative of the delta function in the sense of distributions.

Lemma L.2.8 Consider a tempered distribution � and u ∈ Sn. Assume that for each v ∈ Sn
with compact support, one has �(uv) = 0. Then �(u) = 0.

Proof According to (L.5), we have |�(u)| = |�(u − uw)| ≤ C‖u − uw‖k , so that it suffices
to find w ∈ Sn with compact support such that ‖u(1 − w)‖k is arbitrarily small. For this let us
fix v with compact support, equal to 1 in a neighborhood of the origin, and define va(x) = v(ax).
The idea is to let a → 0 so that va equals 1 on a very large set. For any test function w one has
lima→0 supx |w(x)(1 − va(x))| = 0 and for any α �= 0 one has lima→0 supx |w(x)Dαva(x))| = 0
by straightforward estimates. Expanding the derivatives Dα(u(1 − va)) according to Leibniz’s rule
proves that lima→0 ‖u(1− va)‖k = 0.

Exercise L.2.9 Prove that the support of a non-zero tempered distribution is not empty.

The following result illustrates how the continuity condition (L.5) might be used in an actual proof.

Proposition L.2.10 If the tempered distribution � on Sn is supported by the origin it is of
the type

�(u) =
∑
α

cαD
αu(0)

for a finite sum over multiindices α.

We fix the tempered distribution � as above and integer k for which (L.5) holds and start the
preparations for the proof.

Lemma L.2.11 If two functions u,w ∈ Sn coincide in a neighborhood of the origin then
�(u) = �(w).

Proof Given any v ∈ Sn with compact support, the function v(u−w) has a compact support which
does not include the origin. Since � is supported by the origin, we have �((u−w)v) = 0. By Lemma
L.2.8, this implies �(u− w) = 0.

Lemma L.2.12 Consider a functionw ∈ Sn and assume thatDγ (w)(0) = 0 whenever |γ | ≤ k.
Then

|w(x)| ≤ C|x|k+1, (L.6)

where C is independent of x.

Proof Apply Taylor’s formula to the function t → w(tx).
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Let us now fix a function v ∈ Sn, with compact support, equal to 1 in a neighborhood of the origin.
We define the function va by va(x) = v(ax). We are interested in the case a→∞, so that the support
of va shrinks to 0. From now on C1,C2, . . . denote constants independent of a and x. The following
is obvious by change of variables.

Lemma L.2.13 We have |Dγ va(x)| ≤ C1a
|γ |.

The key to the proof of Proposition L.2.10 is the following estimate.

Lemma L.2.14 Assume that Dα(u)(0) = 0 whenever |α| ≤ k. Then for a ≥ 1 it holds that
‖uva‖k ≤ C/a.

Proof Consider α with |α| ≤ k. Leibniz’s rule gives us Dα(uva) as a sum of products DβuDγ va ,
where β + γ = α, so that |β| + |γ | = |α| ≤ k. By hypothesis DδDβu(0) = 0 for |δ| ≤ k − |β|, so
that by Lemma L.2.12 we have |Dβu(x)| ≤ C2|x|k−|β|+1. Thus

|Dβu(x)Dγ va(x)| ≤ C3|x|k−|β|+1a|γ |. (L.7)

Since v has a compact support, we have |x| ≤ C4 for v(x) �= 0 so that |x| ≤ C4/a for va(x) �= 0,
and then |x|k−|β|+1a|γ | ≤ C5a

−k+|β|−1+|γ | ≤ C5/a. When a ≥ 1 and va(x) �= 0 it holds that
|x| ≤ C4/a ≤ C4 and thus (1+ |x|)k ≤ C6 so that

sup
x∈Rn

(1+ |x|k)|Dα(uva)(x)| ≤ C/a.

Corollary L.2.15 Assume that Dα(u)(0) = 0 for |α| ≤ k. Then �(u) = 0.

Proof According to (L.5) and Lemma L.2.14 it holds that lima→∞�(uva) = 0. But �(uva) =
�(u) according to Corollary L.2.11.

Proof of Proposition L.2.10 Consider the polynomial wα such that Dβwα = δ
β
α . Since v = 1 in

a neighborhood of zero, ũ := ∑
|α|≤k vwαDαu(0) is a test function with Dαũ(0) = Dαu(0) for

|α| ≤ k. We apply Corollary L.2.15 to the function u− ũ to see that �(u) = �(ũ) and we obtain the
result for cα = �(wαv).

L.3 Adding and Removing Variables

A function f of one variable x can also be considered as a function g of two variables x,y by setting
g(x,y) = f (x). The function g has the property that g(x,y) = g(x,y + a) for all a. Conversely a
function g(x,y) with this latter property “does not depend on the second variable and thus arises from
a function of one variable”. We will show that the same property holds for distributions, although it
requires a little proving.

Definition L.3.1 A tempered distribution � is invariant under translations along the nth coor-
dinate if for each f ∈ Sn and each a ∈ R it holds that �(fa) = �(f ) where fa(x1, . . . ,xn) =
f (x1, . . . ,xn−1,xn + a).

We first show how to associate to a distribution on Rn−1 a distribution on Rn. The following result
is basically obvious.

Proposition L.3.2 Consider a tempered distribution � on Rn−1. Then there exists a tempered
distribution � on Rn such that for all f ∈ Sn we have

�(f ) = �(G(f )), (L.8)
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where G(f ) ∈ Sn−1 is given by

G(f )(x1, . . . ,xn−1) =
∫

dyf (x1, . . . ,xn−1,y). (L.9)

Moreover � is invariant under translations along the nth coordinate.

Exercise L.3.3 (a) Show that to prove that � is a distribution, it suffices to prove that the map
f �→ G(g) from Sn to Sn−1 is continuous in the sense that for each k there exists k′ for which
‖G(f )‖k ≤ ‖f ‖k′ .
(b) Prove this inequality.

It is the converse that deserves a little proof. This converse has been formulated in a way that its
application can be easily iterated.

Proposition L.3.4 Consider a tempered distribution � on Rn and assume that � is invariant
by translation along the last coordinate. Then there is a tempered distribution � on Rn−1 such
that for each f ∈ Sn we have, using the notation (L.9),

�(f ) = �(G(f )).

Moreover if � is invariant under translations along the kth coordinate, so is �.

Proof The key point of the proof is to show that

G(f ) = 0⇒ �(f ) = 0. (L.10)

To prove this we observe that if f ∈ Sn is such that G(f ) = 0 then we can define a function h ∈ Sn
by

h(x1, . . . ,xn) =
∫ xn

−∞
dyf (x1, . . . ,xn−1,y).

It is tedious but straightforward that h ∈ Sn. The point of the condition G(f ) = 0 is that otherwise it
is not even true that h approaches zero as the variables go to infinity. Next, one checks that for each k

lim
a→0

∥∥∥∥ 1

a
(ha − h)− f

∥∥∥∥
k

= 0

where ha(x1, . . . ,xn) = h(x1, . . . ,xn−1,xn + a) and thus

�(f ) = lim
a→0

a−1(�(ha)−�(h)) = 0

because the right-hand side is identically zero since �(ha) = �(h). This proves (L.10).
The rest is easy. Let us consider θ ∈S1 of integral 1. For g ∈Sn−1 let us define C(g)∈Sn by

C(g)(x1, . . . ,xn) = g(x1, . . . ,xn−1)θ (xn)

and let us define the tempered distribution � on Rn−1 by

�(g) = �(C(g)).

We observe that G(w) = 0 where w = f − C(G(f )), so that by (L.10) it holds that �(w) = 0 i.e.
�(f ) = �(C(G(f )) = �(G(f )) and this proves (L.8). The rest is obvious.
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L.4 Fourier Transforms of Distributions

The subject of Fourier transforms of distributions is confusing because the definition used by math-
ematicians does not exactly coincide with the definition required here. Mathematicians define the
Fourier transform of a distribution � by

Fm(�)(f ) = �(Fm(f )) (L.11)

for a test function f . In our version however, this definition has to be changed, because the Fourier
transform sends functions on position space to functions on momentum space, and these are not the
same, see (1.30) and (1.31). In order to keep track of which is which, we denote by Latin letters
functions on position space and by Greek letters functions on momentum space.

Given a distribution � on position space we then define its Fourier transform �̂ (on momentum
space) by

�̂(ξ ) = �(ξ!ˇ), (L.12)

where ξ! is defined by

ξ!(p) = ξ (−p), (L.13)

and where ξ!ˇ denotes the inverse Fourier transform of ξ!. Let us observe that if we identify position
and momentum space, this coincides with the definition (L.11), because then it is immediate that
F−1
m (ξ!) = Fm(ξ ).

The point of this definition is to make it coincide with the usual Fourier transform when � is
actually a function and

�(f ) =
∫

dnx�(x)f (x). (L.14)

We check that this is the case in the remainder of the appendix. The first point is that

f̂ ∗! = (f̂ )∗,

where of course f ∗(x) = f (x)∗, as it is straightforward to see from the definition of f̂ . To lighten
notation we denote by (·,·) the inner product of two functions, either on position or on momentum
space. Thus (L.14) becomes �(f ) = (�∗,f ). Then, using Plancherel’s formula in the third equality,
and the change of variable p→−p in the fourth one,

�̂(ξ ) = �(ξ!ˇ) = (�∗,ξ!ˇ) = (�̂∗,ξ!) = (�̂∗!,ξ ) = ((�̂)∗,ξ ), (L.15)

which exactly says that the Fourier transform of the function � seen as a distribution coincides with
its Fourier transform seen as a function.



Appendix M

Wightman Axioms and Haag’s Theorem

In this appendix we introduce the Wightman axioms, one of the most successful approaches to rigorous
results in Quantum Field Theory, in the simplest possible case of a Hermitian scalar field. Our purpose
is twofold. First, we want to describe some of the methods used in this rigorous approach. Second,
we prove two significant results. We prove part of Haag’s theorem, enough to clearly demonstrate the
difficulties inherent with the “interaction picture” in Quantum Field Theory. We also prove a rigorous
version of the Källén–Lehmann representation of the dressed propagator, which is fundamental to
relate the properties of this propagator to the physical mass of the particle.

The two main mathematical tools required in developing the Wightman axioms are distribution
theory and the theory of analytic functions of several variables. Therefore Appendix L is a prerequisite
here. On the other hand, we have managed to entirely avoid the use of analytic functions and the
corresponding deep results, such as the “edge of the wedge” theorem, and this allows for a reasonably
compact presentation. This appendix is far more mathematical than physical, and the relevance of the
present material to the physical world is a matter of debate (a point which is even more acute when
one uses sophisticated results about analytic functions). Nonetheless, the mathematics are certainly
appealing. The results of this appendix are fully rigorous. We have even at a few places been fastidious
enough to actually work with distributions rather than pretending they are functions. While we hope
that the sample of results we present here is more accessible than Bogoliubov et al.’s [9] or even
Streater and Wightman’s books [79], there is no doubt that it is still a significant undertaking.

We use a system of units such that h̄ = 1.

M.1 The Wightman Axioms

In this setting, the states of the theory are described by the points (or, more accurately, the unitary
rays) of a separable Hilbert space H. The Poincaré group P acts on H by a unitary representation
U (c,C). (Since we do not consider particles with spin there is no need to use the group P∗.) We
assume that the map c �→ U (c,1) is strongly continuous. The representation U (c,1) is assumed to
satisfy a fundamental property, which physically expresses that there are no particles of negative mass.
Unfortunately the standard way to express this property appeals to the spectral theory of operators, a
topic we have not covered. We will briefly explain this property using the language of spectral theory,
and then give an equivalent formulation which does not appeal to this theory and which is the one we
will use. This point is by far the most difficult part of the axioms to understand, and the reader should
not be discouraged at this stage.

The operators U (c,1) constitute a unitary representation of R4, and R4 is a commutative group.
We will admit the fact that they have a common spectral resolution, that is we have a formula

U (c,1) =
∫

exp(i(c,p))dE(p), (M.1)
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where E is a projection-valued measure. The next two paragraphs explain what this means and how
to understand the integral above.

A projection-valued measure on R4 associates to any Borel subset A of R4 a projection E(A) in
H. That E(A) is a projection means that there is an orthogonal decomposition H = H1 +H2 of H,
so that each x ∈ H can be written in a unique manner x = x1 + x2 with x1 ∈ H1 and x2 ∈ H2, and
E(A)(x) = x1. Thus H1 is the range E(A)(H) of E(A). The projection-valued measure E is additive
in the sense that if A1 and A2 are disjoint, then the ranges of the projectors E(A1) and E(A2) are
orthogonal to each other. It is also σ -additive in the sense that the range of E(∪An) is the closure
of the union of the ranges of E(An) for an increasing sequence An. This sounds very complicated at
first, but the rather trivial example M.1.1 is nonetheless almost generic.

Given a projection-valued measure on R4 and a nice (say continuous and bounded) real-valued
function ψ on R4 it does not take much imagination to define the integral

∫
ψ(p)dE(p) as in (M.1),

by considering first the case where ψ takes only a finite number of values.1 The value of this integral
is an operator.

Example M.1.1 Consider a positive measure dμ on Rn, and assume for simplicity that each
bounded set has a finite measure. (If you do not like this generality, please assume that dμ has
a density with respect to the volume measure.) Let H = L2(Rn,dμ). Consider the operator
E(A) given by multiplication of a function by the indicator of A. That is, E(A)(f )(x) = f (x)
for x ∈ A and E(A)(f )(x) = 0 otherwise. This defines a projection-valued measure. When
μ(A) = 0 thenE(A) = 0. Furthermore if the function f takes finitely many values, the integral∫
f (x)dE(x) is simply the operator “multiplication by the function f ”, and this remains true

when f is well behaved, say bounded continuous.

Example M.1.2 Consider now m > 0 and the measure dλm, seen as a positive measure on
R4, and the space H = L2(Xm,dλm), which we may identify with L2(R4,dλm). To each set
A ⊂ R4 we associate the operatorE0(A) on H, the multiplication by the indicator function 1A.
The operator

∫
exp(i(c,p))dE0(p) is then simply the operator “multiplication by exp(i(c,p))”,

that is the action of space-time translations as given by (4.61). Consider the boson Fock space
B of H. The operator E0(A) has a canonical extension E(A) to B. To visualize this, we recall
that B is the Hilbert sum of the spaces L2

n,s of symmetric functions on Xn
m (or (R4)n), and for

such a function φ, E(A)(φ) is given by

E(A)(φ)(p1, . . . ,pn) = 1A(p1) . . . 1A(pn)φ(p1, . . . ,pn).

Writing what this means, there is no difficulty to check that E defines a projection-valued
measure, and that moreover the action of space-time translations on B is described by the
formula (M.1). In this case, the projection-valued measure E is supported by Xm, in the sense
that E(A) = 0 whenever A ∩Xm = ∅.
Definition M.1.3 The interior2 of the forward light cone is the set

V̄ := {p = (p0,p) ∈ R4 ; p0 ≥ ‖p‖}. (M.2)

We then make the following requirement on the projection-valued measure E of (M.1).

Axiom 1 We have

A ∩ V̄ = ∅ ⇒ E(A) = 0. (M.3)

1 That is, if ψ takes only the values y1, . . . ,yn, the value of this integral is
∑

i≤n yiE(ψ−1(yi )).
2 This is standard terminology, but one must beware that despite its name this set is topologically a closed set.

The correct name for this set should be “the closure of the interior of the forward light cone”.
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We have already seen in Example M.1.2 that this holds in the case of the action of the Poincaré
group “on the state space of the free scalar field”. There, we even had the stronger conclusion that
E(A) = 0 when A ∩Xm = ∅, reflecting the fact that this free field corresponds to a particle of mass
exactly m.

Our next goal is to explain why Axiom 1 means that “there are no negative masses” (even though
as we are going to see soon, the Wightman axioms describe a quantum field without any reference to
particles). For this we have to recall the relation between the momenta operators and the action of the
Poincaré group as explained on page 126, namely (using relativistic notation) that the operator Pμ of
momentum along the direction of coordinate μ = 1,2,3 should be such that exp(−isPμ) is the action
of a translation of s in the same direction, with a similar interpretation in the case μ = 0 with the
Hamiltonian instead of the momentum operator. Thus (M.1) implies that (for μ ≥ 1) we have

exp(−isPμ) =
∫

exp(−ispμ)dE(p), (M.4)

so that (taking the differential in s at s = 0)

Pμ =
∫
pμdE(p), (M.5)

and a similar argument also works for μ = 0. Now comes the heuristic physical argument: The
formula m2 = pμpμ for a particle indicates that the operator Q := PμPμ should measure “the
square of the mass”. Furthermore differentiating twice (M.4) at s = 0 implies that this operator is
given by

∫
pμpμdE(p). Axiom 1 implies that the projection-valued measure dE(p) lives on the

set where pμpμ is ≥0. Technically this is expressed by the fact that “the operator Q has a positive
spectrum” and this means that the observable corresponding to the operatorQ, the square of the mass,
is always ≥0.

Since we do not want to go into the innards of spectral theory, we reformulate Axiom 1 as follows.

Axiom 1’. If the function f ∈ S4 is such that its Fourier transform f̂ has a compact support
which does not meet V̄ then ∫

f (c)U (c,1)d4c = 0. (M.6)

At least formally, this is a consequence of (M.1) and Axiom 1, since∫
f (c)U (c,1)d4c =

∫
f (c)

( ∫
exp(i(c,p))dE(p)

)
d4c

=
∫ ( ∫

f (c) exp(i(c,p))d4c
)

dE(p)

=
∫
f̂ (p)dE(p) = 0,

where the last integral should be zero as an easy consequence of Axiom 1 once one has properly
defined the integral with respect to a projection measure. This formal argument can be made
rigorous if one knows spectral theory.

We stated Axiom 1 only to make informally the link with the standard way to formulate
matters, and we next reformulate Axiom 1’ in the exact form we will actually use. This reformu-
lation is a consequence of the fact that a bounded operatorW vanishes if and only if (ξ,Wη) = 0
whenever ξ,η ∈ H. (We do not use Dirac’s notation in this appendix.)
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Axiom 1∗. Given ξ,η ∈ H,3 and a function f ∈ S4 such that its Fourier transform has a
compact support which does not intersect V̄ then∫

f (c)(ξ,U (c,1)η)d4c = 0.

The main idea now is to define a quantum field ϕ as an operator-valued distribution. That is, for
f ∈ S4 the quantity ϕ(f ) is an unbounded operator on the state space H. We assume that as f varies
these operators have a common domain D of definition, which is also invariant under the action of
the Poincaré group. This is the content of the next two axioms, where we recall that S4

R
denotes the

space of real-valued test functions.

Axiom 2 There exists a dense subspace D of H and a linear map ϕ from S4
R

into the space of
(unbounded) operators on H with the following properties.

f ∈ S4
R
⇒ ϕ(f ) is defined on D and ϕ(f )(D) ⊂ D. (M.7)

ξ,η ∈ D,f ∈ S4
R
⇒ (ϕ(f )ξ,η) = (ξ,ϕ(f )η). (M.8)

∀(c,C) ∈ P , U (c,C)D ⊂ D. (M.9)

Condition (M.8) means that we consider only symmetric operators. This is for simplicity, and the
axiomatic setting itself does not require this. As a consequence of (M.8), when we allow f ∈ S4 to
take complex values we have

(ϕ(f ∗)ξ,η) = (ξ,ϕ(f )η). (M.10)

Axiom 3 Given ξ,η ∈ D the map f �→ (ξ,ϕ(f )η) is a tempered distribution.
In the sequel we will actually have to consider also a more general version where there are

several fields ϕj , j ≤ k. In that case the proper formulation of Axiom 3 involves all products
ϕ1(f1) · · ·ϕn(fn).

The next two axioms should be very familiar. We have first met these properties when
constructing the free scalar field. They express respectively that the quantum field transforms
as expected under the Poincaré group, and microcausality.

Axiom 4 Given (c,C) ∈ P and f ∈ S4 we have

U (c,C)ϕ(f )U (c,C)−1 = ϕ(V (c,C)f ), (M.11)

where V (c,C)f (x) = f (C−1(x − c)).

Axiom 5 If f,g ∈ S4 are such that their supports are causally separated (i.e. (x − y)2 < 0
for x in the support of f and y in the support of g) then [ϕ(f ),ϕ(g)] = 0 as an operator defined
on D.

The next axiom concerns “existence and uniqueness of the vacuum state”.

Axiom 6 There exists an element Ω of D ⊂ H (the “vacuum state”) such that U (c,1)Ω = Ω

and every element with this invariance property is a multiple of Ω.4

The last axiom expresses that there are sufficiently many fields ϕ(f ).

3 We have tried to consistently denote functions on momentum space by Greek letters. There is unfortunately a
shortage of such letters, so ξ,η are also used to denote points in the state space H. On the other hand, the letter
ϕ is used only for the quantum field.

4 In Streater and Wightman’s book [79] this axiom is stated in the apparently weaker form that Ω is unique (up
to a phase) under the stronger condition that U (c,C)Ω = Ω for all (c,C) ∈ P . I cannot prove that this implies
Axiom 6. However on page 141, line 8 from bottom, these authors seem to use the strong form of Axiom 6 as
stated here.
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Axiom 7 H is the closed linear span of the vectors ϕ(f1)ϕ(f2) · · ·ϕ(fn)Ω for n ≥ 0,fj ∈ S4.

These axioms have been the basis of a large body of rigorous work. It is a really simple matter
to show that they are satisfied by the free scalar field we constructed in Chapter 4. Only proving that
Axiom 6 holds needs any work at all and this will be explained in Lemma M.3.3. Unfortunately, to this
day there is essentially no example (in four space-time dimensions) of situations really different from
a free field where these axioms are satisfied. This sharply decreases their appeal. Another reservation
one might have is that, while statements like Axioms 4 and 5 are completely natural, why should one
use tempered distributions in our model?

Still, we shall try in the following few pages to describe the type of methods which can be used to
prove theorems under these assumptions. This will bring forward the fact that some of these assump-
tions are far more powerful than is immediately apparent.

We first show that the vacuum state must be invariant under the action of the Poincaré group.

Proposition M.1.4 For each (c,C) ∈ P we have U (c,C)Ω = Ω.

Proof SinceU (c,C) = U (c,1)U (0,C) and since by Axiom 6,U (c,1)Ω = Ω it suffices to prove this
when c = 0. Since U (c,1)U (0,C) = U (0,C)U (C−1(c),1), the vector U (0,C)Ω is invariant under
all the transformations U (c,1). Thus by hypothesis of Axiom 6, U (0,C)Ω = A(C)Ω for a certain
number A(C) of modulus 1. Then A defines a one-dimensional representation of the Lorentz group,
and therefore is trivial, A(C) = 1 for all C. (The proof of this fact is similar to the proof we gave in
the case of the rotation group in Lemma 8.5.2.)

Our next result shows how Axiom 1∗ might be used.

Proposition M.1.5 Consider a bounded operator B on H and assume that

ξ,η ∈ D , f ∈ S4
R
⇒ (ξ,Bϕ(f )η) = (ϕ(f )ξ,Bη). (M.12)

Then B is a multiple of the identity.

If we knew that ϕ(f ) is defined on each vector Bη then (M.12) would simply mean that B and
ϕ(f ) commute. Thus we may heuristically rephrase Proposition M.1.5 as saying “every operator B
which commutes with all the ϕ(f ) is a multiple of the identity”.

In the sequel we need Proposition M.1.5 only for the free scalar field. In that case we provide later
a direct proof. So, the general argument which follows, while not really more complicated than the
direct proof, is not required reading. Its point is essentially to illustrate the power of Axiom 1∗.

Proof Iteration of (M.12) shows that for each n, any real-valued test functions f1, . . . ,fn and
ξ,η ∈ D we have

(ξ,Bϕ(f1) · · ·ϕ(fn)η) = (ϕ(fn) · · ·ϕ(f1)ξ,Bη). (M.13)

Let us specialize this relation to the case ξ = η = Ω and replace fj by V (c,1)fj . Then (M.11)

for f = fj means exactly that ϕ(V (c,1)fj ) = U (c,1)ϕ(fj )U (c,1)−1. Together with the fact that

U (c,1)−1Ω = Ω we obtain

(Ω,BU (c,1)ϕ(f1) · · ·ϕ(fn)Ω) = (U (c,1)ϕ(fn) · · ·ϕ(f1)Ω,BΩ)

= (ϕ(fn) · · ·ϕ(f1)Ω,U (−c,1)BΩ), (M.14)

using in the last equality that U (c,1)† = U (−c,1). Consider now the function w(c) which is defined
either by the left-hand side or the right-hand side of the above equality. This function is bounded
because B is a bounded operator, and it is continuous because the map c �→ U (c,1) is strongly
continuous. Let us write the left-hand side of (M.14) as

(ξ,U (c,1)η) := (B†Ω,U (c,1)ϕ(f1) · · ·ϕ(fn)Ω) = w(c).
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Axiom 1∗ implies that whenever the Fourier transform of f has a compact support which does not
intersect V̄, then

∫
f (c)w(c)d4c = 0. Denoting by ψ̌ the inverse Fourier transform of ψ ∈ S4, the

formula

�(ψ) =
∫
ψ̌(c)w(c)d4c (M.15)

defines a distribution � on R4. Since the Fourier transform of ψ̌ is ψ the previous property implies
that � is supported by V̄.

Using now the right-hand side of (M.14) we also have

(ξ ′,U (−c,1)η′) := (ϕ(fn) · · ·ϕ(f1)Ω,U (−c,1)BΩ) = w(c)

and using again Axiom 1∗ shows that � is supported by −V̄. Lemma L.2.4 then asserts that the
distribution � is supported by V̄∩−V̄ which is reduced to the origin. Thus we may apply Proposition
L.2.10 to conclude that � must be of the type described in this proposition. Let us then prove that
w(c) must be a polynomial. For this it suffices to show that we can find a polynomial which satisfies
(M.15) because knowing all the integrals

∫
ψ̌(c)w(c)d4c determines w. But that we can find such a w

follows from the extension of certain formulas of Section 1.5, namely the fact that
∫
ψ̌(c)d4c = ψ(0)

and formulas such as the first part of (1.23). Now since w is a polynomial and is bounded it must
be constant. Thus for c,c′ ∈ R4 we have (ξ ′,U (c,1)BΩ) = (ξ ′,U (c′,1)BΩ) whenever ξ ′ is of the
type ϕ(f1) · · ·ϕ(fn)Ω. As these vectors are dense in H by Axiom 7, this means that U (c,1)BΩ is
independent of c. It then follows from Axiom 6 that BΩ is a multiple of Ω, BΩ = aΩ. Going back
to (M.13) in the case η = Ω we obtain

(ξ,Bϕ(f1) · · ·ϕ(fn)Ω) = a(ϕ(fn) · · ·ϕ(f1)ξ,Ω) = a(ξ,ϕ(f1) · · ·ϕ(fn)Ω). (M.16)

Since both the vectors of the type ξ ∈D and ϕ(f1) · · ·ϕ(fn)Ω are dense in H this implies that
B = a1.

We now present a direct proof of Proposition M.1.5 in the case of the free field. It does not use
distribution theory. The state space is the boson Fock space B ofL2(Xm,dλm). It is the Hilbert sum of
the spaces Hn,s , where Hn,s is the space of square-integrable functions on Xn

m which are symmetric
in their arguments. The state Ω is a basis of the space H0,s = C.

Lemma M.1.6 Given any ψ ∈S4 there is f ∈S4
R

such that f̂ coincides with ψ on Xm.

Proof We simply find η ∈ S4 with η(p) = η(−p)∗ and η(p) = ψ(p) for p ∈ Xm. For this we find
a neighborhood U of Xm such that U and −U are disjoint. We find a function γ ∈ S4 with support
contained in U such that γ (p) = ψ(p) if p ∈ Xm. We define η(p) = γ (p) if p ∈ U , η(p) = γ (−p)∗
if p ∈ −U and η(p) = 0 otherwise. Then f = η̌ satisfies f ∗ = f so that it is real-valued and
f̂ (p) = η(p) = ψ(p) for p ∈ Xm.

Lemma M.1.7 If W is a linear function of ξ ∈ S4 and W ′ is an anti-linear function of ξ ∈ S4

such that W (ξ )+W ′(ξ ) ≡ 0 then W (ξ ) ≡ 0 and W ′(ξ ) ≡ 0.

Proof Changing ξ into iξ in the relation W (ξ )+W ′(ξ ) = 0 yields iW (ξ )− iW ′(ξ ) = 0.

Proof of Proposition M.1.5 for the free field The plan is to deduce from (M.13) that BΩ is a mul-
tiple of Ω, and to conclude as previously with (M.16) that B = a1. Using (M.13) in the case where
ξ = η = Ω we obtain that for any real-valued test functions f1, . . . ,fn we have

(B†Ω,ϕ(f1) · · ·ϕ(fn)Ω) = (ϕ(fn) · · ·ϕ(f1)Ω,BΩ). (M.17)

We recall that the free field is given by the formula ϕ(f ) = A(f̂ )+A†(f̂ ), where A and A† are as in
Theorem 3.4.2. We then conclude from Lemma M.1.6 that for any n and any test functions ξ1, . . . ,ξn
we have
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(B†Ω,(A†(ξ1)+ A(ξ1)) · · · (A†(ξn)+ A(ξn))Ω)

= ((A†(ξn)+ A(ξn)) · · · (A†(ξ1)+ A(ξ1))Ω,BΩ). (M.18)

Thinking of ξ1, . . . ,ξn−1 as fixed, both the right-hand side and the left-hand are sums of a part which is
linear in ξn and a part which is anti-linear. The anti-linear part of the left-hand side is (B†Ω,(A†(ξ1)+
A(ξ1)) · · ·A(ξn)Ω) which is zero since A(ξn)Ω = 0. According to Lemma M.1.7 the anti-linear part
of the right-hand side is also zero, that is

(A†(ξn)(A†(ξn−1)+ A(ξn−1)) · · · (A†(ξ1)+ A(ξ1))Ω,BΩ) = 0.

Thinking now of ξ1, . . . ,ξn−2,ξn as fixed, as a function of ξn−1 the previous quantity is the sum of a
linear and an anti-linear part. Expressing that both are zero we obtain

(A†(ξn)A†(ξn−1)(A†(ξn−2)+ A(ξn−2)) · · · (A†(ξ1)+ A(ξ1))Ω,BΩ) = 0.

Continuing in this fashion we obtain that (A†(ξn) · · ·A†(ξ1)Ω,BΩ) = 0. Since the closed linear span
of the elements of the type A†(ξn) · · ·A†(ξ1)Ω is Hn,s , and since this holds for each n this implies
that BΩ is a multiple of Ω.

Let us now introduce some vocabulary.

Definition M.1.8 A set A of operators defined on D is irreducible if any bounded operator B
which satisfies

(ξ,BAη) = (A†ξ,Bη)

for each A ∈ A and each ξ,η ∈ D is a multiple of the identity.

Thus Proposition M.1.5 expresses that the set of operators of the form ϕ(f ) for f ∈S4
R

is
irreducible.

M.2 Statement of Haag’s Theorem

Consider a field ϕ which satisfies the previous axioms. Furthermore assume that given t ∈ R and
g ∈ S3 = S(R3) we can define the operators ϕt (g) in a way that

g �→ (ξ,ϕt (g)η)

are tempered distributions. Assume that for each f ∈ S4
R

we have

(ξ,ϕ(f )η) =
∫

(ξ,ϕt (ft )η)dt

where ft ∈ S3
R

is given by ft (x) = f (t,x). Assume that this decomposition of ϕ is done in a way
consistent with Axiom 4, namely that, writing

W (a) = U ((0,a),1), (M.19)

we have

W (a)ϕt (g)W (a)−1 = ϕt (ga),

where ga is given by ga(x) = g(x − a). In particular we have

W (a)ϕ0(g)W (a)−1 = ϕ0(ga). (M.20)

Assume moreover that the derivatives ϕ̇t of ϕt with respect to t exist, so that we also have

W (a)ϕ̇0(g)W (a)−1 = ϕ̇0(ga). (M.21)
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Consider now a free scalar field ϕfree of mass m > 0, defined on another Hilbert space Hfree. As
we have shown in Section 6.9 (and as will be recalled below) we know how to define the operators
ϕfree
t and ϕ̇free

t .

Theorem M.2.1 (Haag’s theorem) Assume that there exists a unitary operatorV : H→ Hfree

such that

∀g ∈ S3
R
, V ϕ0(g)V−1 = ϕfree

0 (g) ; V ϕ̇0(g)V−1 = ϕ̇free
0 (g). (M.22)

Then ϕ is also a free field of mass m.

Implicit in (M.22) is the fact that the domains of definition D and Dfree of the operators ϕ are
exchanged to each other by V . The last statement means that ϕ is unitarily equivalent to the free field
ϕfree of mass m.

The importance of Haag’s theorem was explained in Section 13.4, where we argued that in the
interaction picture an interacting field must satisfy (M.22). Something goes wrong: It just cannot hap-
pen that every interacting field is a free field. The trouble lies with the interaction picture (which was
never rigorously defined): Haag’s theorem shows that this interaction picture is not mathematically
consistent.

In the rest of the appendix, we analyze the situation (M.22). While we do not fully prove Haag’s
theorem we obtain enough information about a field ϕ which satisfies this condition to make clear
that it cannot be an interacting field of interest.

M.3 Easy Steps

Our approach starts with two easy results concerning the free field.

Proposition M.3.1 The set of operators ϕfree
0 (g), ϕ̇free

0 (g) for g ∈ S3
R

is irreducible.

Proof It follows from Lemma M.3.2 that the linear span of this set of operators contains the set of
operators of the type ϕfree(f ) for f ∈S4

R
, which is irreducible according to Proposition M.1.5.

Lemma M.3.2 Given f ∈ S4
R

there exist g1 and g2 ∈ S3
R

such that ϕfree(f ) = ϕfree
0 (g1) +

ϕ̇free
0 (g2).

Proof We recall from (6.66) that the operators ϕfree
t are given by the formula

ϕfree
t (g) = A(Ft (g))+ A†(Ft (g)), (M.23)

where A and A† denote the annihilation and creation operators on the space Hfree, which is the boson
Fock space of the space L2(Xm,dλm) and where for g ∈ S3

R
,

Ft (g)(p) := exp(itp0)F (g)(p) ; F (g)(p) :=
∫

exp(−ix · p)g(x)d3x. (M.24)

Consequently,

ϕfree
0 (g) = A(F (g))+ A†(F (g)) (M.25)

ϕ̇free
0 (g) = A(G(g))+ A†(G(g)), (M.26)

where

F (g)(p) = F (g)(p) ; G(g)(p) = ip0F (g)(p). (M.27)
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Looking at (M.25) and (M.26), this means that given f ∈ S4
R

it suffices to find g1,g2 ∈ S3
R

such that

f̂ = F (g1) + G(g2) as elements of L2(Xm,dλm). That is, it suffices that this equality holds for any
point p ∈ Xm, or, equivalently, that for p ∈ R3 we have

f̂ (p) = F (g1)(p)+ iωpF (g2)(p), (M.28)

where ωp =
√
m2 + p2 and p = (ωp,p). Let us try to guess from this formula what g1 and g2

should be. Let us first observe that a function g on R3 is real-valued if and only if for each p we have

F (g)(p)∗ = F (g)(−p). (M.29)

Consider then Pp = (ωp, − p). We then deduce that if (M.28) holds then

f̂ (Pp)∗ = F (g1)(−p)∗ − iωpF (g2)(−p)∗

= F (g1)(p)− iωpF (g2)(p).

Therefore we must have

2F (g1)(p) = f̂ (p)+ f̂ (Pp)∗ ; 2iωpF (g2)(p) = f̂ (p)− f̂ (Pp)∗.

Since the function p �→ f̂ (p) ± f̂ (Pp)∗ is a test function, we may find test functions g1 and g2
which satisfy the above relations. These are real-valued from (M.29), and it is obvious that (M.28)
holds.

As a consequence of Lemma M.3.2 one may say that “ϕfree is determined by ϕfree
0 and ϕ̇free

0 ”.5

Denoting by U free the action of the Poincaré group on Hfree, we now write

W free(a) = U free((0,a),1).

Lemma M.3.3 Consider an element ξ ∈ Hfree and assume that

∀a ∈ R3 ; W free(a)ξ = c(a)ξ (M.30)

for a certain number c(a). Then ξ = cΩfree for a number c.

Proof We recall that Hfree is the boson Fock space based on L2 = L2(Xm,dλm). It is a direct
sum of the spaces Hn,s of symmetric functions on Xn

m, each of which is invariant under the maps
W free(a). Therefore it suffices to prove that if ξ ∈ Hn,s satisfies (M.30) then ξ = 0 if n ≥ 1. Now,
the action of W free(a) on Hn,s is multiplication by exp(ia · (∑j≤n pj )), so that ξ can be transformed
into a multiple of itself by such multiplication only if it is (almost everywhere) zero except on a set
where this function is constant. These sets are of measure zero for λ⊗nm so that this is possible only if
ξ = 0.

We are now ready to take a first step in the proof of Haag’s theorem.

Lemma M.3.4 Under (M.22) we have

VΩ = cΩfree (M.31)

for a number c of modulus 1.

5 In physics this is often presented as a self-evident consequence of the fact that ϕfree satisfies the Klein-Gordon
equation (as shown in Proposition 6.1.3). The idea is that a function ϕ(t,x) satisfying this equation is indeed
determined by ϕ(0,x) and ϕ̇(0,x). Here however ϕfree is not a function but an operator-valued distribution, so
one may feel a bit unsafe to use this argument. It is however essentially correct: Our rigorous argument uses
only that the Fourier transform of ϕ vanishes on test functions which vanish on Xm. i.e. only that ϕ satisfies
the Klein-Gordon equation in the sense of distributions.
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Proof Let us note that as in (M.20) we have

W free(a)ϕfree
0 (f )W free(a)−1 = ϕfree

0 (fa). (M.32)

Then, using in succession (M.22), (M.20), (M.22), and (M.32),

W free(a)−1VW (a)V−1ϕfree
0 (f ) = W free(a)−1VW (a)ϕ0(f )V−1

= W free(a)−1V ϕ0(fa)W (a)V−1

= W free(a)−1ϕfree
0 (fa)VW (a)V−1

= ϕfree
0 (f )W free(a)−1VW (a)V−1.

Therefore the operator S := W free(a)−1VW (a)V−1 commutes with every operator ϕfree
0 (f ), in

the sense that for each ξ ∈ Dfree we have

Sϕfree
0 (f )ξ = ϕfree

0 (f )Sξ .

In a similar manner we prove the commutation relation

Sϕ̇free
0 (f )ξ = ϕ̇free

0 (f )Sξ .

It then follows from Proposition M.3.1 that S is a multiple of the identity, i.e.

W free(a)−1VW (a)V−1 = c(a)1,

so that

VW (a) = c(a)W free(a)V

and hence

VΩ = c(a)W free(a)VΩ.

It then follows from Lemma M.3.3 that VΩ = cΩfree. Moreover |c| = 1 because V is unitary and
both Ω and Ωfree are unitary vectors.6

This result will be used only through the following corollary.

Corollary M.3.5 Under (M.22) for f1, . . . ,fn ∈ S3
R

we have

(Ω,ϕ0(f1) · · ·ϕ0(fn)Ω) = (Ωfree,ϕfree
0 (f1) · · ·ϕfree

0 (fn)Ωfree). (M.33)

Proof Replace ϕ0(f ) by V−1ϕfree
0 (f )V in the left-hand side and use (M.31).

Corollary M.3.6 If ϕ is a free field of mass m′ �= m then (M.33) does not hold.

Proof The most direct method is to appeal to (M.24) to obtain

(Ωfree,ϕfree
0 (f1)ϕfree

0 (f2)Ωfree) = (ϕfree
0 (f1)Ωfree,ϕfree

0 (f2)Ωfree)

= (A†(F (f1))Ωfree,A†(F (f2))Ωfree).

By construction, this quantity is just the inner product of F (f1) and F (f2), i.e. that quantity∫
F (f1)(p)∗F (f2)(p)

d3p√
2ωm,p

,

where ω2
m,p = m2 + p2 certainly depends on m, so that (M.33) cannot hold if ϕ is a free field of

mass m′ �= m.

6 Recalling that states are described by unitary vectors of the state space.



714 Wightman Axioms and Haag’s Theorem

M.4 Wightman Functions

It follows from Axioms 2 and 3 (using also that Ω ∈ D) that for each n the quantity

(Ω,ϕ(f1) · · ·ϕ(fn)Ω)

is a tempered distribution in each fj when all the other functions fk are fixed. It then follows from the
Schwartz Kernel Theorem [33] (which we briefly met in Section 12.3 to define the scattering matrix)
that there exists a tempered distribution � on R4n such that

(Ω,ϕ(f1) · · ·ϕ(fn)Ω) = �(f1 ⊗ · · · ⊗ fn), (M.34)

where f1 ⊗ · · · ⊗ fn(x1, . . . ,xn) = f1(x1) · · · fn(xn). Writing this distribution as a function
W(x1, . . . ,xn) the definition becomes

W(x1, . . . ,xn) := (Ω,ϕ(x1) · · ·ϕ(xn)Ω). (M.35)

These are called the Wightman functions and play an essential role in the approach based on the
Wightman axioms.

The purpose of the present section is to study in detail the Wightman function for n= 2. The basic
idea is that, pretending that distributions are functions, we have translation invariance: the function
W(x1,x2) = (Ω,ϕ(x1)ϕ(x2)Ω) satisfies W(x1,x2) =W(x1 + a,x2 + a) for any a. Thus W(x1,x2)
depends only of x1 − x2, so that it is function of x1 − x2,

W(x1,x2) = (Ω,ϕ(x1)ϕ(x2)Ω) = W (x1 − x2). (M.36)

For once, we will however not pretend that distributions are functions, and we will give a completely
rigorous version of the previous argument. We will prove that the distribution W is rather regular,
because (essentially) its Fourier transform is a positive measure supported by V̄. We will obtain in
Proposition M.4.11 a precise description ofW , and this enables us to perform a further step in the proof
of Haag’s theorem. Namely, we will show in Theorem M.4.12 that for n = 2 the Wightman function
of a field satisfying the hypothesis of Haag’s theorem coincides with the corresponding function of a
free field.

We first spell out, in the case n = 2, some simple properties of the distribution �.

Lemma M.4.1 For each (c,C) ∈ P and f ∈ S8 we have

�(f ) = �(V (c,C)f ), (M.37)

where V (c,C)f (x1,x2) = f (C−1(x1 − c),C−1(x2 − c)). Moreover, if v ∈ S4 is such that its
Fourier transform has a compact support which does not intersect V̄ then for f1,f2 ∈ S4 it
holds that �(f1 ⊗ f ′2) = 0 where f ′2(x) = ∫

d4cf2(x − c)v(c). Finally, for each h ∈ S4 we
have

�(h∗ ⊗ h) ≥ 0. (M.38)

Proof Let us recall that by definition of � for f1,f2 ∈ S4 it holds that

�(f1 ⊗ f2) = (Ω,ϕ(f1)ϕ(f2)Ω). (M.39)

To prove (M.38) we write, using (M.10) in the second equality,

�(h∗ ⊗ h) = (Ω,ϕ(h∗)ϕ(h)Ω) = (ϕ(h)Ω,ϕ(h)Ω) ≥ 0.

It suffices to prove (M.37) when f = f1 ⊗ f2 for f1,f2 ∈ S4 because � is determined by
its values on such functions, as follows from Schwartz’s kernel theorem. Using (M.11) it holds that
U (c,C)ϕ(f1)ϕ(f2)U (c,C)−1 = ϕ(V (c,C)f1)ϕ(V (c,C)f2) and recalling that U (c,C)−1Ω = Ω by
Proposition M.1.4 we obtain

(Ω,ϕ(f1)ϕ(f2)Ω) = (Ω,ϕ(V (c,C)f1)ϕ(V (c,C)f2)Ω).
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Combining with (M.39) completes the proof of (M.37).
Next, consider v ∈ S4 such that its Fourier transform has a compact support which does not

intersect V̄. Then by Axiom 1∗ we have∫
v(c)(ϕ(f1)Ω,U (c,1)ϕ(f2)Ω)d4c = 0. (M.40)

Using again (M.11) forC = 1 we obtainU (c,1)ϕ(f2)U (−c,1) = ϕ(f2,c) where f2,c(x) = f2(x−c)
and, using (M.34) in the last equality

(ϕ(f1)Ω,U (c,1)ϕ(f2)Ω) = (ϕ(f1)Ω,ϕ(f2,c)Ω) = (Ω,ϕ(f1)ϕ(f2,c)Ω) = �(f1 ⊗ f2,c).

Therefore, combining with (M.40),

0 =
∫
v(c)�(f1 ⊗ f2,c)d4c = �(f1 ⊗ f ′2),

where the second equality is justified by the fact that for any k the function f ′2 can be arbitrarily well
approximated in the seminorm ‖·‖k by a linear combination of functions f2,c; a tedious exercise.

When working with distributions there is a constant pressure by need of clarity to pretend that
they are functions, and the classical book by Streater and Wightman [79] yields to this pressure at the
present stage of the argument. While it is not very difficult to write a fully correct argument without
using this shortcut, this is not completely trivial either. As we try to exemplify in this appendix how
to be really rigorous while using distributions, we give a rigorous version of (M.36). This is reserved
for uncompromising readers, whereas others should jump to Lemma M.4.3.

Proposition M.4.2 Under the Wightman axioms there exists a tempered distribution W on R4

such that for any function f ∈ S8 it holds that

�(f ) = W (H (f )) (M.41)

where the function H (f ) ∈ S4 is given by

H (f )(x) =
∫
f (x + z,z)d4z. (M.42)

The equality (M.41) formulates in a rigorous way, at the level of distributions, the idea that
W(x1,x2) = W (x1− x2). Indeed, for functions, making the change of variable x1 = x2+ y we have∫∫

W(x1,x2)f (x1,x2)d4x1d4x2 =
∫∫

W (x1 − x2)f (x1,x2)d4x1d4x2

=
∫∫

W (y)f (x2 + y,x2)d4yd4x2

=
∫
W (y)H (f )(y)d4y, (M.43)

so that if we pretend that distributions are functions this coincides with (M.41).

Proof The idea is to use Proposition L.3.4, but first we have to make a change of variables for this,
using x1−x2 and x2 as new variables, after which change of variable our distribution “will not depend
on x2”. First, as a consequence of (M.37) in the case C = 1 and c = −a, we have

�(f ) = �(f a), (M.44)

where for x1,x2 ∈ R4 we define

f a(x1,x2) := f (x1 + a,x2 + a) ; fa(x1,x2) := f (x1,x2 + a). (M.45)



716 Wightman Axioms and Haag’s Theorem

Given a function w ∈ S8 consider the function F (w)(x1,x2) = w(x1 − x2,x2). Then

Fa(w)(x1,x2) = F (w)(x1 + a,x2 + a) = w(x1 − x2,x2 + a)

= wa(x1 − x2,x2) = F (wa)(x1,x2), (M.46)

and thus F (wa) = Fa(w). Consider moreover the distribution � on R8 given for w ∈ S8 by �(w) =
�(F (w)). Then, using also (M.44), we obtain

�(wa) = �(F (wa)) = �(Fa(w)) = �(F (w)) = �(w).

Consequently, Proposition L.3.4 used four times shows that there exists a tempered distribution � on
R4 such that �(w) = �(G(w)), where

G(w)(x) =
∫
w(x,a)d4a.

Now consider f ∈ S8 and the function Z(f ) given by Z(f )(x1,x2) = f (x1 + x2,x2), so that
F (Z(f )) = f . Consequently,

�(f ) = �(F (Z(f )) = �(Z(f ))) = �(G(Z(f ))),

and recalling that G(Z(f )) = H (f ) by (M.42), this proves (M.41) for W = �.

We now start the study of the distribution W .

Lemma M.4.3 The distribution W of Proposition M.4.2 is Lorentz invariant in the sense that
W (w) = W (V (0,C)w) for C ∈ SO↑(1,3) and w ∈ S4.

Proof Consider a function ξ ∈S4 such that
∫
ξ (x)d4x= 1. Then the function f given by f (x,y) =

w(x − y)ξ (y) is such that f ∈S8 and w=H (f ). It is straightforward that H (V (0,C)f ) = V (0,C)
H (f ) = V (0,C)w because Lebesgue’s measure d4x is Lorentz invariant. Then, using (M.37) in the
third equality,

W (V (0,C)w) = W (H (V (0,C)f )) = �(V (0,C)f ) = �(f ) = W (H (f )) = W (w).

Lemma M.4.4 The distribution W of Proposition M.4.2 has the following property: For each
w ∈ S4, each v ∈ S4 whose Fourier transform has a compact support which does not meet V̄,
setting u(x) = ∫

w(x + a)v(a)d4a we have W (u) = 0.

Proof Consider two functions w,f ∈ S4. It is proved in Lemma M.4.1 that �(w ⊗ f ′) = 0 where
f ′(x) = ∫

d4cf (x − c)v(c). Then according to (M.41) it holds that W (H (w ⊗ f ′)) = 0. Now

H (w ⊗ f ′)(x) =
∫

d4zw(x + z)f ′(z) =
∫∫

d4zd4cw(x + z)f (z− c)v(c)

=
∫∫

d4zd4cw(x + z+ c)f (z)v(c) =
∫

d4zu(x + z)f (z).

To prove that W (u) = 0 it suffices to prove that given k one may find f such that ‖u − ∫
d4zu(x +

z)f (z)‖k is arbitrarily small. For this one takes f ≥ 0 of integral 1 and peaked around the origin
together with routine estimates.

We recall that for two functions f,g ∈ S4 their convolution f ∗ g is defined by

f ∗ g(x) =
∫
f (x − y)g(y)d4y. (M.47)

We will use the classical formula

f̂ ∗ g = f̂ ĝ, (M.48)
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which can be checked in a few lines in the spirit of (1.25). In the forthcoming computations unpleasant
minus signs occur in the arguments of the variables.7 To minimize this annoyance, we introduce the
following notation. Given a function f ∈ S4 we define the function f ! by

f !(x) = f (−x).

Thus the formula u(x) = ∫
w(x + a)v(a)d4a of Lemma M.4.4 means that u = w ∗ v!, as is seen by

changing a into−a, so that this lemma asserts that W (w ∗v!) = 0 whenever v̂ has a compact support
which does not meet V̄. Let us also observe the straightforward fact that

f̂ ! = (f̂ )!, (M.49)

where for a function ξ on momentum space we also define ξ! by ξ!(p) = ξ (−p).

Lemma M.4.5 We haveW (f ) = 0 whenever the Fourier transform of f has a compact support
which does not meet −V̄.

Proof Consider a function ξ ∈ S4, which is equal to 1 on the support of f̂ , and which has a compact
support which does not meet −V̄. Then f̂ = f̂ ξ , so that, taking the inverse Fourier transform of both
sides, by (M.48) we have f = f ∗ ξ̌ . Let g = (ξ̌ )! so that f = f ∗ g! while ĝ = ξ! has a compact
support which does not meet V̄. ConsequentlyW (f ) = W (f ∗g!) = 0 by the consequence of Lemma
M.4.4 explained just above (M.49).

Definition M.4.6 We define the distribution Ŵ by the formula8

Ŵ (ξ ) = W (ξ̌ !). (M.50)

It will turn out that Ŵ is a very well behaved distribution: It is a positive measure.

Exercise M.4.7 Show that the formula

Ŵ (p) =
∫

exp(i(p,x))W (x)d4x

is an informal way to write (M.50).

Lemma M.4.8 The distribution Ŵ is supported by V̄.

Proof This is the content of Lemma M.4.5. Indeed, if ψ has a compact support which does not meet
V̄, the function g = ψ̌! is such that its Fourier transform, i.e. ψ!, has a compact support which does
not meet −V̄, so that Ŵ (ψ) = W (g) = 0.

Now we come to the crucial point.

Lemma M.4.9 The distribution Ŵ is positive, i.e. Ŵ (θ ) ≥ 0 if θ ∈ S4 is ≥0 at each point.

Proof We first prove that Ŵ (η2) ≥ 0 where η ∈ S4
R

has a compact support. To lighten notation, let

f = η̌. As a consequence of (M.48), ξ = η2 satisfies ξ̌ = f ∗ f , so that

ξ̌ !(x) =
∫
f (−x − a)f (a)d4a = H (f ! ⊗ f )(x).

Now, since η is real-valued, it holds that f (−x) = f (x)∗, i.e. f ! = f ∗ so that

Ŵ (η2) = Ŵ (ξ ) = W (ξ̌ !) = W (H (f ∗ ⊗ f )) = �(f ∗ ⊗ f ) ≥ 0

by (M.38).

7 These are related to the problem of the proper definition of the Fourier transform of a distribution in the present
setting, see Section L.4, but we do not want to be more confusing than necessary by addressing this issue here.

8 According to Definition L.12, Ŵ is the Fourier transform of W as a distribution.
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Consider then θ ≥ 0 ∈ S4 with compact support. Consider ξ ∈ S4 with compact support, such
that ξ = 1 on a neighborhood of the support of θ . Then for α > 0 the function η :=

√
αξ2 + θ

belongs to S4 and has compact support. (Observe that this function is infinitely differentiable in the
interior of the support of ξ , and also in the complement of the support of θ because there it equals√
αξ .) Consequently

Ŵ (η2) = Ŵ (θ )+ αŴ (ξ2) ≥ 0

for each α > 0 and therefore Ŵ (θ ) ≥ 0.

Proposition M.4.10 There exists a positive measure μ on V̄ such that for ψ ∈ S4 it holds that

Ŵ (ψ) =
∫
ψdμ. (M.51)

The integral exists becauseμ has the following property: There exist numbers k > 0 andC > 0
such that the mass for the measure μ of the Euclidean ball of center 0 and radius R is at most
C(1+ R)k . Moreover μ is Lorentz invariant.

If the concept of positive measure turns you off, please be patient, a formula in the language of
physicists will be given in equation (M.53). If you like to think in terms of distributions, a crucial
point is that the distribution Ŵ satisfies a much stronger inequality than (L.5) namely that for some
positive integer k > 0 we have

|Ŵ (ψ)| ≤ C sup
p

(1+ ‖p‖)k |ψ(p)|.

As the proof below shows, this stronger inequality is a simple consequence of positivity. The measure
μ is simply a mixture of invariant measures on the mass shells Xm as m varies.

Proof Consider θ ∈ S4 with compact support, θ ≥ 0 and such that θ = 1 on the Euclidean unit
ball of R4 centered at the origin. For a ≥ 1 define θa by θa(p) = θ (p/a). We first show that, as a
consequence of W being a tempered distribution it holds that

0 ≤ Ŵ (θa) ≤ Cak (M.52)

for a certain integer k and a constant C independent of a. Indeed since W is a tempered distribution it
satisfies an inequality |W (f )| ≤ C‖f ‖k for a certain k. Thus s |Ŵ (θa)| = |W (f )| ≤ C‖f ‖k where
f = ψ̌! forψ = θa . It is straightforward to check that f (x) = a4θ̌ !(ax) and that this function satisfies
‖f ‖k ≤ C′ak+4. Replacing k by k + 4, (M.52) follows (for a new constant C) since Ŵ (θa) ≥ 0 by
Lemma M.4.9.

For a function η ∈ S4
R

we define its uniform norm ‖η‖ := supp |η(p)|. Assume that η has a
compact support and satisfies ‖η‖ ≤ 1. Consider a large enough that the support of η is contained in
the set where θa = 1. Then |Ŵ (η)| ≤ Ŵ (θa) because θa ± η ≥ 0 and hence Ŵ (θa) ± Ŵ (η) ≥ 0.
Consequently for any η ∈ S4

R
whose support is contained in the set where θa = 1 we have

|Ŵ (η)| ≤ Ŵ (θa)‖η‖.
This is the key relation. It implies that W extends to a positive linear functional on the space of
continuous functions with compact support, simply because a continuous function with compact
support is the uniform limit of functions in S4 with compact support. This is exactly what is meant
by saying that Ŵ is a positive measure. Moreover the measure of the balls centered at the origin is
controlled by (M.52). The Lorentz invariance follows from Lemma M.4.3 and the good behavior of
the Fourier transform with respect to Lorentz transformation, as in Lemma 4.8.1.

The set V̄ is the disjoint union of the sets Xm for m ≥ 0. An invariant measure on V̄ is a mixture
of invariant measures on the sets Xm. This is seen by looking at the restriction of the measure to the
sets m2 ≤ p2 ≤ m2 + ε, scaling properly and letting ε → 0. We do not give the details, which are
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not surprising. One has to be cautious about the case m = 0 because the Lorentz group does not act
transitively on X0 since the origin is a fixed point, so that a Lorentz invariant measure of X0 has two
parts, a point mass at the origin and a part proportional to dλ0. As a consequence, there exists an
increasing function ρ on R+ such that

Ŵ (ψ) = cψ(0)+
∫
m≥0

dρ(m)
∫
ψdλm (M.53)

(all numerical factors are absorbed by ρ in this formula) and furthermore ρ is of polynomial growth
from (M.52). Since W (f ) = Ŵ (f̂ !) by (M.50), substitution of the value

f̂ !(p) = (2π )−4
∫

exp(−i(x,p))f (x)d4x

in (M.50), writing W as a function, we obtain the following.

Proposition M.4.11 (The Källén–Lehmann representation of W ) For some polynomially
bounded function ρ it holds

W (x) = c +
∫∫

exp(−i(x,p))dρ(m)dλm(p). (M.54)

Our goal in the rest of this section is to argue that the following holds.

Theorem M.4.12 Under (M.33) we have in fact

∀x1,x2 ; W(x1,x2) =Wfree(x1,x2), (M.55)

or, equivalently,

(Ω,ϕ(f1)ϕ(f2)Ω) = (Ωfree,ϕfree(f1)ϕfree(f2)Ωfree).

It seems quite obvious that no interacting quantum field of interest is going to satisfy the very strong
requirement (M.55) that the two-point Green function coincides with that of a free field. Therefore
Theorem M.4.12 demonstrates clearly the problems inherent to the interaction picture. Very significant
work remains to be done to fully prove Haag’s theorem. This work is the content e.g. of Streater and
Wightman’s book [79, Theorem 4-15]. The analytic properties of the Wightman functions (which we
managed to skirt in our arguments) seemingly would be required in the proof, so we will not attempt
to go beyond Theorem M.4.12.

Unfortunately, giving a truly complete mathematical proof of Theorem M.4.12 would require more
work than the reader is likely to accept at this stage, so that we will only give supporting arguments
in favor of this theorem.9

Lemma M.4.13 The formula (M.54) defines a true function in the domain x2 < 0. The value
W (x) is given by the formula

W (x) = c +
∫
m2I (−mx)dρ(m) (M.56)

where I (x) is given by (5.13) for m = 1, i.e. I (x) = ∫
exp(i(x,p))dλ1(x).

Supporting argument. The first claim has been proved in Lemma 5.1.7. For the second assertion
we use that

∫
dλm(p) exp((−i(x,p)) = m2I (−mx) as is shown by the change of variable p→

mp, using e.g. (4.36) to get the factor m2.

The following exercise will help you to understand the argument of the next lemma.

9 These supporting arguments are considerably more convincing than what we called supporting arguments in
Chapter 14 .
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Exercise M.4.14 Assume that for all x > 0 we have the identity

exp(−x) =
∫ ∞

0
exp(−mx)dρ(m).

Prove that dρ(m) consists of a unit mass at m = 1.

Lemma M.4.15 Assume that on the domain x2 < 0 the function (M.56) satisfies

W (x) = m2
0I (−m0x). (M.57)

Then c = 0 and ρ(m) = 0 form < m0 while ρ(m) = 1 form ≥ m0, so that dρ(m) = δ(m−m0).
Then (M.56) (which holds for all x) becomes W (x) = m2

0I (−m0x).

In particular, if the function W coincides at each point x where x2 < 0 with the correspond-
ing function W free for the free scalar field of mass m0, then it coincides everywhere with this
function.10

Supporting argument. Let us write J (a) = I (0,0,0, − a). We “computed” this function in the
proof of Lemma 5.1.7: it is given by the right-hand side of (5.21) for b = a. Our argument
needs simply that J (a) decreases very fast as a → ∞, which simply follows from successive
integrations by parts of the right-hand side of (5.21). The equality (M.57) implies

m2
0J (m0a) = c +

∫
m2J (ma)dρ(m) := V (a),

and the argument consists of comparing the rates of decay of both sides as a → ∞. First
one sees that c = 0 and that ρ is constant for m < m0 because otherwise the right-hand
side V (a) would not decay as fast as the left-hand side at infinity.11 Next, we must have
lima→∞ V (a)/m2

0J (am0) = 1 and this forces ρ to have a jump of 1 at the point m0 because
the contributions of the larger values of m have a faster decay than J (am0). And then removing
the contribution of this jump to V (a) we see that ρ must be constant for m > m0.

Supporting argument for Theorem M.4.12 Since W is a true function on the domain x2 < 0,
this is also the case of W on the domain (x1 − x2)2 < 0 and then W(x1,x2) = W (x1 − x2).
As a consequence of (M.33) we have

W(x1,x2) =Wfree(x1,x2)

whenever both x1 and x2 have their time-coordinate equal to zero. Consequently, sinceW (x) =
W(x,0) we get

W (x) = W free(x)

whenever x has its time coordinate equal to zero. By Lorentz invariance this equality remains
true whenever x2 < 0 and the result then follows from Lemma M.4.15.

10 More generally it seems true that the value of W (x) for x2 < 0 determines the values of c and of ρ, but I do
not see an easy argument for this.

11 The gap in mathematical rigor is that it does not seem to be true that J ≥ 0 so that in principle there could be
cancellations in the right-hand side.



Appendix N

Feynman Propagator and Klein-Gordon Equation

In this appendix we explain how physics textbooks reach the formula (13.55), and we use the opportu-
nity to review a few basic fact, which, while definitely in the category “undergraduate mathematics”,
might have faded from the reader’s mind.

N.1 Contour Integrals

Here is a very brief review of this nearly miraculous method. If V is an open set in C, and a a point
of V , a function f which is holomorphic in V \ {a} is said to have a simple pole at a if (z − a)f (z)
can be extended to a holomorphic function on V . In other words, f (z) = g(z)/(z − a) where g is
holomorphic in V .1 The residue resaf is then defined as g(a) = limz→a(z − a)f (z). Consider a
function f which is holomorphic in C except maybe at a finite number of points where it has simple
poles. Then if C is a contour, that is, a closed simple (i.e. has no double points) curve in R2 oriented
counterclockwise, Cauchy’s theorem asserts that∫

C
f (z)dz = 2iπ

∑
a

resaf , (N.1)

where the sum is taken over the poles which are inside the closed curve C.
As a first example consider the function f (z) = 1/(1+ z2) = 1/(z− i)(z+ i), which has a simple

pole at z = i with residue 1/(2i). Consider the contour C consisting of the line segment C1 from
(−R,0) to (R,0), and the half-circle C2 of radius R centered at the origin in the upper half-plane.
Then Cauchy’s theorem implies ∫

C1

f (z)dz+
∫
C2

f (z)dz = π . (N.2)

Letting R → ∞ it is straightforward to see that the second term goes to 0, yielding the classical
formula ∫ ∞

−∞
dx

1+ x2
= π . (N.3)

More generally, consider a complex number a with Re a > 0, and

f (z) = exp(itz)

z2 + a2
,

where t > 0 is a real number. Considering the same contour, and using that | exp(itz)| = exp(−tIm z),
on C2 we have | exp(itz)| ≤ 1 and it is straightforward to prove that the contribution of

∫
C2

vanishes

1 One usually calls a a pole only when g(a) �= 0, but this makes no difference to us.
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as R→∞, while the only pole inside the contour is for z = ia, with a residue exp(−at)/2ia, so that
the right-hand side of (N.2) is now

2iπ
exp(−at)

2ia
= π

exp(−at)
a

,

yielding the formula ∫
exp(itx)

a2 + x2
dx = π

exp(−at)
a

. (N.4)

When t < 0, change of variable x → −x shows that the right-hand side has to be changed to
π exp(at)/a. It is however far more instructive to obtain this result by a contour integral. One replaces
C2 by a half-circle in the lower half-plane. The resulting contour is now oriented clockwise, which has
to be compensated by a minus sign in Cauchy’s formula. On this contour we now have | exp(itz)| ≤ 1,
and the contribution from C2 vanishes as R→∞. The pole inside the contour is at z = −ia, and the
residue there is − exp(at)/2ia. This technique of closing the contour either in the upper or the lower
half-plane is of constant use.

Considering the same contour, but now f (z) = (exp(iz) − 1)/z, which is holomorphic in the
entire complex plane, so that

∫
C1
f (z)dz+∫C2

f (z)dz = 0. Again the contribution of
∫
C2

exp(iz)dz/z

vanishes as R→∞ (although it takes now a little proof) while
∫
C2
−dz/z = −iπ . Therefore∫ ∞

−∞
exp(ix)− 1

x
dx = iπ .

In a similar manner one obtains ∫ ∞
−∞

exp(−ix)− 1

x
dx = −iπ,

but now the half-circle closing the contour has to be taken in the lower half-plane.
Consequently, since sin x = (exp(ix)− exp(−ix))/2i, we obtain∫ ∞

−∞
sin x

x
dx = π . (N.5)

In a similar manner, ∫ ∞
−∞

exp(2ix)− 2ix − 1

x2
dx = −2π .

Changing x into −x and adding we get ∫ ∞
−∞

sin2 x

x2
dx = π . (N.6)

As another example of this method, let us prove the formula (C.34). Completing the square, it
suffices to prove that for any complex number c one has∫

exp(−α(x + c)2)dx =
√
π

α
.

Obviously one may assume that c is purely imaginary, c = id . The result is certainly true for d = 0,
so it suffices to show that the integral is independent of d. This follows from the fact that the integral
of exp(−az2) on the contour which is the boundary of the rectangle of vertices (−R,0),(R,0),(R,d),
(−R,d) is zero, and letting R→∞.
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N.2 Fundamental Solutions of Differential Equations

Consider a linear differential operator D with constant coefficients. Our fundamental example is the
Klein-Gordon operator

D(u) = ∂2
t u−

∑
k≤3

∂2
k u+m2u, (N.7)

and the toy version

D0(u) = ∂2
t u+m2u, (N.8)

where the three dimensions of physical space have been removed. A fundamental solution of the
operator D is a function G such that in the sense of distributions one has

D(G) = δ(4). (N.9)

The reason why it is fundamental is that once you have computed it you know how to solve the
equation D(u) = f . Provided things make sense, a solution is given by

u(x) =
∫
G(x − y)f (y)d4y.

The fundamental solution is by no way unique. It is determined only up to a solution of the homo-
geneous equation D(u) = 0, and to specify it one has to fix “boundary conditions”. To see how this
works, let us look at the toy version (N.8). Then the following functions u satisfy D0(u) = δ :

u(t) = 0 if t ≤ 0 ; u(t) = 1

m
sin(mt) if t ≥ 0. (N.10)

u(t) = − 1

m
sin(mt) if t ≤ 0 ; u(t) = 0 if t ≥ 0. (N.11)

∀t ∈ R ; u(t) = i exp(−i|t |m)

2m
. (N.12)

The verification is straightforward. For example, in the case (N.12),

u′(t) = 1

2
sign t exp(−i|t |m) ; u′′(t) = δ(t)−m2u(t). (N.13)

The fundamental solutions (N.10) and (N.11) are completely determined by the condition u = 0 for
t < 0 (respectively u = 0 for t > 0).

Theorem N.2.1 The Feynman propagator

�F (x) = �F (t,x) = i
∫

d3p

(2π )32ωp
exp(−i|t |ωp + ip · x) (13.55)

is a fundamental solution of the Klein-Gordon operator.

Proof Here is a somewhat formal proof: Using that the function t �→ i exp(−i|t |ωp)/2ωp satisfies
(N.13) for m = ωp , we get

∂2
t �F (t,x) =

∫
δ(t) exp(ix · p)

d3p

(2π )3
− i

∫
ω2

p

exp(−i|t |ωp + ix · p)

2ωp

d3p

(2π )3
. (N.14)

The first term on the right is δ(t)δ(3)(x) = δ(4)(x), and since ω2
p = m2 + p2 the second term on the

right is (−m2 +∑j≤3 ∂
2
j

)�F (x).
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Among the fundamental solutions of the Klein-Gordon operator, the easiest one to picture is the
solution which is zero outside the forward light cone. It somewhat corresponds to what happens when
you throw a stone in a quiet pond and watch the waves die on the shores.2 This is the situation (N.10).
Running the movie of this event backward, one obtains another physically possible situation, this one
much harder to realize: The waves are born on the shore and concentrate at a point where they suddenly
annihilate each other. This corresponds to the situation (N.11). The Feynman propagator corresponds
to neither case, but to a mixture of them as in (N.12).

Let us now try to find a method to discover such fundamental solutions, starting with the toy
example of D0. If ∂2

t u + m2u = δ, taking the Fourier transform and using ∂̂t u = iωû yields
−ω2û(ω)+m2û = 1, so that

û(ω) = 1

−ω2 +m2
,

and taking the inverse Fourier transform gives the tentative formula

u(t) =
∫

exp(itω)

−ω2 +m2

dω

2π
. (N.15)

The integral does not quite make sense, but let us consider it as a contour integral, using the methods
of Section N.1. We can make sense of the integral if we avoid the poles ω = ±m by making a little
detour outside the real axis to bypass them. This detour can be made either above or below the real
axis. We observe also that for t > 0 we must close the contour by a half-circle in the upper half-plane,
while for t < 0 this must be done in the lower half-plane. If we bypass both poles from below, e.g. by
replacing ω by ω − iε for ε > 0, then for t > 0 it is straightforward to obtain∫

exp(itω)

−(ω − iε)2 +m2

dω

2π
= sin(mt)

m

through the residue formula, while the integral is zero if t < 0. This recovers the formula (N.10),
while the formula (N.11) is recovered by bypassing both poles from above. Yet another way to bypass
the poles is to replace (N.15) by

u(t) =
∫

exp(itω)

−ω2 +m2 − iε

dω

2π
(N.16)

for a vanishingly small ε > 0, and this time one obtains the solution (N.12).
Let us now go back to the case of the Klein-Gordon equation, where, using again the Fourier

transform, the fundamental solution should be given by (if this would make sense)

u(x) =
∫

exp(−i(x,p))

−p2 +m2

d4p

(2π )4
. (N.17)

Since −p2 = −p2
0 + p2, the problem is with the ill-defined integration in p0. This is the same

problem as we have considered in the toy case, replacing m2 by m2 + p2, and we can fix it by the
same device of setting

u(x) = lim
ε→0+

∫
exp(i(x,p))

−p2 +m2 − iε

d4p

(2π )4
, (N.18)

rediscovering the formula for the Feynman propagator.

Exercise N.2.2 The point of this exercise is to discover a fundamental solution for the Laplace
equation ∇2f = δ(3), a very important computation.

2 The waves on the pond do not satisfy the Klein-Gordon equation, but another differential equation.
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(a) Using the Fourier transform, show that k2f̂ (k) = −1.
(b) Express f as the inverse Fourier transform of −1/k2. Show by rotational symmetry that
f (x) depends only on ‖x‖. Assuming that x is in the z-direction, perform the integral in
cylindrical coordinates to obtain

f (x) = − 1

(2π )2

∫ ∞
0

rdr
∫

exp(ikx3)

r2 + k2
dk.

(c) Use (N.4) to show that the last integral is π exp(−x3r)/r and conclude that

f (x) = − 1

4π‖x‖ .



Appendix O

Yukawa Potential

In this appendix we present two variations on the model of Section 13.6, and the reader is assumed
to have mastered that section. These models go one small step closer to realistic models. We still
consider only bosons, but we no longer assume that the particle is its own anti-particle.

In the first model three particles exist. First, the a-particle, a massive spinless particle which is
different from its anti-particle ā. We denote by a and a† the annihilation and creation operators of this
particle, and by ā and ā† those of the anti-particle. The free field relative to the a-particle is no longer
self-adjoint, and is given by

ϕa(x) =
∫ (

exp(−i(x,p))a(p)+ exp(i(x,p)))ā†(p)
) d3p

(2π )3
√

2ωp
, (O.1)

ϕ
†
a (x) =

∫ (
exp(−i(x,p))ā(p)+ exp(i(x,p))a†(p)

) d3p

(2π )3
√

2ωp
, (O.2)

so that we have formulas such as

〈0|a(p)ϕa(x)|0〉 = 0 ; 〈0|a(p)ϕ†
a (x)|0〉 = exp(i(x,p)) (O.3)

〈0|ϕa(x)a†(p)|0〉 = exp(−i(x,p)) ; 〈0|ϕ†
a (x)a†(p)|0〉 = 0 (O.4)

〈0|ā(p)ϕ†
a (x)|0〉 = 0 ; 〈0|ā(p)ϕa(x)|0〉 = exp(i(x,p)) (O.5)

〈0|ϕ†
a (x)ā†(p)|0〉 = exp(−i(x,p)) ; 〈0|ϕa(x)ā†(p)|0〉 = 0. (O.6)

There exists another particle, the c-particle, which as previously is spinless, massive and its own
anti-particle (and for which the free field is given by the usual formulas discovered in Chapter 5). The
interacting Hamiltonian density is given by

H(x) = g :ϕa(x)ϕ†
a (x)ϕc(x): . (O.7)

Our goal is to compute some elements of the S matrix at the second order of perturbation theory.
These computations proceed very much as in Chapter 13 and are better left as exercises. Many of
the amplitudes one may write are zero, and to see this it helps to formulate in words the content of
the formulas (O.3) to (O.6) in words: To produce contractions that are not zero, a term ϕa(x) has to
be contracted with an incoming a-particle or an out-going ā-particle whereas a term ϕ

†
a (x) has to be

contracted with an incoming ā-particle or an outgoing a-particle.

Exercise O.1 Prove that at the first order of perturbation theory one has

〈0|a(p1)a(p2)S1c
†(q)|0〉 = 0 (O.8)
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and

〈0|a(p1)ā(p2)S1c
†(q)|0〉 = −ig(2π )4δ(4)(p1 + p2 − q).

In words, a c-particle may decompose into an a-particle and an ā-particle but not into two a-
particles.

Exercise O.2 Consider now particles (bj )j≤4 such that each bj is either a or ā. We are inter-
ested in computing at the second order of perturbation theory the amplitude 〈0|b4(p4)b3(p3)
S2b

†
2(p2)b†

1(p1)|0〉. Assuming the incoming momenta of the particles are all different from their
outgoing momenta, prove that the amplitude is zero unless the number of incoming a-particle
plus the number of out-going ā particles is 2. For example 〈0|ā(p4)a(p3)S2a

†(p1)a†(p2)|0〉= 0.

Exercise O.3 Assuming the incoming momenta of the particles are all different from their
outgoing momenta, show that when computing the quantity

〈0|a(p4)a(p3)S2 a
†(p1)a†(p2)|0〉, (O.9)

the two relevant diagrams are those at the left of Figure O.1. Compute then the values of these
diagrams.

To simplify the analysis we consider now a different model where an interaction similar to the one
in the previous exercise occurs through a single channel. In this model we have five particles, of types
a, b and c, and the anti-particles ā and b̄ of the particles a and b respectively. The corresponding free
fields are given by (O.1) and (O.2) for a and similar formulas for b. The c-particles are their own
anti-particles. The interacting Hamiltonian density is then given by

H(x) = g :ϕa(x)ϕ†
a (x)ϕc(x): + g :ϕb(x)ϕ†

b
(x)ϕc(x): .

Exercise O.4 Assuming as usual that the momenta of the incoming and outgoing particles are
all different, prove that in this model the computation at the second order of perturbation theory
of the amplitude

〈0|b(p4)a(p3)S2a
†(p2)b†(p1)|0〉 (O.10)

involves the diagram (b) of Figure O.1. Show that its value is

(−i)3g2(2π )4 δ
(4)(p4 + p3 − p1 − p2)

m2
c − (p1 − p3)2

. (O.11)

c

a

a

a

a

a

a

c

a

(a) (b)

a

a

b

c

a

b

Figure O.1 (a) The two relevant diagrams for (O.9). (b) The diagram relevant to (O.10).
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Performing the non-relativistic approximation of (O.11) as in (13.88) we obtain

ig2(2π )4 δ
(4)(p4 + p3 − p1 − p2)

m2
c + (p1 − p3)2

. (O.12)

Comparing (O.12) with the Born approximation (13.8) shows that the potential V such that

V̂ (p) = − 1

m2
c + p2

(O.13)

is involved here. It is a simple computation (once you know the result!) to check using spherical
coordinates that the potential

V (x) = −exp(−mc|x|)
4π |x| (O.14)

has precisely the property (O.13). This potential is called the Yukawa potential. In the limit mc → 0
it is the electrostatic potential.



Appendix P

Principal Values and Delta Functions

In this appendix we present a more abstract version of Lemma 18.1.1. As we have shown in this
lemma, for a smooth function ϕ the limit

lim
ε→0+

∫ 1

−1

ϕ(x)

x − iε
dx

exists. This means that the function 1/(x − iε) has a limit in the sense of distributions. This limit can
be computed explicitly. This is not difficult although the result looks a bit scary at first, because it
involves the “principal value”, a distribution which may not be familiar.1

Proposition P.1 In the sense of distributions,

lim
ε→0+

1

x + iε
= P

(
1

x

)
− iπδ0, (P.1)

where P(1/x) denotes the principal value,

P
(

1

x

)
(ϕ) := lim

α→0+

(∫ −α
−∞

ϕ(x)

x
dx +

∫ ∞
α

ϕ(x)

x
dx

)
. (P.2)

In a similar manner,

lim
ε→0+

1

x − iε
= P

(
1

x

)
+ iπδ0. (P.3)

That the limit exists in (P.2) is part of the result. The meaning of (P.1) is simply that for every test
function ϕ ∈ S,

lim
ε→0+

∫
ϕ(x)

x + iε
dx = P

(
1

x

)
(ϕ)− iπϕ(0).

Proof We write

1

x + iε
= x

x2 + ε2
− i

ε

x2 + ε2
. (P.4)

Taking (N.3) into account we obtain (with the change of variable x = εy)

lim
ε→0+

∫
εϕ(x)

x2 + ε2
dx = πϕ(0),

1 We state this result to help the reader connect with the literature which overwhelmingly states Proposition P.1.
However the existence of the limit in Lemma 18.1.1 is arguably far more useful than the exact value of this
limit.
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so that it suffices to prove that

lim
ε→0+

∫
xϕ(x)

x2 + ε2
dx = P

(
1

x

)
(ϕ). (P.5)

First, if ϕ is constant on the interval [−a,a], then for each 0 < α ≤ a one has∫
xϕ(x)

x2 + ε2
dx =

∫ −α
−∞

xϕ(x)

x2 + ε2
dx +

∫ ∞
α

xϕ(x)

x2 + ε2
dx,

because the contribution in the interval (−α,α) is zero by symmetry. As ε→ 0+ the limit of this is∫ −a
−∞

ϕ(x)

x
dx +

∫ ∞
a

ϕ(x)

x
dx = lim

α→0+

∫ −α
−∞

ϕ(x)

x
dx +

∫ ∞
α

ϕ(x)

x
dx

= P
(

1

x

)
(ϕ).

Next, if ϕ(0) = 0, then it is much easier to understand what P(1/x)(ϕ) is:

P
(

1

x

)
(ϕ) =

∫
ϕ(x)

x
dx,

and (P.5) is basically obvious by dominated convergence. Finally any function ϕ ∈ S is the sum of
two functions in S, one of which is constant in a neighborhood of the origin, the other one being zero
at the origin. This completes the proof of (P.5).



Solutions to Selected Exercises

Solutions to selected exercises are available for download from the book’s catalog page
www.cambridge.org/9781316510278.

I am indebted to Krzysztof Smutek for having suggested that I write this chapter. He
worked out many of these solutions, and I am grateful for his permission to reproduce
them. There are indications of how to solve almost every exercise, except those which are
embarrassingly easy, or those whose solutions can be found in the given references. Please
be aware that I did not work out the exercises with the same dedication as I wrote the main
text, and brace yourself for a higher density of typos and possibly a positive density of plain
nonsense. After all, the point of the exercises is to make the reader (not the author) work.
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Reading Suggestions

As detailed in the introduction this book would not exist if I had found expositions of
the topic in which I could have learned easily. This is not my topic and I have a limited
knowledge of the literature.1 Nonetheless, I painfully experienced that it is very difficult to
learn from a single book, and there is no reason why this one should be an exception. So,
here is some advice (for what it is worth).

• For Quantum Mechanics, try the book of Brian Hall [40], and the treatise by Claude
Cohen-Tannoudji et al. [11]. The book [61] by Kalyanapuram Parthasarathy could
also be helpful. Peter Woit’s work [91] has some simple material at the beginning
which is well explained and hard to find elsewhere. You may also find Cresser’s text
[17] useful.

• I am fully aware that I do not say enough about Special Relativity that you could
survive if you really have never heard of it. This is an easy topic and there is plenty
of material available. I have enjoyed Taylor and Wheeler’s book [81] and the simpler
book [41] by Harris.

• When you have the impression that you understand something about a topic in the
present book, check in the much more compact book of Gerald Folland [31] if you
understand his treatment.

• If you want to learn how to read physicists’ work, when you have the impression that
you understand something about a topic in the present book, check in the book by
Tom Lancaster and Stephen Blundell [50] if you understand their treatment. Their
book makes an unparalleled effort at being accessible; but it is very definitely not
written with a mathematically oriented reader in mind.

• There is a whole series of books by Walter Greiner and coauthors (such as [35])
with elementary and very detailed presentations. They can however be extremely
confusing to a mathematician.

• The book [24] by Anthony Duncan is a real challenge, but is of great potential interest
for a mathematician.

• The references comprise a number of papers and books which I found of interest.

1 You must have guessed too that I feel that some published books have a strong negative value, and you will
forgive me for not naming them.
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:=, the left-hand side is a definition of the right-hand
side, 13

A†, the adjoint of the operator A, 11
Gl(n,C) the group of invertible n× n complex

matrices, 635
M(x), 193
O(1,3), the Lorentz group, 103
O(g3), a sum of terms each having a coefficient gn,

n ≥ 3, 394
O(n), the orthogonal group, 107
P , momentum operator, 37
S-matrix, 330
SO(n), the special orthogonal group, 108
Wε(k), 497
X, position operator, 32
E , the set of internal edges, 483
I, orthogonal projection on kerL, 500
K, a discretized version of R3, 93, 313
L, a fundamental map from (R1,3)E to (R1,3)V , 484
N , the range of L, 501
P , the Poincaré group, 121
P∗, a more convenient version of the Poincaré group

P , 211
P∗+, an extension of P∗ including parity, 235
Q, the orthogonal complement of kerL, 500
R1,3, R4 equipped with the Lorentz bilinear form, 103
RF , the regularized version of the integrand F , 497,

506
S, the space of Schwartz functions on R, 12
S4, the space of Schwartz functions on R4, 115
T , orthogonal projection on Q, 500
V , the set of internal vertices, 483
δm,p , a version of the Dirac function, 115
degE P , the degree of P in the direction of E, 477
ẋ, the time derivative of x, 151
glC(m), the Lie algebra of Gl(m,C), 639
κ(A), the image in SO↑(1,3) of A ∈ SL(2,C), 193
SO↑(1,3), the group of Lorentz transformations with

determinant 1, 105
O+(1,3), the group of orthochronous Lorentz

transformations, 202

Sn, the group of permutations of n elements, 77
φ3 theory, 359
φ3

2 theory, 457, 460, 467
π ′(X), 640
πj , the fundamental family of representations of

SU (2), 187
∂μ, 147
i, a complex number such that i2 = −1, 11
�, semidirect product, 121
SL+(2,C), 202
so(3), the Lie algebra of SO(3), 637
su(2), the Lie algebra of SU (2), 642
|Ω〉, the vacuum, the physical ground state, 421
x · σ , 643
a∗, the conjugate of the complex number a, 10
c-number, 87
glab, the coupling constant as measured in the lab, 393
k-th order in perturbation theory, 299
p∗: often equals (mc,0,0,0), 112, 130, 209
1-particle irreducible or 1-PI diagram, 455

action, 10, 151
active and passive diagrams, 572
adiabatic switching, 430
adjacent, 483
adjoint Dirac equation, 289
adjoint operator, 33
amplitude, 46
amputated diagram, 464
angular frequency, 66
angular momentum, 53, 200
annihilation operator, 65, 83
anti-commutator, 205, 276
anti-linear, 12
anti-particle, 252
asymptotic completeness, 329
asymptotic series, 352

bare coupling constant, 460
bare mass, 460
bare parameters, 457
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Bargmann–Wigner equations, 673
biped, 488, 512, 518
boost, 109
bosons, 77
bound state, 62, 449
bra vector, 23

canonical commutation relations, 37
canonical flow, 501
canonical transformations, 159
Cauchy-Schwarz inequality, 11
causality relation, 106
causally separated, 106, 135
channels, 378
character of a group, 604
charged particle, 251
chiral presentation, 205
circular polarization, 667
classical field, 153
classical Hamiltonian, 151, 157
coherent state, 619
commutator, 23
completeness relation, 24, 42
conjugate matrix, 184
conjugate momentum, 157
conservation of four-momentum, 363
contracted diagram, 532
contraction, 366
contraction diagram, 375
Coulomb gauge, 667
counter-term, 404
counter-term vertices, 414
coupling constant, 299, 314
creation operator, 65, 83
cross-section, 334, 339
curve, 186

d’Alembertian, 147
decoherence, 27
defining representation, 184, 204
degree of a monomial, 474
diagram integrals, 471
differential cross-section, 339
dimensionless, 10
Dirac adjoint, 289
Dirac equation, 238
Dirac matrices, 205
Dirac spinors, 204
distribution, 12
domain of an operator, 32
double-valued representation, 198
dressed propagator, 447
dual group, 604
Dyson series, 306, 352

electromagnetic four-potential, 666
electromagnetic tensor, 666
energy–momentum, 665

entangled, 75
essentially self-adjoint, 35
Euler-Lagrange equations, 152
external line, 364
external vertices, 364

fearsome, 679
Fermi’s exclusion principle, 275
Fermi’s golden rule, 311
fermions, 77
Feynman diagram, 381, 385
Feynman parameters, 398, 548
Feynman propagator, 369
Feynman rules in momentum space, 390
Feynman rules in position space, 382
final vertices, 364
finite accuracy, 335
finite renormalization, 461
finite-dimensional representation, 117
four-momentum, 665
four-velocity, 665
Fourier transform in R1,3, 123
Fubini’s theorem, 475
fully regular function, 581
functional, 160, 679
functional derivative, 679

gauge transformation, 666
Gell-Mann−Low formula, 424
generalized function, 699
geometric quantization, 161
graph, 35
Green functions, 422
Green operator, 693
ground state, 313

Haag’s theorem, 355
Haar measure, 124, 125
Hamilton’s equations of motion, 158
Hamiltonian, 60
Hamiltonian density, 160, 354
Hamiltonian function, 157
harmonic function, 654
Heisenberg group, 617
helicity, 215, 230
Hermite polynomials, 620
Hermitian operator, 11
homogeneous polynomial, 474

improper state, 42
induced representation, 213, 217
infinitesimal generator, 53
initial conditions, 150
initial vertices, 364
integrating over internal degrees of freedom, 497
interaction picture, 304
interaction term, 351
internal line, 375
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internal vertices, 364
interpolation lemma, 553
intertwining operator, 116
intrinsic parity, 235
inverse Fourier transform in R1,3, 123
irreducible representation, 116

Jacobi identity, 637, 683

Källén–Lehmann representation, 719
ket vector, 22
Klein-Gordon equation, 146

Lagrangian, 151
Lagrangian density, 154
Legendre transform, 679
Lehmann–Symanzik–Zimmermann reduction

formula, 444
Lie algebra, 638
Lie algebra homomorphism, 639
Lie bracket, 637
light cone, 103
Lippmann–Schwinger equations, 695
little group, 213
loop, 186
Lorentz bilinear form, 103
Lorentz covariant, 254
Lorentz group, 103
Lorentz invariant, 113
Lorentz transformation, 103
Lorenz gauge, 667
to lower indices, 107
LSZ reduction formula, 444, 463

mass gap, 431
mass renormalization, 440
mass shell, 112
massive particle; massless particle, 127
matrix element, 308
maximum sub–diagrams, 505
Maxwell equations, 666
microcausality, 136
Minkowski space, 103
mirror image, 244
momentum operator, 37, 53
momentum space state, 40
monomial, 474
multiplication of propagators, 372

neutral particle, 251
Newton–Wigner operator, 669
norm, 11
normal ordering, 175
number operator, 64, 91

observable, 23
operator, 11
operator of angular momentum, 641

operator-valued distribution, 88, 94
ordering ambiguities, 161
orthochronous transformations, 105
overall divergence, 410

parity image, 244
parity operator, 111
path integral, 540
Pauli matrices, 24
periodic boundary condition, 95
phase, 50, 52, 60
phase space, 157
photon, 245
physical mass, 440, 449
Plancherel formula, 17
Planck constant, 10
plane wave, 325
Poincaré group, 102
Poisson bracket, 682
position operator, 32
position state space, 37
positive definite Hermitian, 194
power counting, 410
principle of least action, 152
projection-valued measure, 705
projective unitary representation, 48
proper time, 665
pure boost, 109

quadruped, 488
quantum of excitation, 69

to raise indices, 107
rapidly decreasing functions, 12
Rarita–Schwinger equations, 676
ray representation, 48
reduced Planck constant, 10
reduced value of a biped, 519
reference frame, 47
regular and semi–regular function, 579
removing the cutoff, 396
renormalization prescription, 526
residue, 721
resolution of identity, 24
rest mass, 111
restriction of a representation, 219

scattering by a potential, 327
scattering states, 62, 695
Schrödinger picture, 62
Schrödinger representation, 618
Schrödinger’s equation, 60
Schur’s lemma, 117
Schwartz functions, 12
second quantization, 82
self-adjoint operator, 33
semi–direct product, 121
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sesqui-linear, 11
skew-adjoint matrix, 642
skew-symmetric, 636
smooth cutoff, 14
spectral theory, 35
spin, 182
spinor representations, 660
spreading of the wave function, 325
state space, 22
Stone’s theorem, 53
strong topology, 328, 596
strongly continuous map, 51
sub–diagram, 485
sub–divergence, 410
subgraph, 485
superficial degree of divergence, 485
support of a function, 699
symmetric operator, 33

tadpoles, 453
tensor representation, 660
test function, 12
time-independent Schrödinger equation, 61
time-ordered product, 306
Tonelli’s theorem, 475
traceless matrix, 642

transition probability, 46
tree, 378
triped, 526
trivial representation, 268

ultraviolet cutoff, 165
ultraviolet divergence, 164
unbounded operator, 32
uncertainty, 29
uncertainty principle, 28
unitarily equivalent, 115
unitarily equivalent models, 39
unitary operator, 38
unitary ray, 27
unitary representation, 49

vacuum, 82
vacuum bubble, 383, 384, 439

wave function, 31, 325
wave packet, 325
Weyl representation, 205
Wick rotation, 397
Wightman functions, 714

Yukawa potential, 728
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